absorbsi 1

14
ABSORBSI 1 A. PERBEDAAN TEKANAN UDARA SEPANJANG KOLOM KERING 1. Tujuan Percobaan Menentukan perbedaan tekanan udara sepanjang kolom kering sebagai fungsi dan laju alir udara dan laju alir yang berbeda-beda. 2. Alat dan Bahan yang digunakan Satu unit peralatan absorbs Udara tekan Air 3. Dasar Teori Absorbsi adalah proses pemisahan bahan dari suatu campuran gas dengan cara pengikatan bahan tersebut pada permukaan absorben cair yang diikuti dengan pelarutan. Kelarutan gas yang akan diserap dapat disebabkan hanya oleh gaya-gaya fisik (pada absorpsi fisik) atau selain gaya tersebut juga oleh ikatan kimia (pada absorpsi kimia). Komponen gas yang dapat mengadakan ikatan kimia akan dilarutkan lebih dahulu dan juga dengan kecepatan yang lebih tinggi. Karena itu absorpsi kimia mengungguli absorpsi fisik. Absorbsi gas atau penyerapan gas merupakan proses perpindahan massa. Pada absorbsi gas, uap yang diserap dari campurannya dengan gas tidak aktif atau lembab (inert gas) dengan bantuan zat cair dimana gas terlarut (solute gas) dapat larut banyak atau sedikit. Fungsi Absorbsi dalam industri adalah meningkatkan nilai guna dari suatu zat dengan cara merubah fasenya. Alat yang banyak digunakan dalam absorbsi gas dan beberapa operasi lain adalah menara isian. Piranti ini terdiri dari sebuah kolom berbentuk silinder atau menara yang dilengkapi dengan pemasukan gas dan ruang distribusi pada bagian bawah. Pemasukan zat cair dan distribusinya pada bagian atas. Sedangkan pengeluaran gas dan zat cair masing-masing diatas dan dibawah. Serta suatu massa bentukan zat padat (tidak aktif/inert) diatas penyangganya. Bentukan ini disebut isian menara atau tower packing. Jenis-jenis isian menara yang diciptakan orang banyak sekali macamnya tetapi ada beberapa jenis yang lazim dipakai. Isian menara terbagi menjadi dua macam, yaitu yang di isikan dengan mencurahkan secara acak kedalam menara dan disusun kedalam menara dengan tangan. Persyaratan pokok yang diperlukan untuk isian menara, yaitu: Harus tidak bereaksi (kimia) dengan fluida didalam menara Tidak terlau berat

Upload: desi-supiyanti

Post on 26-Dec-2015

10 views

Category:

Documents


0 download

DESCRIPTION

hap hap

TRANSCRIPT

Page 1: ABSORBSI 1

ABSORBSI 1

A.    PERBEDAAN TEKANAN UDARA SEPANJANG KOLOM KERING

1.      Tujuan PercobaanMenentukan perbedaan tekanan udara sepanjang kolom kering sebagai fungsi dan laju alir udara dan laju alir yang berbeda-beda.

2.      Alat dan Bahan yang digunakan  Satu unit peralatan absorbs  Udara tekan  Air

3.      Dasar TeoriAbsorbsi adalah proses pemisahan bahan dari suatu campuran gas dengan cara

pengikatan bahan tersebut pada permukaan absorben cair yang diikuti dengan pelarutan. Kelarutan gas yang akan diserap dapat disebabkan hanya oleh gaya-gaya fisik (pada absorpsi fisik) atau selain gaya tersebut juga oleh ikatan kimia (pada absorpsi kimia). Komponen gas yang dapat mengadakan ikatan kimia akan dilarutkan lebih dahulu dan juga dengan kecepatan yang lebih tinggi. Karena itu absorpsi kimia mengungguli absorpsi fisik. Absorbsi gas atau penyerapan gas merupakan proses perpindahan massa.

