lap puspet ii rev

94
LAPORAN MAGANG INDUSTRI BULAN KEDUA OKTOBER 2011 DI OLEH : PRATIWI, ST 1984 0225 2009 122002 BALAI BESAR TEKNOLOGI ENERGI BADAN PENGKAJIAN DAN PENERAPAN TEKNOLOGI TANGERANG SELATAN

Upload: pra-tiwi

Post on 01-Nov-2014

194 views

Category:

Documents


12 download

TRANSCRIPT

Page 1: Lap Puspet II Rev

LAPORAN MAGANG INDUSTRI BULAN KEDUAOKTOBER 2011

DI

OLEH :PRATIWI, ST

1984 0225 2009 122002

BALAI BESAR TEKNOLOGI ENERGIBADAN PENGKAJIAN DAN PENERAPAN TEKNOLOGI

TANGERANG SELATAN2011

Page 2: Lap Puspet II Rev

Lembar Pengesahan

2

Page 3: Lap Puspet II Rev

3

Page 4: Lap Puspet II Rev

Kata Pengantar

Pada laporan bulan pertama, telah dilakukan kegiatan internal sizing design yaitu :1. sizing design dari Horizontal 3 Phase Separator with weir, dari proyek South

Sembakung yang telah berjalan pada bulan April 2011 lalu, 2. sizing design dari Horizontal 3 Phase Separator with weir, dari proyek Petrochina

(sedang dalam proses penawaran),3. sizing design Heat Exchanger dari proyek Smelting (sedang dalam proses penawaran)

dengan menggunakan software Hysys dan HTSF.Sedangkan untuk bulan kedua ini dilakukan pembelajaran tentang Departemen Produksi

dan Quality Control, serta melanjutkan tugas yang telah diberikan pada bulan pertama sampai pada strength calculation dengan software PV Elite.

4

Page 5: Lap Puspet II Rev

DAFTAR ISI

Lembar Pengesahan...................................................................................................................2Kata Pengantar...........................................................................................................................4DAFTAR ISI..............................................................................................................................5BAB I STRENGTH CALCULATION......................................................................................6

1.1. Hasil Strength Calculation untuk Heat Exchanger dengan PV Elite 2011................7BAB II PRODUCTION DEPARTMENT...............................................................................40

2.1. Unit PPC...................................................................................................................402.2. Unit Production Fabrication (PFB)..........................................................................42

1. Welding Section :.....................................................................................................432. Assembly Section :...................................................................................................433. Preparation Section :................................................................................................434. Coordinator Shift Section :.......................................................................................445. Area in Charge Section :..........................................................................................44

2.3. Unit Maintenance & Service....................................................................................46BAB III QUALITY CONTROL..............................................................................................47

1. QC Preparation.........................................................................................................472. QC Assembly :.........................................................................................................483. QC Testing :.............................................................................................................48

BAB IV PRODUCTION & FABRICATION HEAT EXCHANGER....................................57BAB IV RENCANA KEGIATAN SELANJUTNYA.............................................................71DAFTAR PUSTAKA..............................................................................................................72Kegiatan Harian di PT. PUSPETINDO bulan Kedua..............................................................73

5

Page 6: Lap Puspet II Rev

BAB I STRENGTH CALCULATION

Setelah mendapatkan data-data kalkulasi dari internal sizing mencakup dimensi utama equipment (contoh diameter dan length dari vessel, jumlah dan diameter tube untuk HE, tinggi level untuk separator, dll), maka langkah selanjutnya adalah melakukan strength calculation (perhitungan kekuatan material) sesuai dengan standard dan code yang dipakai yaitu ASME.Strength calculation menentukan kemampuan material itu untuk menahan tekanan yang diberikan tanpa adanya kerusakan. Tekanan yang diberikan berupa tensile, compressive, atau shear. Kekuatan material berhubungan dengan load (beban), deformasi, dan gaya yang bekerja pada material. Hal ini diperlukan dalam studi dan desain struktur.Strength calculation ini menggunakan software PV Elite 2011 yang merupakan software untuk perhitungan analisis vessel yang secara garis besarnya mencakup perhitungan tentang :

1. Thickness2. Reinforcement3. External Load4. Support & Structure5. Stress Analysis

Sedangkan secara rinci meliputi perhitungan dan analisis terhadap : - Internal pressure untuk setiap elemen, yaitu required thickness, MAWP (Maximum

Allowable working Pressure), MAPnc, MDMT (Mean Design Metal Temperature), % Elongation, dan Hydrotest Pressure.

- External pressure untuk setiap elemen, yaitu required thickness, EMAWP, Max. Stiffened length.

