pembuatan ester

25
Pembuatan Ester Ditulis oleh Jim Clark pada 07-11-2007 Halaman ini membahas tentang cara-cara pembuatan ester dalam laboratorium dari alkohol dan fenol menggunakan asam karboksilat, asil klorida (klorida asam) atau anhidrida asam yang sesuai. Pembuatan ester menggunakan asam karboksilat Metode ini bisa digunakan untuk mengubah alkohol menjadi ester, tetapi metode ini tidak berlaku bagi fenol – senyawa dimana gugus -OH terikat langsung pada sebuah cincin benzen. Fenol bereaksi dengan asam karboksilat dengan sangat lambat sehingga reaksi tidak bisa digunakan untuk tujuan pembuatan. Sifat kimiawi reaksi Ester dihasilkan apabila asam karboksilat dipanaskan bersama alkohol dengan bantuan katalis asam. Katalis ini biasanya asam sulfat pekat. Gas hidrogen klorida kering terkadang digunakan, tetapi penggunaannya cenderung melibatkan ester- ester aromatik (ester dimana asam karboksilat mengandung sebuah cincin benzen). Reaksi pengesteran (esterifikasi) berjalan lambat dan dapat balik (reversibel). Persamaan untuk reaksi antara asam RCOOH dengan alkohol R’OH (dimana R dan R’ bisa sama atau berbda) adalah sebagai berikut: Jadi, misalnya, jika anda membuat etil etanoat dari asam etanoat dan etanol, maka persamaan reaksinya akan menjadi:

Upload: idfllovers

Post on 30-Jul-2015

781 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Pembuatan Ester

Pembuatan EsterDitulis oleh Jim Clark pada 07-11-2007

Halaman ini membahas tentang cara-cara pembuatan ester dalam laboratorium dari alkohol dan fenol menggunakan asam karboksilat, asil klorida (klorida asam) atau anhidrida asam yang sesuai.

Pembuatan ester menggunakan asam karboksilat

Metode ini bisa digunakan untuk mengubah alkohol menjadi ester, tetapi metode ini tidak berlaku bagi fenol – senyawa dimana gugus -OH terikat langsung pada sebuah cincin benzen. Fenol bereaksi dengan asam karboksilat dengan sangat lambat sehingga reaksi tidak bisa digunakan untuk tujuan pembuatan.

Sifat kimiawi reaksi

Ester dihasilkan apabila asam karboksilat dipanaskan bersama alkohol dengan bantuan katalis asam. Katalis ini biasanya asam sulfat pekat. Gas hidrogen klorida kering terkadang digunakan, tetapi penggunaannya cenderung melibatkan ester-ester aromatik (ester dimana asam karboksilat mengandung sebuah cincin benzen).

Reaksi pengesteran (esterifikasi) berjalan lambat dan dapat balik (reversibel). Persamaan untuk reaksi antara asam RCOOH dengan alkohol R’OH (dimana R dan R’ bisa sama atau berbda) adalah sebagai berikut:

Jadi, misalnya, jika anda membuat etil etanoat dari asam etanoat dan etanol, maka persamaan reaksinya akan menjadi:

Melangsungkan reaksi

Dalam skala tabung uji

Asam karboksilat dan alkohol sering dipanaskan bersama disertai dengan beberapa tetes asam sulfat pekat untuk mengamati bau ester yang terbentuk.

Page 2: Pembuatan Ester

Untuk melangsungkan reaksi dalam skala tabung uji, semua zat (asam karboksilat, alkohol dan asam sulfat pekat) yang dalam jumlah kecil dipanaskan di sebuah tabung uji yang berada di atas sebuah penangas air panas selama beberapa menit.

Karena reaksi berlangsung lambat dan dapat balik (reversibel), ester yang terbentuk tidak banyak. Bau khas ester seringkali tertutupi atau terganggu oleh bau asam karboksilat. Sebuah cara sederhana untuk mendeteksi bau ester adalah dengan menaburkan campuran reaksi ke dalam sejumlah air di sebuah gelas kimia kecil.

