sintesis dan karakterisasi partikel nano la1-xsr...

13
1 SINTESIS DAN KARAKTERISASI PARTIKEL NANO La 1-x Sr x CoO 3 DENGAN METODE KOPRESIPITASI Muhammad Arifin, Markus Diantoro, Abdulloh Fuad Jurusan Fisika, Universitas Negeri Malang E-mail: [email protected] ABSTRAK: Salah satu material yang mempunyai banyak kegunaan dan memiliki potensi yang besar pada masa yang akan datang yaitu material La 1-x Sr x CoO 3 . Senyawa La 1-x Sr x CoO 3 atau sering dinamakan LSCO merupakan salah satu material yang menarik. Salah satu kegunanaan dan potensi aplikasinya yaitu sebagai material termoelektrik. Material termoelektrik dapat diapliksikan sebagai pendingin (refrigrator) dan generator termoelektrik yang sangat berguna untuk masa mendatang. Dalam struktur nano, material termoelektrik dapat digunakan untuk mengkonversi energi dengan efisiensi yang lebih tinggi dibandingkan dengan material bulk. Material LSCO akan mempunyai sifat termoelektrik dengan efisiensi yang lebih tinggi dibanding sebelumnya jika dibentuk dalam ukuran nano karena bentuk struktur nano dari material LSCO mengakibatkan munculnya efek pembatasan gerak dari pembawa muatan listrik pada skala mikroskopik atau yang dikenal sebagai efek kuantum (quantum confinement) yang dapat meningkatkan nilai koefisien Seebeck dan konduktivitas listrik. Dalam penelitian ini, LaCoO 3 didoping dengan Sr dalam bentuk La 1-x Sr x CoO 3 (0 ≤ x ≤ 0,4). Bahan dasar yang digunakan adalah La(NO 3 ) 3 .6H 2 O ( p.a. 99,9%), Sr(NO 3 ) 2 ( p.a. 99,9%), Co(NO 3 ) 2 .6H 2 O ( p.a. 99,9%), dan NH 4 OH (p.a. 99,9%). Metode sintesis yang digunakan adalah metode kopresipitasi. Karakterisasi komposisi menggunakan XRF, struktur kristal menggunakan XRD, dielektrisitas menggunakan kapasintansi meter dan konduktivitas listrik menggunakan metode 4-point probe. Fase dan struktur kristal dianalisis dengan software Celref, ukuran butir kristal dihitung melalui persamaan Scherrer. Hasil penelitian menunjukkan bahwa fase La 1-x Sr x CoO 3 yang terbentuk masih relatif kecil karena adanya fase lain yang muncul yaitu La 2 O 3 dan Co 3 O 4 . Meskipun masih ada impuritas, partikel nano La 1-x Sr x CoO 3 telah berhasil disintesis dengan ukuran butir kristal berkisar antara 11,55 nm hingga 14,66 nm. Hasil analisis dengan program Celref menunjukkan bahwa peningkatan komposisi doping Sr 2+ juga meningkatkan volume kristal senyawa partikel nano La 1-x Sr x CoO 3 . Hal ini disebabkan oleh jari-jari Sr 2+ yang lebih besar menggantikan posisi La 3+ yang mempunyai jari-jari yang lebih kecil. Sedangkan konstanta dielektrik yang diperoleh masih acak dan belum berpola. Salah satu faktor yang mempengaruhi yaitu adanya perubahan keadaan spin kobalt yaitu dari Low Spin ke Intermediate Spin. Untuk konduktivitas listrik cenderung naik dan sesuai dengan teori kecuali pada x = 0,1. Ini disebakan karena pada x = 0,1 masih didominasi oleh senyawa Co 3 O 4 . Kata kunci: partikel nano, La 1-x Sr x CoO 3 , dielektrisitas, konduktivitas listrik Sintesis dan fabrikasi material dalam ukuran nanometer akhir-akhir ini mendapatkan perhatian yang serius dari para ilmuwan. Berbagai penelitian yang dilakukan dengan sangat cermat terus-menerus dilakukan. Penelitian dilakukan berdasar pada ide yang sangat sederhana (Hadiyawarman, dkk, 2008). Dengan nanoteknologi, material dapat didesain dan disusun dalam orde atom-per-atom atau molekul per-molekul sedemikian rupa sehingga tidak terjadi pemborosan yang tidak diperlukan. Dengan menyusun ulang atau merekayasa struktur material di tingkat nanometer, maka akan diperoleh suatu bahan yang memiliki sifat