- Berat tiap elemen dan detailnya- ANSI B 16.5 Flange- Vessel Natural Frequency- Vortex Shedding Load- Wind & Seismic Load- Wind Deflection- Vessel cross sectional area & moment inertia check- Allowable Stress- Vessel Longitudinal Stress check- Vessel Support check- Fatique Analysis- Rigging Analysis- Vessel Center of Gravity

6

Page 7: Lap Puspet II Rev

1.1. Hasil Strength Calculation untuk Heat Exchanger dengan PV Elite 2011

Dari bab sebelumnya telah dilakukan perhitungan internal sizing terhadap proyek HE smelting dimana terdapat 2 case perhitungan, yaitu :A. Ukuran HE dengan kondisi proses seperti persyaratan customer (Natural Gas yang

dipakai tidak terbakar sempurna karena flow rate udara pembakaran masih kurang, dan flow rate natural gas terlalu besar)

B. Ukuran HE dengan kondisi Natural Gas terbakar sempurna dengan mengatur flow rate udara bakar dan natural gas itu sendiri.

Hasil tersebut dapat dilihat pada tabel dibawah ini :

Tabel 1.1. Perbandingan sizing result case 1 dan case 2Item Case 1 Case 2Design Pressure (Mpa) Shell side / Tube side

0.3 / 0.3 0.3 / 0.3

Design Temperature (°C) Shell side / Tube side

620 / 650 620 / 650

Combustion air flow (Nm3/h) 9000 4428Natural Gas flow (Nm3/h) 900 356.7SO2 flow (Nm3/h) 1190 1190T in - out (Shell side - SO2) °C

30 – 470 30 - 470

T in - out (Tube side Flue Gas) °C

500 – 429.08 500 - 348.74

ID nozzle in / Out (Shell side) mm

155.57 / 206.38 155.57 / 206.38

ID nozzle in / Out (Tube side) mm

444.5 / 393.7 311.15 / 260.35

No of tube 936 717Tube OD (mm) 19.05 15.587Tube Thickness (mm) 2.11 2.11Tube Length (mm) 1950 3150Tube Pitch (mm) 25.4 19.49Shell ID / OD (mm) 925 / 939 625 / 635

Buffle Type / cut (%)double segmental /

15.68single segmental /

29.68Baffle spacing (mm) 185 295

Setelah didapatkan data-data diatas, maka dilakukan strength calculation dengan software PV Elite 2011, dimana secara sederhana tahapan-tahapannya (flowchart) dapat dilihat pada gambar 1.1 pada halaman selanjutnya.

7

Page 8: Lap Puspet II Rev

Berikut adalah flowchart strength calculation untuk heat exchanger secara umum :

Gambar 1.1. Flowchart strength calculation untuk Heat Exchanger

8

Page 9: Lap Puspet II Rev

Dalam perhitungan strength perlu dilakukan pemilihan jenis material yang sesuai dengan design temperature, dan tabel dibawah ini dipakai sebagai acuannya :

Tabel 1.2. Appendix H Material Selection Guide (Pressure Vessel Design Handbook)

Sesuai dengan data pada tabel 1.1., untuk suhu 620 / 650°C atau setara dengan 1148 / 1202°F maka dipilih material stainless steel SA-240-347H untuk plate, SA-182-347H untuk Forging,SB-443 1 untuk shell, SB-444 2 untuk tube, SB-446 2 untuk tubesheet, dan SA-193-B8 untuk Bolt.

9

Page 10: Lap Puspet II Rev

Berikut adalah hasil strength calculation dengan menggunakan software PV-Elite 2011 :A. Untuk case 1.

Gambar 1.2. Hasil Design dengan PV Elite 2011

Page 11: Lap Puspet II Rev

Rincian hasil perhitungannya :1.Input dataPV Elite Vessel Analysis Program: Input Data

Exchanger Design Pressures and Temperatures

Shell Side Design Pressure 0.3000 MPa Channel Side Design Pressure 0.3000 MPa Shell Side Design Temperature 620 C Channel Side Design Temperature 650 C

Type of Hydrotest UG99-b Hydrotest Position Horizontal Projection of Nozzle from Vessel Top 0.0000 mm Projection of Nozzle from Vessel Bottom 0.0000 mm Minimum Design Metal Temperature 0 C Type of Construction Welded Special Service None Degree of Radiography RT 1 Miscellaneous Weight Percent 0. Use Higher Longitudinal Stresses (Flag) Y Select t for Internal Pressure (Flag) Y Select t for External Pressure (Flag) N Select t for Axial Stress (Flag) N Select Location for Stiff. Rings (Flag) N Consider Vortex Shedding N Perform a Corroded Hydrotest N Is this a Heat Exchanger Yes User Defined Hydro. Press. (Used if > 0) 0.0000 MPa User defined MAWP 0.0000 MPa User defined MAPnc 0.0000 MPa