Pada absorbsi gas, uap yang diserap dari campurannya dengan gas tidak aktif atau lembab (inert gas) dengan bantuan zat cair dimana gas terlarut (solute gas) dapat larut banyak atau sedikit. Fungsi Absorbsi dalam industri adalah meningkatkan nilai guna dari suatu zat dengan cara merubah fasenya.

Alat yang banyak digunakan dalam absorbsi gas dan beberapa operasi lain adalah menara isian. Piranti ini terdiri dari sebuah kolom berbentuk silinder atau menara yang dilengkapi dengan pemasukan gas dan ruang distribusi pada bagian bawah. Pemasukan zat cair dan distribusinya pada bagian atas. Sedangkan pengeluaran gas dan zat cair masing-masing diatas dan dibawah. Serta suatu massa bentukan zat padat (tidak aktif/inert) diatas penyangganya. Bentukan ini disebut isian menara atau tower packing.

Jenis-jenis isian menara yang diciptakan orang banyak sekali macamnya tetapi ada beberapa jenis yang lazim dipakai. Isian menara terbagi menjadi dua macam, yaitu yang di isikan dengan mencurahkan secara acak kedalam menara dan disusun kedalam menara dengan tangan.

Persyaratan pokok yang diperlukan untuk isian menara, yaitu:  Harus tidak bereaksi (kimia) dengan fluida didalam menara  Tidak terlau berat  Harus mengandung cukup banyak laluan untuk arus tanpa banyak zat cair yang terperangkap

atau menyebabkan penurunan tekanan terlalu tinggi  Harus memungkinkan terjadinya kontak yang memuaskan antara zat cair dan gas  Tidak terlalu mahal

Page 2: ABSORBSI 1

Absorben adalah cairan yang dapat melarutkan bahan yang akan diabsorpsi pada permukaannya, baik secara fisik maupun secara reaksi kimia. Absorben sering juga disebut sebagai cairan pencuci.

Persyaratan absorben :  Memiliki daya melarutkan bahan yang akan diabsorpsi yang sebesar mungkin (kebutuhan akan

cairan lebih sedikit, volume alat lebih kecil).  Selektif  Memiliki tekanan uap yang rendah  Tidak korosif.  Mempunyai viskositas yang rendah  Stabil secara termis.  Murah

Jenis-jenis bahan yang dapat digunakan sebagai absorben adalah air (untuk gas-gas yang dapat larut, atau untuk pemisahan partikel debu dan tetesan cairan), natrium hidroksida (untuk gas-gas yang dapat bereaksi seperti asam) dan asam sulfat (untuk gas-gas yang dapat bereaksi seperti basa).

Kolom AbsorbsiAdalah suatu kolom atau tabung tempat terjadinya proses

pengabsorbsi (penyerapan/penggumpalan) dari zat yang dilewatkan di kolom/tabung tersebut. Proses ini dilakukan dengan melewatkan zat yang terkontaminasi oleh komponen lain dan zat tersebut dilewatkan ke kolom ini dimana terdapat fase cair dari komponen tersebut.

Struktur dalam absorber1.         Bagian atas: Spray untuk megubah gas input menjadi fase cair.

2.         Bagian tengah: Packed tower untuk memperluas permukaan sentuh sehingga mudah untuk diabsorbsi3.         Bagian bawah: Input gas sebagai tempat masuknya gas ke dalam reaktor.

Prinsip Kerja Kolom Absorbsi1.         Kolom absorbsi adalah sebuah kolom, dimana ada zat yang berbeda fase mengalir berlawanan

arah yang dapat menyebabkan komponen kimia ditransfer dari satu fase cairan ke fase lainnya, terjadi hampir pada setiap reaktor kimia. Proses ini dapat berupa absorpsi gas, destilasi,pelarutan yang terjadi pada semua reaksi kimia.

2.         Campuran gas yang merupakan keluaran dari reaktor diumpankan kebawah menara absorber. Didalam absorber terjadi kontak antar dua fasa yaitu fasa gas dan fasa cair mengakibatkan perpindahan massa difusional dalam umpan gas dari bawah menara ke dalam pelarut air sprayer yang diumpankan dari bagian atas menara. Peristiwa absorbsi ini terjadi pada sebuah kolom yang berisi packing dengan dua tingkat.Keluaran dari absorber pada tingkat I mengandung larutan dari gas yang dimasukkan tadi.