Upload: vuonghanh

Post on 14-Mar-2019

243 views

Category:

Documents


4 download

TRANSCRIPT

1

SINTESIS DAN KARAKTERISASI PARTIKEL NANO La1-xSrxCoO3 DENGAN METODE KOPRESIPITASI

Muhammad Arifin, Markus Diantoro, Abdulloh Fuad Jurusan Fisika, Universitas Negeri Malang

E-mail: [email protected]

ABSTRAK: Salah satu material yang mempunyai banyak kegunaan dan memiliki potensi yang besar pada masa yang akan datang yaitu material La1-xSrxCoO3. Senyawa La1-xSrxCoO3 atau sering dinamakan LSCO merupakan salah satu material yang menarik. Salah satu kegunanaan dan potensi aplikasinya yaitu sebagai material termoelektrik. Material termoelektrik dapat diapliksikan sebagai pendingin (refrigrator) dan generator termoelektrik yang sangat berguna untuk masa mendatang. Dalam struktur nano, material termoelektrik dapat digunakan untuk mengkonversi energi dengan efisiensi yang lebih tinggi dibandingkan dengan material bulk. Material LSCO akan mempunyai sifat termoelektrik dengan efisiensi yang lebih tinggi dibanding sebelumnya jika dibentuk dalam ukuran nano karena bentuk struktur nano dari material LSCO mengakibatkan munculnya efek pembatasan gerak dari pembawa muatan listrik pada skala mikroskopik atau yang dikenal sebagai efek kuantum (quantum confinement) yang dapat meningkatkan nilai koefisien Seebeck dan konduktivitas listrik. Dalam penelitian ini, LaCoO3 didoping dengan Sr dalam bentuk La1-xSrxCoO3 (0 x 0,4). Bahan dasar yang digunakan adalah La(NO3)3.6H2O ( p.a. 99,9%), Sr(NO3)2 ( p.a. 99,9%), Co(NO3)2.6H2O ( p.a. 99,9%), dan NH4OH (p.a. 99,9%). Metode sintesis yang digunakan adalah metode kopresipitasi. Karakterisasi komposisi menggunakan XRF, struktur kristal menggunakan XRD, dielektrisitas menggunakan kapasintansi meter dan konduktivitas listrik menggunakan metode 4-point probe. Fase dan struktur kristal dianalisis dengan software Celref, ukuran butir kristal dihitung melalui persamaan Scherrer. Hasil penelitian menunjukkan bahwa fase La1-xSrxCoO3 yang terbentuk masih relatif kecil karena adanya fase lain yang muncul yaitu La2O3 dan Co3O4. Meskipun masih ada impuritas, partikel nano La1-xSrxCoO3 telah berhasil disintesis dengan ukuran butir kristal berkisar antara 11,55 nm hingga 14,66 nm. Hasil analisis dengan program Celref menunjukkan bahwa peningkatan komposisi doping Sr2+ juga meningkatkan volume kristal senyawa partikel nano La1-xSrxCoO3. Hal ini disebabkan oleh jari-jari Sr2+ yang lebih besar menggantikan posisi La3+ yang mempunyai jari-jari yang lebih kecil. Sedangkan konstanta dielektrik yang diperoleh masih acak dan belum berpola. Salah satu faktor yang mempengaruhi yaitu adanya perubahan keadaan spin kobalt yaitu dari Low Spin ke Intermediate Spin. Untuk konduktivitas listrik cenderung naik dan sesuai dengan teori kecuali pada x = 0,1. Ini disebakan karena pada x = 0,1 masih didominasi oleh senyawa Co3O4.