Terkecuali ester-ester yang sangat kecil, semua ester cukup tidak larut dalam air dan cenderung membentuk sebuah lapisan tipis pada permukaan. Asam dan alkohol yang berlebih akan larut dan terpisah di bawah lapisan ester.

Ester-ester kecil seperti pelarut-pelarut organik sederhana memiliki bau yang mirip dengan pelarut-pelarut organik (etil etanoat merupakan sebuah pelarut yang umum misalnya pada lem).

Semakin besar ester, maka aromanya cenderung lebih ke arah perasa buah buatan – misalnya “buah pir”.

Dalam skala yang lebih besar

Jika anda ingin membuat sampel sebuah ester yang cukup besar, maka metode yang digunakan tergantung pada (sampai tingkatan tertentu) besarnya ester. Ester-ester kecil terbentuk lebih cepat dibanding ester yang lebih besar.

Untuk membuat sebuah ester kecil seperti etil etanoat, anda bisa memanaskan secara perlahan sebuah campuran antara asam metanoat dan etanol dengan bantuan katalis asam sulfat pekat, dan memisahkan ester melalui distilasi sesaat setelah terbentuk.

Ini dapat mencegah terjadinya reaksi balik. Pemisahan dengan distilasi ini dapat dilakukan dengan baik karena ester memiliki titik didih yang paling rendah diantara semua zat yang ada. Ester merupakan satu-satunya zat dalam campuran yang tidak membentuk ikatan hidrogen, sehingga memiliki gaya antar-molekul yang paling lemah.

Ester-ester yang lebih besar cenderung terbentuk lebih lambat. Dalam hal ini, mungkin diperlukan untuk memanaskan campuran reaksi di bawah refluks selama beberapa waktu untuk menghasilkan sebuah campuran kesetimbangan. Ester bisa dipisahkan dari asam karboksilat, alkohol, air dan asam sulfat dalam campuran dengan metode distilasi fraksional.

Pembuatan ester menggunakan asil klorida (klorida asam)

Page 3: Pembuatan Ester

Metode ini hanya berlaku bagi alkohol dan fenol. Untuk fenol, reaksi terkadang dapat ditingkatkan dengan pertama-tama mengubah fenol menjadi bentuk yang lebih reaktif.

Reaksi dasar

Jika kita menambahkan sebuah asil klorida kedalam sebuah alkohol, maka reaksi yang terjadi cukup progresif (bahkan berlangsung hebat) pada suhu kamar menghasilkan sebuah ester dan awan-awan dari asap hidrogen klorida yang asam dan beruap.

Sebagai contoh, jika kita menambahkan etanol krlorida ke dalam etanol, maka akan terbentuk banyak hidrogen klorida bersama dengan ester cair etil etanoat.

Zat yang biasanya disebut "fenol" adalah zat yang paling sederhana dari golongan fenol. Fenol memiliki sebuah gugus -OH terikat pada sebuah cincin benzen – dan tidak ada lagi selain itu.

Reaksi antara etanoil klorida dengan fenol mirip dengan reaksi etanol walaupun tidak begitu progresif. Fenil etanoat terbentuk bersama dengan gas hidrogen klorida.

Mempercepat reaksi antara fenol dengan beberapa asil klorida yang kurang reaktif

Benzoil klorida memiliki rumus molekul C6H5COCl. Gugus -COCl terikat langsung pada sebuah cincin benzen. Senyawa ini jauh lebih tidak reaktif dibanding asil klorida sederhana seperti etanoil klorida.

Fenol pertama-tama diubah menjadi senyawa ionik natrium fenoksida (natrium fenat) dengan melarutkannya dalam larutan natrium hidroksida.