Proses Pengolahan Kembali Pelarut Dalam Proses Kolom Absorber1.         Konfigurasi reaktor akan berbeda dan disesuaikan dengan sifat alami dari pelarut yang

digunakan

Page 3: ABSORBSI 1

2.         Aspek Thermodynamic (suhu dekomposisi dari pelarut),Volalitas pelarut,dan aspek kimia/fisika seperti korosivitas, viskositas,toxisitas, juga termasuk biaya, semuanya akan diperhitungkan ketika memilih pelarut untuk spesifik sesuai dengan proses yang akan dilakukan.

3.         Ketika volalitas pelarut sangat rendah, contohnya pelarut tidak muncul pada aliran gas, proses untuk meregenerasinya cukup sederhana yakni dengan memanaskannyaAplikasi kolom absorbsi:• Teknologi Refrigerasi• Teknologi proses pembuatan formalin• Proses pembuatan asam nitrat

4.      Langkah Kerja1.      Harus mengeringkan kolom terlebih dahulu dengan menggunakan laju alir udara maksimum2.      Menghubungkan bagian atas dan bawah kolom dengan manometer air dengan menggunakan

katup S1 dan S2

3.      Membaca perbedaan tekanan sepanjang kolom untuk beberapa range laju alir udara

5.      Data Pengamatan 1Peningkatan Laju Alir

Laju Alir (L/min) ∆P (mmH₂O)20 0,073256540 0,0952335560 0,146513180 0,3662868100 0,65930920120 0,9523355140 1,2453618160 1,39187499

Penurunan Laju Alir

Laju Alir (L/min) ∆P (mmH₂O)160 1,39187499140 1,2453618120 0,9523355100 0,659309080 0,36628289260 0,29302640 0,1441113020 0,0732565

Laju Alir (L/min)

∆P (mmH₂O)Peningkatan Penurunan

20 0,0732565 0,0732565

Page 4: ABSORBSI 1

40 0,09523355 0.1441113060 0,1465131 0,29302680 0,3662868 0,366282892100 0,65930920 0,6593090120 0,9523355 0,9523355140 1,2453618 1,2453618160 1,39187499 1,39187499

6.      PerhitunganDiketahui :           ρ = 1,22 kg/m3

                                               g = 9,8 kg/ms2

a.       Kenaikan Laju Alir         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,001 m x 60 s           = 0,71736 kg/ms

ΔP konversi= 0,71736 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,073314192 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,0013 m x 60 s           = 0,932568 kg/ms

ΔP konversi= 0,932568 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,09530845 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,002 m x 60 s           = 0,45472 kg/ms

ΔP konversi= 0,45472 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,146628384 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,005 m x 60 s           = 3,5868 kg/ms

ΔP konversi= 3,5868 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O

Page 5: ABSORBSI 1

1,01325 x 105 kg/ms x 1 psia x 1 ft H2O                      = 0,36657096 mm H2O

         ΔP = ρ x g x h x t           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,009 m x 60 s           = 6,45624 kg/ms

ΔP konversi= 6,45624 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,659827728 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,013 m x 60 s           = 9,32568 kg/ms

ΔP konversi= 9,32568 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,95084496 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,017 m x 60 s           = 12,19512 kg/ms

ΔP konversi= 12,19512 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 1,246341264 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,019 m x 60 s           = 13,62984 kg/ms

ΔP konversi= 13,62984 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 1,392969648 mm H2O

b.      Penurunan Laju Alir         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,019 m x 60 s           = 13,62984 kg/ms

ΔP konversi= 13,62984 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 1,392969648 mm H2O

Page 6: ABSORBSI 1

         ΔP = ρ x g x h x t           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,017 m x 60 s           = 12,19512 kg/ms

ΔP konversi= 12,19512 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 1,246341264 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,013 m x 60 s           = 9,32568 kg/ms