Kata kunci: partikel nano, La1-xSrxCoO3, dielektrisitas, konduktivitas listrik

Sintesis dan fabrikasi material dalam ukuran nanometer akhir-akhir ini

mendapatkan perhatian yang serius dari para ilmuwan. Berbagai penelitian yang

dilakukan dengan sangat cermat terus-menerus dilakukan. Penelitian dilakukan

berdasar pada ide yang sangat sederhana (Hadiyawarman, dkk, 2008). Dengan

nanoteknologi, material dapat didesain dan disusun dalam orde atom-per-atom

atau molekul per-molekul sedemikian rupa sehingga tidak terjadi pemborosan

yang tidak diperlukan. Dengan menyusun ulang atau merekayasa struktur material

di tingkat nanometer, maka akan diperoleh suatu bahan yang memiliki sifat

2

istimewa yang jauh mengungguli material yang ada sekarang (Herman,dkk,

2008).

Salah satu material yang mempunyai banyak kegunaan dan memiliki

potensi pada masa yang akan datang yaitu material La1-xSrxCoO3. Senyawa La1-

xSrxCoO3 sering dinamakan LSCO. LSCO merupakan salah satu material

termoelektrik yang menarik. Salah satu kegunanaan dan potensinya yaitu sebagai

pendingin (refrigrator) dan generator termoelektrik yang sangat berguna untuk

masa mendatang (Djafar, 2010). Dalam struktur nano, material termoelektrik

dapat mengkonversi energi dengan efisiensi yang lebih tinggi dibandingkan

dengan material bulk. Hal ini berkaitan dengan faktanya bahwa di dalam struktur

nano berbagai fenomena, sifat, dan fungsi baru yang tidak biasa (unusual) dapat

muncul, salah satunya yaitu efek kuantum. Bentuk struktur nano dari material

tertentu mengakibatkan munculnya efek pembatasan gerak dari pembawa muatan

listrik pada skala mikroskopik atau yang dikenal sebagai efek kuantum (quantum

confinement) yang dapat meningkatkan nilai koefisien Seebeck dan konduktivitas

listrik (Sutjahja, 2011). Selain sebagai material termoelektrik, lapisan konduksi

LSCO dapat diaplikasikan dalam pembuatan memori feroelektrik (Hwang, dkk,

2000).

Material LSCO akan mempunyai sifat termoelektrik dengan efisiensi yang

lebih tinggi dibanding sebelumnya jika dibentuk dalam ukuran nano karena

bentuk struktur nano dari material LSCO mengakibatkan menculnya efek

pembatasan gerak dari pembawa muatan listrik pada skala mikroskopik atau yang

dikenal sebagai efek kuantum (quantum confinement) yang dapat meningkatkan

nilai koefisien Seebeck dan konduktivitas listrik. Semakin besar konduktivitas

listrik dalam bahan termoelektrik, maka semakin efisien sifat termoelektrik dalam

bahan tersebut.

METODE

Metode yang digunakan dalam penelitian ini adalah metode eksperimen

murni dan sintesis bahan melalui reaksi kimia basah yaitu dengan metode

kopresipitasi untuk mendapatkan senyawa baru partikel nano termoelektrik La1-

xSrxCoO3. Penelitan ini menjelaskan pengaruh antar variabel dengan mengetahui

pengaruh doping Sr2+ pada material La1-xSrxCoO3 (0 x 0,4) terhadap ukuran

3

butir, struktur kristal dan dielektrisitas serta konduktivitas listrik. Bahan dasar

yang digunakan adalah La(NO3)3.6H2O ( p.a. 99,9%), Sr(NO3)2 ( p.a. 99,9%),

Co(NO3)2.6H2O ( p.a. 99,9%), dan NH4OH (p.a. 99,9%). Pemanasan dilakukan

pada temperatur 110 oC selama 3 jam, dilanjutkan proses kalsinasi dengan

temperatur 200 oC selama 1 jam dan dinaikkan sampai temperatur 600 oC selama

8 jam sambil dialiri gas N2 (nitrogen). Kemudian sampel hasil sintesis

dikarakterisasi komposisi unsur, struktur kristal, dielektrisitas dan konduktivitas