Ion fenoksida bereaksi lebih cepat dengan benzoil klorida dibanding fenol, tapi biarpun demikian reaksi tetap harus dikocok dengan benzoil klorida selama sekitar 15 menit. Padatan fenol benzoat terbentuk.

Page 4: Pembuatan Ester

Pembuatan ester menggunakan anhidrida asam

Reaksi ini juga bisa digunakan untuk membuat ester baik dari alkohol maupun fenol. Reaksinya berlangsung lebih lambat dibanding reaksi sebanding yang menggunakan asil klorida, dan campuran reaksi biasanya perlu dipanaskan.

Untuk fenol, kita bisa mereaksikan fenol dengan larutan natrium hidroksida pertama kali, yang menghasilkan ion fenoksida yang lebih reaktif.

Mari kita mengambil contoh etanol yang bereaksi dengan etanoat anhidrida sebagai sebuah reaksi sederhana yang melibatkan sebuah alkohol:

Reaksi yang berlangsung pada suhu kamar cukup lambat (atau lebih cepat jika dipanaskan). Tidak ada perubahan yang dapat diamati pada cairan tidak berwarna , tetapi sebuah campuran antara etil etanoat dengan asam etanoat terbentuk.

Reaksi dengan fenol kurang lebih sama, tetapi lebih lambat. Fenil etanoat terbentuk bersama dengan asam etanoat.

Reaksi ini tidak terlalu penting, tapi ada reaksi yang sangat mirip terlibat dalam pembuatan aspirin (dibahas secara rinci pada halaman lain).

Jika fenol pertama-tama diubah menjadi natrium fenoksida dengan menambahkan larutan natrium hidroksida, maka reaksinya berlangsung lebih cepat. Fenil etanoat lagi-lagi terbentuk, tapi kali ini produk lainnya adalah natrium etanoat bukan asam etanoat.

Page 5: Pembuatan Ester

Pengertian ester

Ester diturunkan dari asam karboksilat. Sebuah asam karboksilat mengandung gugus -COOH, dan pada sebuah ester hidrogen di gugus ini digantikan oleh sebuah gugus hidrokarbon dari beberapa jenis. Disini kita hanya akan melihat kasus-kasus dimana hidrogen pada gugus -COOH digantikan oleh sebuah gugus alkil, meskipun tidak jauh beda jika diganti dengan sebuah gugus aril (yang berdasarkan pada sebuah cincin benzen).

Contoh ester umum – etil etanoat

Ester yang paling umum dibahas adalah etil etanoat. Dalam hal ini, hidrogen pada gugus -COOH telah digantikan oleh sebuah gugus etil. Rumus struktur etil etanoat adalah sebagai berikut:

Perhatikan bahwa ester diberi nama tidak sesuai dengan urutan penulisan rumus strukturnya, tapi kebalikannya. Kata "etanoat" berasal dari asam etanoat. Kata "etil" berasal dari gugus etil pada bagian ujung.

Contoh ester yang lain

Pada setiap contoh berikut, pastikan bahwa anda bisa mengerti bagaimana hubungan antara nama dan rumus strukturnya.

Perhatikan bahwa asam diberi nama dengan cara menghitung jumlah total atom karbon dalam rantai – termasuk yang terdapat pada gugus -COOH. Misalnya, CH3CH2COOH disebut asam propanoat, dan CH3CH2COO disebut gugus propanoat.

Page 6: Pembuatan Ester

Pembuatan ester dari asam karboksilat dan alkohol

Sifat kimiawi reaksi

Ester dihasilkan apabila asam karboksilat dipanaskan bersama alkohol dengan bantuan katalis asam. Katalis ini biasanya adalah asam sulfat pekat. Terkadang juga digunakan gas hidrogen klorida kering, tetapi katalis-katalis ini cenderung melibatkan ester-ester aromatik (yakni ester yang mengandung sebuah cincin benzen).