ΔP konversi= 9,32568 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,95084496 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,009 m x 60 s           = 6,45624 kg/ms

ΔP konversi= 6,45624 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,659827728 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,005 m x 60 s           = 3,5868 kg/ms

ΔP konversi= 3,5868 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,36657096 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,004 m x 60 s           = 2,86944 kg/ms

ΔP konversi= 2,86944 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,293026 mm H2O         ΔP = ρ x g x h x t

           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,002 m x 60 s           = 1,4112 kg/ms

ΔP konversi

Page 7: ABSORBSI 1

= 1,4112 kg/ms x 14,696 psia x 2,311 ft H2O x 304,8 mm H2O

1,01325 x 105 kg/ms x 1 psia x 1 ft H2O                      = 0,14411130 mm H2O

         ΔP = ρ x g x h x t           = 1,22 kg/m3 x 9,8 kg/ms2 x 0,001 m x 60 s           = 0,71736 kg/ms

ΔP konversi= 0,71736 kg/ms x 14,696 psia x 2,311 ft

H2O x 304,8 mm H2O1,01325 x 105 kg/ms x 1 psia x 1 ft H2O

                      = 0,0732565 mm H2O

B.     PERBEDAAN TEKANAN UDARA SEPANJANG KOLOM DENGAN LAJU ALIR AIR1.      Tujuan Percobaan

Menguji perbedaan tekanan udara sepanjang kolom sebagai fungsi laju alir udara untuk beberapa laju alir yang berbeda-beda sepanjang kolom

2.      Langkah Kerja1.      Mengisi tanki penampung dengan air hingga ¾ penuh2.      Menghidupkan pompa atau mengatur C1 sehingga didapat laju alir 1 L/min sepanjang kolom3.      Mengalirkan udara dari bawah kolom dengan laju alir 30 L/min dan menunggu sekitar 2 menit

hingga stabil4.      Mencatat beda tekanan udara sepanjang kolom basah sebagai fungsi dan laju alir udara5.      Mencatat perbedaan tekanan sepanjang kolom sebagai fungsi dan laju alir udara un tuk

beberapa laju alir berbeda sehingga 1 L/min. memperhatikan perubahan kolom pada setiap pergantian laju alir.

3.      Data Pengamatan 2Data pengamatan 2 . perbedaan tekanan udara sepanjang kolom dengan laju alir air

Tabel 1. Flow air 1.0ρ g h t ∆P ∆P konversi

1,22 9,8 0,005 60 3,5868 0,36657096

1,22 9,8 0,006 60 4,304160,43988515

2

1,22 9,8 0,014 6010,0430

41,02639868

8

1,22 9,8 0,026 6018,6513

61,90616899

2

1,22 9,8 0,044 6031,5638

43,22582444

8

1,22 9,8 0,064 6045,9110

44,69210828

8

Page 8: ABSORBSI 1

1,22 9,8 0,104 6074,6054

47,62467596

8

1,22 9,8 0,108 6077,4748

87,91793273

6

Tabel 2. Flow air 2.0

ρ g h t ∆P∆P(konvers

i)

1,22 9,8 0,007 60 5,021520,51319934

41,22 9,8 0,02 60 14,3472 1,466283841,22 9,8 0,03 60 21,5208 2,199425761,22 9,8 0,05 60 35,868 3,66570961,22 9,8 0,08 60 57,3888 5,86513536

1,22 9,8 0,116 6083,2137

68,50444627

2

1,22 9,8 0,122 6087,5179

28,94433142

4

1,22 9,8 0,132 6094,6915

29,67747334

4

Tabel 3. Flow air 3.0

ρ g h t ∆P∆P(konvers

i)