listrik. Karakterisasi komposisi unsur dengan XRF, karakterisasi struktur kristal

dengan menggunakan XRD, karakterisasi dielektrisitas dengan menggunakan

kapasitansi meter dan karakterisasi konduktivitas listrik dengan menggunakan

metode 4-point probe. Setelah proses karakterisasi, selanjutnya data hasil

karakterisasi dianalisis untuk mengetahui ukuran butir, struktur kristal,

dielektrisitas dan konduktivitas listrik. Struktur kristal dianalisis dengan software

Celref, ukuran butir kristal dihitung melalui persamaan Scherrer dengan bantuan

software Microcal Origin 8.

HASIL DAN PEMBAHASAN

Fase dan Struktur Kristal Partikel Nano La1-xSrxCoO3 Pola difraksi dan analisis fase sampel La1-xSrxCoO3 untuk x = 0,0; x = 0,1;

x = 0,2; x = 0,3; dan x = 0,4 hasil sintesis dengan metode kopresipitasi

ditunjukkan pada Gambar 1.

4

Gambar 1 Pola Difraksi Sinar-X dan Analisis Fase La1-xSrxCoO3

Berdasarkan hasil analisis fase dari program Celref, sampel La1-xSrxCoO3

hasil sintesis dengan metode kopresipitasi untuk variasi doping x = 0,0; x = 0,1; x

= 0,2; x = 0,3; dan x = 0,4, diketahui bahwa sampel dengan doping x = 0,3

memiliki lebih banyak kecocokan fase dengan pola difraksi LaCoO3, namun juga

masih terdapat puncak yang tidak sesuai dengan pola difraksi LaCoO3, setelah

dianalisis lebih jauh, yaitu dengan cara dicocokkan dengan pola difraksi senyawa

lain, maka diketahui puncak tersebut cocok dengan puncak yang dimiliki oleh

senyawa La2O3 dan Co3O4.

Berdasarkan pola difraksi La1-xSrxCoO3 dari hasil sintesis dengan

menggunakan metode kopresipitasi menunjukkan bahwa kemurnian fase

perovskit yang terbentuk masih relatif kecil. Hal tersebut dapat dipastikan

berdasarkan kemunculan puncak-puncak selain puncak karakteristik fasa

perovskit induk LaCoO3 pada sudut 23o dan 33o (Junwu, dkk., 2007) yaitu puncak

La2O3 dan Co3O4. Puncak Co3O4 merupakan senyawa yang memiliki puncak

dengan intensitas tertinggi. Puncak tersebut terus meningkat seiring dengan

semakin banyaknya kation La3+yang digunakan. Demikian halnya dengan puncak

La2O3. Hal ini mengakibatkan puncak karakteristik fase perovskit semakin

menurun. Kehadiran pengotor prekursor logam oksida dapat terjadi pada proses

5

pemanasan selama sintesis (Jadhav, dkk., 2007). Pengotor prekursor logam

oksida, yaitu La2O3 dan Co3O4 muncul disebabkan juga karena terjadinya

pengendapan bertingkat, di mana Lantanum akan mengendap terlebih dahulu

karena mempunyai Ksp yang kecil (Ksp = 2x10-21) dan baru diikuti oleh Kobalt

(Ksp = 1,3 x 10-15) (Yuanita dan Fansuri, 2010).

Puncak difraksi (214) pada Gambar 1 terlihat bahwa ada pergeseran

puncak difraksi ke arah 2-theta semakin ke kiri untuk hkl (214) disebabkan oleh

jari-jari Sr2+ yang disisipkan lebih besar dari jari-jari La3+ kecuali untuk doping

x=0,1 dan x=0,2. Senyawa La1-xSrxCoO3 untuk doping x = 0,1 dan x = 0,2 tidak

ada Sr2+ yang disisipkan karena sesuai hasil XRF untuk unsur Sr tidak ditemukan.