Reaksi esterifikasi berlangsung lambat dan dapat balik (reversibel). Persamaan untuk reaksi antara sebuah asam RCOOH dengan sebuah alkohol R’OH (dimana R dan R’ bisa sama atau berbeda) adalah sebagai berikut:

Jadi, misalnya, jika kita membuat etil etanoat dari asam etanoat dan etanol, maka persamaan reaksinya adalah:

Melangsungkan reaksi

Dalam skala tabung uji

Asam karboksilat dan alkohol sering dipanaskan bersama dengan adanya beberapa tetes asam sulfat pekat untuk mengamati bau ester yang terbentuk.

Untuk melangsungkan reaksi dalam skala tabung uji, semua zat (asam karboksilat, alkohol dan asam sulfat pekat) yang dalam jumlah kecil dipanaskan di sebuah tabung uji yang berada di atas sebuah penangas air panas selama beberapa menit.

Karena reaksi berlangsung lambat dan dapat balik (reversibel), ester yang terbentuk tidak banyak. Bau khas ester seringkali tertutupi atau terganggu oleh bau asam karboksilat. Sebuah cara sederhana untuk mendeteksi bau ester adalah dengan menaburkan campuran reaksi ke dalam sejumlah air di sebuah gelas kimia kecil.

Terkecuali ester-ester yang sangat kecil, semua ester cukup tidak larut dalam air dan cenderung membentuk sebuah lapisan tipis pada permukaan. Asam dan alkohol yang berlebih akan larut dan terpisah di bawah lapisan ester.

Ester-ester kecil seperti pelarut-pelarut organik sederhana memiliki bau yang mirip dengan pelarut-pelarut organik (etil etanoat merupakan sebuah pelarut yang umum misalnya pada lem).

Page 7: Pembuatan Ester

Semakin besar ester, maka aromanya cenderung lebih ke arah perasa buah buatan – misalnya "buah pir".

Dalam skala yang lebih besar

Jika anda ingin membuat sampel sebuah ester yang cukup besar, maka metode yang digunakan tergantung pada (sampai tingkatan tertentu) besarnya ester. Ester-ester kecil terbentuk lebih cepat dibanding ester yang lebih besar.

Untuk membuat sebuah ester kecil seperti etil etanoat, anda bisa memanaskan secara perlahan sebuah campuran antara asam metanoat dan etanol dengan bantuan katalis asam sulfat pekat, dan memisahkan ester melalui distilasi sesaat setelah terbentuk.

Ini dapat mencegah terjadinya reaksi balik. Pemisahan dengan distilasi ini dapat dilakukan dengan baik karena ester memiliki titik didih yang paling rendah diantara semua zat yang ada. Ester merupakan satu-satunya zat dalam campuran yang tidak membentuk ikatan hidrogen, sehingga memiliki gaya antar-molekul yang paling lemah.

Ester-ester yang lebih besar cenderung terbentuk lebih lambat. Dalam hal ini, mungkin diperlukan untuk memanaskan campuran reaksi di bawah refluks selama beberapa waktu untuk menghasilkan sebuah campuran kesetimbangan. Ester bisa dipisahkan dari asam karboksilat, alkohol, air dan asam sulfat dalam campuran dengan metode distilasi fraksional.

Cara-cara lain untuk membuat ester

Ester juga bisa dibuat dari reaksi-reaksi antara alkohol dengan asil klorida atau anhidrida asam.

Pembuatan ester dari alkohol dan asil klorida (klorida asam)

Jika kita menambahkan sebuah asil klorida kedalam sebuah alkohol, maka reaksi yang terjadi cukup progresif (bahkan berlangsung hebat) pada suhu kamar menghasilkan sebuah ester dan awan-awan dari asap hidrogen klorida yang asam dan beruap.

Sebagai contoh, jika kita menambahkan etanol krlorida kedalam etanol, maka akan terbentuk banyak hidrogen klorida bersama dengan ester cair etil etanoat.