1,22 9,8 0,008 60 5,738880,58651353

6

1,22 9,8 0,006 60 4,304160,43988515

21,22 9,8 0,005 60 3,5868 0,36657096

1,22 9,8 0,004 60 2,869440,29325676

8

1,22 9,8 0,044 6031,5638

43,22582444

8

1,22 9,8 0,074 6053,0846

45,42525020

8

1,22 9,8 0,104 6074,6054

47,62467596

8

1,22 9,8 0,138 6098,9956

8 10,1173585

Tabel 4. Flow air 4.0

ρ g h t ∆P∆P(konvers

i)1,22 9,8 0,006 60 4,30416 0,43988515

Page 9: ABSORBSI 1

2

1,22 9,8 0,004 60 2,869440,29325676

8

1,22 9,8 0,004 60 2,869440,29325676

8

1,22 9,8 0,028 6020,0860

82,05279737

61,22 9,8 0,07 60 50,2152 5,13199344

1,22 9,8 0,344 60246,771

825,2200820

51,22 9,8 0 60 0 01,22 9,8 0 60 0 0

Tabel 5. Flow air 5.0

ρ g h t ∆P∆P(konvers

i)

1,22 9,8 0,056 6040,1721

64,10559475

2

1,22 9,8 0,056 6040,1721

64,10559475

2

1,22 9,8 0,012 60 8,608320,87977030

41,22 9,8 0,01 60 7,1736 0,73314192

1,22 9,8 0,372 60266,857

927,2728794

21,22 9,8 0 60 0 01,22 9,8 0 60 0 01,22 9,8 0 60 0 0

Tabel 6. Flow air 6.0

ρ g h t ∆P∆P(konvers

i)1,22 9,8 0 60 0 0

1,22 9,8 0,006 60 4,304160,43988515

2

1,22 9,8 0,004 60 2,869440,29325676

8

1,22 9,8 0,392 60281,205

128,7391632

61,22 9,8 0 60 0 01,22 9,8 0 60 0 01,22 9,8 0 60 0 01,22 9,8 0 60 0 0

Page 10: ABSORBSI 1

Tabel 7. Flow air 7.0

ρ g h t ∆P∆P(konvers

i)

1,22 9,8 0,006 60 4,304160,43988515

2

1,22 9,8 0,006 60 4,304160,43988515

2

1,22 9,8 0,27 60193,687

219,7948318

41,22 9,8 0 60 0 01,22 9,8 0 60 0 01,22 9,8 0 60 0 01,22 9,8 0 60 0 01,22 9,8 0 60 0 0

 

         Peningkatan laju alir (L/min)Laju alir udara (L/min)

v 20 40 60 80 100 120 140 160

ΔP 1 0,3665 0,51310,5865

1 0,4398 4,1055 00,439

83,2258

ΔP 2 0,4398 1,4662 0,4398 0,2932 4,1055 0,43980,439

815,076

5

ΔP 3 1,0263 2,1994 0,3665 0,29320,8797

7 0,293219,79

40

ΔP 4 1,9061 3,6657 0,2932 2,0527 0,733128,739

1 00

ΔP 5 3,2258 5,8651 3,2258 5,1319 27,272 0 0 0ΔP 6 4,6921 8,50444 5,4252 25,220 0 0 0 0

ΔP 77,6246

7 8,94433 7,6246 0 0 0 00

ΔP 8 7,9179 9,67747 10,117 0 0 0 0 0

         Penurunan Laju Alir (L/min)

Laju Alir Air

(L/min)

Laju Alir Udara (L/min)160 140 120 100 80 60 40 20

1 8,791 8,351 5,128 1,758 3,663 2,784 2,344 1,0262 1,612 0,293 0,733 0,147 0,440 0,147 0,293 0,2933 8,058 5,274 3,956 0,733 0,147 0,147 0,1474 0,440 3,223 1,465 1,905 1,0265 4,981 7,326 2,637 0,9526 1,098 8,937 2,637

Page 11: ABSORBSI 1

7 12,893 4,249

         Grafik peningkatan dan penurunan laju alir

Laju alir (L/min) Kenaikan tekanan (mmH2O) Penurunan tekanan (mmH2O)20 7,9179 4,24940 9,6774 12,89360 10,1173 7,32680 25,220 4,981100 27,2728 3,956120 28,7391 5,274140 19,79483 8,058160 15,0765 13,989