Selain itu, juga terdapat puncak yang semakin melebar ataupun mengecil dengan

adanya perubahan doping Sr2+. Pola ini menunjukkan bahwa Sr2+ berhasil

disisipkan ke bagian tetrahedral dari LaCoO3, yaitu yang ditempati oleh La3+.

Puncak difraksi yang lebar juga teramati untuk semua sampel yang disintesis, hal

ini dapat diindikasikan bahwa ukuran butir kristal sampel kecil. Untuk hasil

analisis struktur kristal ditunjukkan dalam Tabel 1.

Tabel 1 Hasil Analisis Struktur Kristal Sampel La1-xSrxCoO3

Para Meter

LaCoO3 (Model)

La1-xSrxCoO3 (Refinement) x = 0 x = 0,1 x = 0,2 x = 0,3 x = 0,4

a = b () 5.4445 5.4796 5.4174 5.4477 5.4415 5.4422 c () 13.0936 12.8037 13.1301 13.1000 13.1014 13.1286 = (o) 90 90 90 90 90 90 (o) 120 120 120 120 120 120 c/a 2,40 2,34 2,42 2,41 2,41 2,41

c-a/a 1,40 1,34 1,42 1,41 1,41 1,41 V (3) 336,13 332,94 333,72 336,69 335,96 336,74

Berdasarkan Tabel 1 dapat diketahui bahwa parameter kisi La1-xSrxCoO3 berubah secara acak dan cenderung membesar meskipun perubahannya tidak

signifikan dengan adanya dopan Sr+, sehingga volume kristal juga semakin

membesar dengan bertambahnya dopan Sr2+ yang masuk ke dalam La1-xSrxCoO3,

untuk lebih jelas ditunjukkan pada Gambar 2.

6

Gambar 2 Grafik Pengaruh Doping (x) terhadap Volume Kristal La1-xSrxCoO3

Perubahan volume sel kristal ini terjadi ketika kation Sr2+ didopingkan

pada bagian tetrahedral yang ditempati kation La3+, sehingga sebagian kation La3+

digantikan oleh kation Sr2+. Karena jari-jari Sr2+ jauh lebih besar daripada jari-jari

La3+ (jari-jari Sr2+ = 215 pm, jari-jari La3+ = 138pm), maka pendopingan Sr2+

dalam senyawa La1-xSrxCoO3 akan memperbesar jari-jari agregat ion (La, Sr).

Parameter kisi membesar dan volume sel kristal juga membesar seperti yang telah

disebutkan sebelumnya.

Berdasarkan analisis pada Tabel 1 juga teramati bahwa rasio c/a dan

derajat distorsi c-a/a tidak memiliki perubahan yang signifikan, rasio untuk ke

lima sampel berkisar antara 1,40; 1,41 dan 1,42, kecuali pada doping x = 0. Pada

doping x = 0 rasio c/a dan derajat distorsi c-a/a memiliki perubahan yang cukup

besar dibanding doping yang lainnya.

Terjadinya sedikit penurunan yang tidak signifikan pada rasio c/a dan

derajat distorsi c-a/a dikarenakan adanya gangguan pada bagian tetrahedral La3+

yang disisipi Sr2+. Jadi, ketidakstabilan La3+ akibat kehadiran efek Jahn-Teller

yang bertanggung jawab atas distorsi tetragonal.

7

Ukuran Butir Kristal Partikel Nano La1-xSrxCoO3

Analisis ukuran butir partikel nano La1-xSrxCoO3 dihitung dengan

menggunakan persamaan Scherrer (persamaan 1) dan hasilnya dapat dilihat pada

Table 2.