Pembuatan ester dari alkohol dan anhidrida asam

Reaksi-reaksi dengan anhidrida asam berlangsung lebih lambat dibanding reaksi-reaksi yang serupa dengan asil klorida, dan biasanya campuran reaksi yang terbentuk perlu dipanaskan.

Page 8: Pembuatan Ester

Mari kita ambil contoh etanol yang bereaksi dengan anhidrida etanoat sebagai sebuah reaksi sederhana yang melibatkan sebuah alkohol:

Reaksi berlangsung lambat pada suhu kamar (atau lebih cepat pada pemanasan). Tidak ada perubahan yang bisa diamati pada cairan yang tidak berwarna, tetapi sebuah campuran etil etanoat dan asam etanoat terbentuk.

Page 9: Pembuatan Ester

Reaksi Triiodometana (Iodoform) dengan AlkoholKata Kunci: chi3, iodin, iodoform, triiodometanaDitulis oleh Jim Clark pada 28-10-2007

Halaman ini menjelaskan bagaimana reaksi triiodometana (iodoform) bisa digunakan untuk mengidentifikasi keberadaan sebuah gugus CH3CH(OH) dalam alkohol.

Melangsungkan reaksi triiodometana (iodoform)

Ada dua campuran pereaksi cukup berbeda yang bisa digunakan untuk melangsungkan reaksi ini. Walaupun pada kenyataannya kedua pereaksi sebanding secara kimiawai.

Penggunaan larutan iodin hidroksida dan natrium hidroksida

Metode ini adalah metode yang lebih jelas secara kimiawai.

Larutan iodin dimasukkan ke dalam sedikit alkohol, diikuti dengan larutan natrium hidroksida secukupnya untuk menghilangkan warna iodin. Jika tidak ada yang terjadi pada kondisi dingin, maka campuran mungkin perlu dipanaskan dengan sangat perlahan.

Hasil positif dari reaksi adalah timbulnya endapan triiodometana (sebelumnya disebut iodoform) yang berwarna kuning pucat pasi – CHI3.

Selain berdasarkan warnanya, iodoform juga bisa dikenali dengan baunya yang sedikit mirip bau "obat". Triiodometana digunakan sebagai sebuah antiseptik pada berbagai plaster tempel, misalnya yang dipasang pada luka-luka kecil.

Penggunaan larutan kalium iodida dan natrium klorat(I)

Natrium klorat(I) juga dikenal sebagai natrium hipoklorit.

Larutan kalium iodida ditambahkan ke dalam sedikit alkohol, diikuti dengan penambahan larutan natrium klorat(I). Lagi-lagi, jika tidak ada endapan yang terbentuk pada kondisi dingin, mungkin diperlukan untuk memanaskan campuran dengan sangat perlahan.

Hasil positif dari reaksi adalah endapan berwarna kuning pucat sama seperti sebelumnya.

Sifat kimiawai reaksi triiodometana (iodoform)

Hasil-hasil reaksi triiodometana (iodoform)

Page 10: Pembuatan Ester

Hasil positif – endapan kuning pucaat dari triiodometana (iodoform) – dapat diperoleh dari reaksi dengan alkohol yang mengandung kelompok gugus-gugus seperti gambar berikut:

"R" bisa berupa sebuah atom hidrogen atau sebuah gugus hidrokarbon (misalnya, sebuah gugus alkil).

Jika "R" adalah hidrogen, maka akan dihasilkan alkohol etanol, CH3CH2OH.

Etanol merupakan satu-satunya alkohol primer yang menghasilkan reaksi triiodimetana (iodoform).

Jika "R" adalah sebuah gugus hidrokarbon, maka dihasilkan alkohol sekunder. Banyak alkohol sekunder yang dapat menghasilkan reaksi triiodometana, tetapi semuanya memiliki sebuah gugus metil terikat pada karbon yang memiliki gugus -OH.