4.      Analisa PercobaanProses pemisahan dengan metode absorbsi ini dapat dilakukan pada fluida yang relatif

berkonsentrasi rendah maupun yang bersifat konsentrat. Prinsipnya dengan memanfaatkan besarnya difusivitas molekul-molekul gas pada larutan tertentu. Percobaan pertama ini menggunakan kolom kering yaitu suatu kolom yang hanya dialiri udara. Dari pengamatan pertama bahwa semakin meningkat laju alir udara maka ketinggianya atau pembaca manometernya akan semakin meningkat, demikian juga dengan penurunan laju alir udarnya. Secara logika, nilai atau angka ketinggian manometer antara kenaikan dan penurunan laju alir konstan atau tetap atau sama antara keduanya, namun pada praktikum kali ini terdapat perbedaan yang terletak pada laju alir 20 L/min, 40 L/min, dan 60 L/min yang masing-masing adalah 1 mm, 1,3 mm, dan 2 mm untuk kenaikanya dan untuk penurunanya adalah 1 mm, 2 mm, dan 4 mm. Hal ini dapat disebabkan oleh beberapa faktor , yaitu kemungkinan dari faktor tekanan yang diberikan oleh gas, serta tinggi rendahnya laju alir yang diberikan oleh udara, dan faktor lain yang berperan.   Begitupun dengan beda tekan yang diperoleh dari perhitungan rumus tekanan hidrostatik dengan menggunakan densitas udara pada suhu ruang yaitu 1.22 kg/m3.

Sedangkan untuk percobaan kedua mengenai perbedaan tekanan udarasepanjang kolom dengan laju alir air. Berbeda dengan percobaan yang pertama, kali ini yang digunakan adalah kolom basah, kolom basah merupakan kolom yang dialiri air dan udara. Prinsipnya kontak antara air dan udara yang terjadi dikolom dimana air dialirkan dari kolom bagian atas, sedangkan gas dari kolom bagian bawah. Dimana akan terjadi kontak antara air dan udara didalam kolom yang dapat menimbulkan penurunan tekanan. Terdapat beberapa hal dapat dianalisa dari tabel yang telah ada bahwa ada beberapa dari perbedaan tekanan yang terjadi ((ada yang tidak stabil pada saat peningkatan dan penurunanya). Hal ini mungkin dapat disebabkan oleh tidak adanya ruang laluan untuk zat cair sehingga lajunya terhambat. Pada grafik yang ke - 4 mulai terjadi proses fluidisasi (flooding). Lebih meningkat pada tekanan yang ke – 6 (ΔP 6).

 5.      Kesimpulan

Dari hasil percobaan dapat di tarik beberapa kesimpulan bahwa,

Page 12: ABSORBSI 1

a.       Absorbsi adalah proses pemisahan bahan dari suatu campuran gas dengan cara pengikatan bahan tersebut pada permukaan absorben cair yang diikuti dengan pelarutan.

b.      Faktor yang mempengaruhi proses absorbsi diantaranya adalah tekanan, luas permukaan, waktu, dan zat yang diabsorbsi itu sendiri.

c.       Semakin tinggi laju alir maka semakin meningkat pula ketinggian manometernya. 

6.      Daftar Pustaka-          http://kabupatenwonogiri.com/laboratorium-laporan-praktikum-absorbsi-          http://smkyaphar.wordpress.com/2010/08/13/absorpsi/-          http://www.chem-is-try.org/materi_kimia/kimia-industri/teknologi-proses/absorbsi/-          http://lab.tekim.undip.ac.id/proses/2010/03/04/absorbsi-co2-dengan-menggunakan-larutan-

naoh/-          http://westeltoro.blogspot.com/2011/01/siklus-absorbsi.html-          http://tech.dir.groups.yahoo.com/group/Teknik-Kimia/message/7492

-          Effendy, sahrul. 2012. Petunjuk praktikum satuan operasi-2. Palembang. Teknik kimia POLSRI.