(1) Keterangan,

D = ukuran butir kristal (nm)

k = konstanta yang nilainya 0,9

= panjang gelombang sinar-X (1,5406)

Bo = lebar puncak pada setengah maksimum (FWHM)

= sudut Bragg (o)

Tabel 2 Ukuran Butir Kristal La1-xSrxCoO3

Berdasarkan Tabel 2 di atas diketahui bahwa ukuran butir kristal tidak

semuanya menurun atau masih acak dan tidak berpola dengan bertambahnya

komposisi dopan. Hal tersebut belum begitu sesuai dengan konsep pembentukan

senyawa, di mana ketika suatu senyawa diberi perlakuan suhu serta lama

pemanasan yang sama, sedangkan pada saat itu pula ditambahkan komposisi

bahan lain dalam hal ini dopan Sr2+, maka untuk membentuk senyawa baru

diperlukan waktu yang lama ketika doping semakin ditambah. Akibatnya,

pembentukan ikatan senyawa baru tersebut belum sempurna yang berakibat pada

ukuran butir kristal yang terbentuk semakin kecil ketika jumlah dopan Sr2+

semakin besar. Tetapi, dalam penelitian ini belum semuanya sesuai dengan teori

yang sudah dibahas di atas karena masih ada ukuran butir yang membesar selama

No. x Ukuran Butir (nm)

1 0,0 12,50 2 0,1 14,66 3 0,2 11,55 4 0,3 11,24 5 0,4 12,83

8

adanya pendopingan mulai dari x = 0 sampai x = 0,4. Untuk lebih jelas dapat

dilihat pada Gambar 3.

Gambar 3 Grafik Pengaruh Doping (x) terhadap Ukuran Butir Kristal La1-xSrxCoO3

Dielektrisitas Partikel Nano La1-xSrxCoO3

Konstanta dielektrik partikel nano La1-xSrxCoO3 dihitung dengan

menggunakan persamaan kapasitansi kapasitor plat sejajar (persamaan 2) dan

hasilnya dapat dilihat pada Tabel 3.

k = (2)

Keterangan,

k = konstanta dielektrik

C = kapasitansi (F)

d = tebal sampel (m)

= permitivitas di ruang hampa (F/m)

A = luas penampang (m2)

9

Tabel 3 Nilai Dielektrisitas sampel La1-xSrxCoO3

Berdasarkan Tabel 3 terlihat bahwa konstanta dielektrik sampel naik turun

dengan bertambah besarnya komposisi dopan Sr2+, dan perubahannya pun tidak

begitu signifikan. Perubahan signifikan hanya terjadi pada sampel dengan doping

x = 0,4. Hal ini menunjukkan bahwa konstribusi ion Sr2+ ke dalam bagian

dodekahedral senyawa LaCoO3 membentuk stoikiometri La1-xSrxCoO3 belum

sepenuhnya berpengaruh pada kapasitansi bahan. Jika dibandingkan dengan

konstanta dielektrik LaCoO3 dari referensi, maka orde yang paling mendekati

yaitu pada x = 0,4. Konstanta dielektrik dari referensi yaitu 3939. Sedangkan

untuk sampel yang lain ordenya cenderung mendekati konstanta dielektrik dari

Co3O4. Ketidaklinieran nilai dielektrisitas ini juga disebabkan masih adanya

senyawa lain dalam sampel yaitu La2O3 dan Co3O4.

Dari analisis struktur kristal di atas deketahui bahwa dopan Sr2+ hanya

berkontribusi pada sampel dengan doping x = 0,3 dan x = 0,4. Sehingga alasan

yang paling kuat dan fundamental yang mempengaruhi nilai dielektrisitas pada

sampel adalah jari-jari dopan Sr2+ lebih besar daripada jari-jari La3+ (jari-jari Sr2+

= 215 pm, jari-jari La3+ = 138 pm). Akibatnya volume kristal semakin besar dan

membawa dampak terhadap membesarnya jari-jari elektron valensi dalam kristal

La1-xSrxCoO3 dengan bertambahnya komposisi dopan ion Sr, sehingga energi ikat

kristal menjadi semakin menurun. Hali ini menyebabkan elektron terikat semakin

lemah dan mudah lepas, konsekuensinya material akan mengalami peningkatan

konduktivitas sedangkan dielektrisitasnya menurun. Selain itu, keadaan spin

kobalt juga berpengaruh terhadap nilai dielektriksitas. Ketika Sr2+ disubstitusikan

ke LaCoO3, maka ada perubahan keadaan spin pada unsur koblat yaitu dari low

spin Co3+ menjadi intermediate spin Co4+, khusus pada kisi kristal yang

disubstitusi Sr2+. Perubahan keadaan spin ini juga berpengaruh pada sifat fisis dari

La1-xSrxCoO3 seperti dielektrisitas. Untuk lebih jelas pengaruh doping terhadap

volume kristal, dan kontanta dielektrik dapat dilihat pada Gambar 4.