Tidak ada alkohol tersier yang bisa mengandung gugus ini karena tidak ada alkohol tersier yang bisa memiliki sebuah atom hidrogen terikat pada karbon yang memiliki gugus -OH. Tidak ada alkohol tersier yang dapat menghasilkan reaksi triiodometana (iodoform).

Ringkasan reaksi-reaksi yang terjadi selama reaksi triiodometana (iodoform)

Pada gambar berikut kita menganggap pereaksi yang digunakan adalah larutan iodin hidroksida dan natrium hidroksida.

Page 11: Pembuatan Ester

Persamaan reaksi ini dituliskan sebagai sebuah skema alir dan bukan persamaan reaksi lengkap. Persamaan reaksi untuk tahap oksidasinya tidak dijelaskan disini. Persamaan reaksi untuk dua tahapan lainnya diberikan pada sebuah halaman tentang reaksi aldehid dan keton.

Page 12: Pembuatan Ester

Pengantar Anhidrida AsamDitulis oleh Jim Clark pada 07-12-2007

Halaman ini menjelaskan apa yang dimaksud anhidrida asam dan pada bagian ini juga dibahas tentang sifat-sifat fisik yang sederhana dari anhidrida asam seperti titik didih. Halaman ini juga memberikan penjelasan pendahuluan tentang kereaktifan kimiawi secara umum, dan rincian tentang reaksi-reaksi spesifik dibahas pada halaman-halaman yang lain (halaman terkait di sebelah kanan).

Pengertian anhidrida asam

Struktur anhidrida asam

Asam karboksilat seperti asam etanoat memiliki struktur sebagai berikut:

Jika anda mengambil dua molekul asam etanoat dan menghilangkan sebuah molekul air diantara kedua molekul tersebut (lihat gambar berikut) maka akan diperoleh anhidrida asam, yakni anhidrida etanoat (nama lama: anhidrida asetat).

Sebenarnya kita bisa membuat anhidirida etanoat dengan mendehidrasi asam etanoat, tetapi anhidrida ini biasanya dibuat dengan cara yang lebih efisien dan lebih sederhana.

Penamaan anhidrida asam

Pemberian nama untuk anhidrida asam sangat mudah. Anda cukup mengambil nama asam induk, dan mengganti kata "asam" dengan "anhidrida". "Anhidrida" berarti "tanpa air".

Page 13: Pembuatan Ester

Dengan demikian, asam etanoat akan menjadi anhidrida etanoat; asam propanoat menjadi anhidrida propanoat, dan seterusnya.

Pada pembahasan tingkat dasar, satu-satunya anhidrida yang paling sering dijumpai adalah anhidrida etanoat.

Sifat-sifat fisik anhidrida asam

Untuk menjelaskan sifat-sifat anhidrida asam, kita akan mengambil contoh anhidrida etanoat sebagai anhidrida asam sederhana.

Kenampakan

Anhidrida etanoat merupakan cairan yang tidak berwarna dengan bau yang sangat mirip dengan asam cuka (asam etanoat).

Bau ini timbul karena anhidrida etanoat bereaksi dengan uap air di udara (dan kelembaban dalam hidung) menghasilkan asam etanoat kembali. Reaksi dengan air ini dibahas secara rinci pada halaman yang lain. (Halaman terkait di sebelah kanan).

Kelarutan dalam air

Anhidrida etanoat tidak bisa dikatakan larut dalam air karena dia bereaksi dengan air menghasilkan asam etanoat. Tidak ada larutan cair dari anhidrida etanoat yang terbentuk.

Titik didih

Anhidrida etanoat mendidih pada suhu 140°C. Titik didih cukup tinggi karena memiliki molekul polar yang cukup besar sehingga memiliki gaya dispersi van der Waals sekaligus gaya tarik dipol-dipol.

Akan tetapi, anhidrida etanoat tidak membentuk ikatan hidrogen. Ini berarti bahwa titik didihnya tidak sama tingginya dengan titik didih asam karboksilat yang berukuran sama. Sebagai contoh, asam pentanoat (asam yang paling mirip besarnya dengan anhidrida etanoat) mendidih pada suhu 186°C.

Kereaktifan anhidrida asam

Perbandingan anhidrida asam dengan asil klorida (klorida asam)

Anhidrida asam bisa dianggap sebagai asil klorida yang termodifikasi. Memahami anhidrida asam akan jauh lebih mudah jika kita menganggapnya seolah-olah asil klorida yang termodifikasi dibanding jika jika kita mempelajarinya secara terpisah. Itulah sebabnya pada halaman ini dibuat perbandingan antara anhidrida asam dengan asil klorida.

Page 14: Pembuatan Ester

Bandingkan struktur anhidrida asam dengan struktur asil klorida – perhatikan dengan cermat bagian yang diberi warna merah dalam gambar.

Dalam reaksi-reaksi anhidrida etanoat, gugus yang berwarna merah tersebut selalu tetap dalam keadaan utuh. Gugus-gugus ini seolah-olah merupakan sebuah atom tunggal – persis seperti atom klorida pada asil klorida.

Reaksi yang umum terjadi pada asil klorida adalah penggantian klorin dengan sesuatu yang lain.

Dengan mengambil contoh klorida etanoil sebagai asil klorida sederhana, reaksi awal yang terjadi adalah:

Gas hidrogen klorida dihasilkan, walaupun gas ini bisa bereaksi kembali dengan komponen-komponen lain dalam campuran.

Dengan anhidrida asam, reaksi berlangsung lebih lambat, tetapi satu-satunya perbedaan esensial adalah bahwa yang dihasilkan bukan hidrogen klorida sebagia produk lain, tetapi asam etanoat.

Seperti halnya hidrogen klorida, produk ini (asam etanoat) juga bisa bereaksi kembali dengan komponen lain yang ada dalam campuran.

Reaksi-reaksi ini (reaksi asil klorida dan reaksi anhidrida asam) melibatkan komponen seperti air, alkohol dan fenol, atau amonia dan amina. Semua komponen ini mengandung unsur yang sangat elektronegatif dengan sebuah pasangan elektron bebas yang aktif – baik oksigen maupun nitrogen.

Page 15: Pembuatan Ester

EsterKata Kunci: Emil Fischer, ester, esterifikasi Fischer, pembuatan ester, penggunaan esterDitulis oleh Ratna dkk pada 04-01-2010

Ester diturunkan dari asam dengan mengganti gugus OH dengan gugus OR. Sifat fisika : berbentuk cair atau padat, tak berwarna, sedikit larut dalm H2O, kebanyakan mempunyai bau yang khas dan banyak terdapat di alam. Struktut ester : R – COOR. Ester diberi nama seperti penamaan pada garam.

Perhatikan bahwa bagian R dari gugus OR disebutkan dahulu, diikuti dengan nama asam yang berakhiran –at.

Pembuatan ester :

-         Reaksi alkohol dan asam karboksilat

-         Reaksi asam klorida atau anhidrida.

Penggunaan ester :

-         Sebagai pelarut, butil asetat (pelarut dalam industri cat).

-         Sebagai zat wangi dan sari wangi.

Page 16: Pembuatan Ester

Pembuatan ester, estrerifikasi Fischer

Jika asam karboksilat dan alkohol dan katalis asam (biasanya HCl atau H2SO4) dipanaskan terdapat kesetimbangan dengan ester dan air.

Proses ini dinamakan  esterifikasi fischer, yaitu berdasarkan nama Emil Fischer kimiawan organik abad 19 yang mengembangkan metode ini. Walaupun reaksi ini adalah reaksi kesetimbangan, dapat juga digunakan untuk membuat ester dengan hasil yang tinggi dengan menggeser kesetimbangan kekanan. Hal ini dapat dicapai dengan beberapa teknik. Jika alkohol atau asam harganya lebih murah, dapat digunakan jumlah berlebihan. Cara lain ialah dengan memisahkan ester dan/atau air yang terbentuk (dengan penyulingan) sehingga menggeser reaksi kekanan.