No. x Konstanta Dielektrik

1 0,0 177,20 2 0,1 585,73 3 0,2 485,74 4 0,3 645,91 5 0,4 4769,51

10

Gambar 4 Grafik Pengaruh Doping (x) terhadap Volume Kristal, dan Konstanta Dielektrik La1-xSrxCoO3

Konduktivitas Listrik Partikel Nano La1-xSrxCoO3

Konduktivitas listrik partikel nano La1-xSrxCoO3 dikarakterisasi dengan

metode 4-point probe dan dihitung dengan menggunakan persamaan

konduktivitas listrik (persamaan 3) dan hasilnya dapat dilihat pada Tabel 4.

atau (3) Keterangan,

= konduktivitas listrik (Ohm-1.m-1)

= resistivitas listrik (Ohm.m)

d = jarak antara I dan V (m)

V = beda potensial listrik(Volt)

I = kuat arus (A)

Tabel 4 Konduktivitas Listrik Sampel La1-xSrxCoO3

No. x Konduktivitas Listrik (103.-1.m-1)

1 0,0 2,30 2 0,1 1,10 3 0,2 3,44 4 0,3 5,91 5 0,4 5,63

11

Berdasarkan Tabel 4 terlihat bahwa konduktivitas listrik sampel turun naik

dengan bertambah besarnya komposisi dopan Sr2+, dan perubahannya pun tidak

begitu signifikan. Hal ini menunjukkan bahwa konstribusi ion Sr2+ ke dalam

bagian tetragonal senyawa LaCoO3 membentuk stoikiometri La1-xSrxCoO3 belum

sepenuhnya berpengaruh pada konduktivitas listrik bahan. Ketidaklinieran nilai

konduktivitas listrik ini dikarenakan masih adanya pengotor dalam sampel seperti

La2O3 dan Co3O4.

Dari analisis struktur kristal, deketahui bahwa dopan Sr2+ hanya

berkontribusi pada sampel dengan doping x = 0,3 dan x = 0,4. Alasan yang paling

kuat dan fundamental yang mempengaruhi nilai konduktivitas listrik pada sampel

adalah jari-jari dopan Sr2+ yang lebih besar daripada jari-jari La3+ (jari-jari Sr2+ =

215 pm, jari-jari La3+ = 138 pm). Kondisi tersebut membawa dampak terhadap

membesarnya volume kristal dan jari-jari elektron valensi dalam kristal La1-

xSrxCoO3 dengan bertambahnya komposisi dopan ion Sr, sehingga energi ikat

kristal menjadi semakin menurun. Akibatnya elektron terikat semakin lemah dan

mudah lepas, konsekuensinya material akan mengalami peningkatan

konduktivitas listrik. Adapun grafik pengaruh doping x terhadap volume kristal,

dan konduktivitas listrik ditunjukkan pada Gambar 5.

Gambar 5 Grafik Pengaruh Doping (x) terhadap Volume Kristal, dan Konduktivitas Listrik La1-xSrxCoO3

12

PENUTUP

Kesimpulan

Berdasarkan analisis data dan pembahasan dapat disimpulkan sebagai

berikut. Semakin besar komposisi doping Sr2+ pada senyawa La1-xSrxCoO3, maka

(1) semakin besar volume kristalnya, hal ini diakibatkan oleh jari-jari Sr2+ yang

lebih besar dari jari-jari La3+. (2) Ukuran butir kristalnya semakin kecil, kecuali