Page 17: Pembuatan Ester

Asam karboksilat dan turunannyaKata Kunci: asam aromatic, asam asetat, asam format, asam karboksilat, ciri-ciri asam karboksilat, gugus karboksil, pembuatan asam karboksilat, rumus asam karboksilat, tatanama asam karboksilatDitulis oleh Ratna dkk pada 03-01-2010

Asam organik yang paling penting adalah asam-asam karboksilat. Gugus fungsinya adalah gugus karboksil, kependekan dari dua bagian yaitu gugus karbonil dan hidroksil. Rumus asam karboksilat dapat dipanjang dan atau dipendekkan seperti :

Ciri-ciri asam karboksilat

-         Mengandung gugus COOH yang terikat pada gugus alkil (R-COOH) maupun gugus aril (Ar-COOH)

-         Kelarutan sama dengan alkohol

-         Asam dengan jumlah C 1 – 4 : larut dalam air

-         Asam dengan jumlah C = 5    : sukar larut dalam air

-         Asam dengan jumlah C > 6    : tidak larut dalam air

-         Larut dalam pelarut organik seperti eter, alkohol, dan benzen

-         TD asam karboksilat > TD alkohol dengan jumlah C sama.

Contoh : asam format = HCOOH

Page 18: Pembuatan Ester

-         Sifat fisika : cairan, tak berwarna, merusak kulit, berbau tajam, larut dalam H2O dengan sempurna.

-         Penggunaan : untuk koagulasi lateks, penyamakkan kulit, industri tekstil, dan fungisida.

Contoh lain :asam asetat = CH3-COOH

-         Sifat : cair, TL 17oC, TD 118oC, larut dalam H2O dengan sempurna

-         Penggunaan : sintesis anhidrat asam asetat, ester, garam, zat warna, zat wangi, bahan farmasi, plastik, serat buatan, selulosa dan sebagai penambah makanan.

Pembuatan asam karboksilat

-         Oksidasi alkohol primer

-         Oksidasi alkil benzen

-         Carbonasi Reagen Grignard

-         Hidrolisin nitril

Tatanama Asam karboksilat

Karena banyak terdapat dialam, asam-asam karboksilat adalah golongan senyawa yang paling dulu dipelajari oleh kimiawan organik. Karena tidak mengherankan jika banyak senyawa-senyawa asam mempunyai nama-nama biasa. Nama-nama ini biasanya diturunkan dari bahasa Latin yang menunjukkan asalnya. Tabel 12.8 memuat nama-nama asam berantai lurus beserta nama IUPAC-nya. Banyak dari asam ini mula-mula dipisahkan dari lemak sehingga sering dinamakan sebagai asam-asam lemak (struktur  lemak secara terinci dibahas dalam bab berikutnya). Untuk memperoleh nama IUPAC suatu asam karboksilat (Tabel 12.8 kolom terakhir) diperlukan awalan kata asam da akhiran at.

Asam-asam bersubstitusi diberi nama menurut dua cara. Dalam sisitem IUPAC, nomor rantai dimulai dari asam karbon pembawa gugus karboksil dan substituen diberi nomor lokasi. Jika nama umum yang digunakan lokasi substituen dilambangkan dengan huruf latin, dimulai dengan atom karbon α.

Page 19: Pembuatan Ester

Jika gugus karboksilat dihubungkan dengan cincin, akhiran karboksilat ditambahkan pada nama induk sikloalkana.

Asam-asam aromatic juga diberi tambahan –at pada turunan hidrokarbon aromatiknya. Beberapa contoh diantaranya :

Page 20: Pembuatan Ester