pada doping x = 0,1 dan x = 0,4. Ini disebabkan saat proses sintesis ketiga ion

yaitu La3+, Sr2+ dan Co3+ belum bereaksi secara sempurna sehingga senyawa yang

dibentuk kurang sempurna sehingga dengan bertambhanya variasi doping, ukuran

butir tidak mengecil melainkan masih acak atau tidak berpola. (3) Dielektrisitas

yang didapat tidak semakin kecil melainkan acak atau tidak berpola. Ini karena

masih banyak senyawa lain yang ada pada sampel La1-xSrxCoO3. Selain itu, naik

atau turunnya nilai dielektrisitas ini juga dikarenakan adanya perubahan spin pada

ion kobalt yaitu dari keadaan low spin ke intermediate spin. (4) Konduktivitas

listrik La1-xSrxCoO3 semakin naik kecuali pada x = 0,1. Ini karena pada x = 0,1

masih didominasi senyawa Co3O4. Semakin besar volume kristal, maka

konduktivitas listrik juga semakin besar.

Saran

Perlu dilakukan penelitian lebih lanjut dalam sintesis senyawa partikel

nano termoelektrik La1-xSrxCoO3 melalui metode kopresipitasi dengan kontrol pH

9-10 dan temperatur reaksi berkisar 70-75 oC. Saat proses kalsinasi dengan gas

nitrogen (N2) akan lebih baik jika furnace yang digunakan lebih tertutup dari

udara luar. Selain itu, juga perlu dilakukan variasi temperatur saat karakterisasi

konduktivitas listrik untuk mengetahui pengaruh temperatur terhadap nilai

konduktivitas listrik dan perlu adanya penambahan waktu saat proses pecampuran

bahan supaya terjadi reaksi yang lebih sempurna serta mengurangi terbentuknya

fase lain yang tidak diinginkan.

13

DAFTAR RUJUKAN

Djafar, Zuryati. 2010. Kajian Eksperimental Pengembangan Generator Termoelektrik sebagai Sumber Listrik. (Seminar Nasional Tahunan Teknik Mesin (SNTTM) ke-9 Palembang, 13-15 Oktober 2010).

Hadiyawarman, dkk. 2008. Fabrikasi Material Nanokomposit Superkuat, Ringan dan Transparan Menggunakan Metode Simple Mixing. Bandung: KK Fisika Material ElektronikFakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung (Jurnal Nanosains dan Nanoteknologi Vol. 1 No. 1/ISSN 1979-0880).

Herman, Atih S, dkk. 2008. Roadmap Pengembangan Teknologi Industri Berbasis Nanoteknologi. Jakarta: Pusat Penelitian dan Pengembangan Teknologi Industri Badan Penelitian dan Pengembangan Teknologi Industri Departemen Perindustrian.

Jadhav A.D., Gaikwad, A.B., Samuel, V. and Ravi, V. 2007. A low temperature route to prepareLaFeO3 and LaCoO3. Materials Letters, vol. 61, pp. 2030-2032.

Junwu, Z., Xiaojie, S., Yanping, W., Xin, W., Xujie Y., and Lude. 2007. Solution- Phase Synthesisand Characterization of Perovskite LaCoO3Nanocrystals via A Co-Precipitation Route. Journal Of Rare Earths, vol. 25, pp. 601- 604.

Hwang, Kyu-Seog. 2000. Preparation of Epitaxially Grown LaSrCoO3 Thin Flms on SrTiO3(100) Substrates by The Dipping-Pyrolysis Process. (Journal Of Materials Science 35 page 6209 6212).

Sutjahja, Inge M. 2011. Penelitian Bahan Thermoelektrik Bagi Aplikasi Konversi Energi di Masa Mendatang (Review Article). Bandung: Grup Riset Fisika Magnetik dan Fotonik Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Bandung (Jurnal Material dan Energi Indonesia Vol. 01, No. 01 hal. 58 70, Jurusan Fisika FMIPA Universitas Padjadjaran).

Yuanita, Ivanie F. dan Fansuri, Hamzah. 2010. Sintesis dan Karakterisasi Oksida Perovskit LaCo1-xNixO3- dengan Metode Kopresipitasi. Surabaya: Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam ITS (Prosiding Skripsi Semester Gasal 2010/2011 (SK-091304)).