Load Case 1 NP+EW+WI+FW+BW Load Case 2 NP+EW+EE+FS+BS Load Case 3 NP+OW+WI+FW+BW Load Case 4 NP+OW+EQ+FS+BS Load Case 5 NP+HW+HI Load Case 6 NP+HW+HE Load Case 7 IP+OW+WI+FW+BW Load Case 8 IP+OW+EQ+FS+BS Load Case 9 EP+OW+WI+FW+BW Load Case 10 EP+OW+EQ+FS+BS Load Case 11 HP+HW+HI Load Case 12 HP+HW+HE Load Case 13 IP+WE+EW Load Case 14 IP+WF+CW Load Case 15 IP+VO+OW Load Case 16 IP+VE+EW Load Case 17 NP+VO+OW Load Case 18 FS+BS+IP+OW Load Case 19 FS+BS+EP+OW

Wind Design Code ASCE-7 93 Basic Wind Speed [V] 150.00 km/hr Surface Roughness Category C: Open Terrain Importance Factor 1. Type of Surface Moderately Smooth Base Elevation 0.0000 mm Percent Wind for Hydrotest 70. Using User defined Wind Press. Vs Elev. N Damping Factor (Beta) for Wind (Ope) 0.0100 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000

Seismic Design Code UBC 94 UBC Seismic Zone (1=1,2=2a,3=2b,4=3,5=4) 1.000 UBC Importance Factor 1.250

Page 12: Lap Puspet II Rev

UBC Soil Type S1 UBC Horizontal Force Factor 3.000 UBC Percent Seismic for Hydrotest 0.000

Design Nozzle for Des. Press. + St. Head Y Consider MAP New and Cold in Noz. Design N Consider External Loads for Nozzle Des. Y Use ASME VIII-1 Appendix 1-9 N

Material Database Year Current w/Addenda or Code Year

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 No Use Table G instead of exact equation for "A" Yes Shell Head Joints are Tapered Yes Compute "K" in corroded condition Yes Use Code Case 2286 No Use the MAWP to compute the MDMT Yes Using Metric Material Databases, ASME II D No

Complete Listing of Vessel Elements and Details:

Element From Node 10 Element To Node 20 Element Type Flange Description btm blind flange Distance "FROM" to "TO" 42.000 mm Flange Inside Diameter 1045.0 mm Element Thickness 42.000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 42.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-182 F347H Allowable Stress, Ambient 137.90 MPa Allowable Stress, Operating 53.945 MPa Allowable Stress, Hydrotest 186.17 MPa Material Density 0.008027 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 140.24 MPa External Pressure Chart Name HA-2 UNS Number S34709 Class / Thickness / Grade :: > 5 Product Form Forgings Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 N Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 20 Element To Node 30 Element Type Flange Description btm flange Distance "FROM" to "TO" 70.000 mm Flange Inside Diameter 925.00 mm Element Thickness 70.000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 70.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C

Page 13: Lap Puspet II Rev

Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-182 F347H Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 N Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 30 Element To Node 40 Element Type Cylinder Description channel tube inlet Distance "FROM" to "TO" 1016.0 mm Inside Diameter 925.00 mm Element Thickness 5.0000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 5.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-240 347H Allowable Stress, Ambient 137.90 MPa Allowable Stress, Operating 53.945 MPa Allowable Stress, Hydrotest 186.17 MPa Material Density 0.008027 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 140.24 MPa External Pressure Chart Name HA-2 UNS Number S34709 Product Form Plate Efficiency, Longitudinal Seam 1. Efficiency, Circumferential Seam 1.

Element From Node 30 Detail Type Liquid Detail ID FLUE GAS Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 1016.0 mm Liquid Density 0.0000 kg/cm³

Element From Node 30 Detail Type Nozzle Detail ID Tube Inlet Dist. from "FROM" Node / Offset dist 509.00 mm Nozzle Diameter 18. in. Nozzle Schedule None Nozzle Class 300 Layout Angle 180. Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 N Grade of Attached Flange GR 2.5 Nozzle Matl SA-240 347H

--------------------------------------------------------------------

Element From Node 40 Element To Node 50 Element Type Cylinder Description shell side Distance "FROM" to "TO" 1900.0 mm Inside Diameter 925.00 mm Element Thickness 5.0000 mm

Page 14: Lap Puspet II Rev

Internal Corrosion Allowance 0.0000 mm Nominal Thickness 5.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 620 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 620 C Effective Diameter Multiplier 1.2 Material Name SB-443 1 Allowable Stress, Ambient 236.50 MPa Allowable Stress, Operating 147.10 MPa Allowable Stress, Hydrotest 372.33 MPa Material Density 0.008442 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 282.70 MPa External Pressure Chart Name NFN-17 UNS Number N06625 Class / Thickness / Grade Annealed:: Product Form Plate, sheet, strip Efficiency, Longitudinal Seam 1. Efficiency, Circumferential Seam 1.

Element From Node 40 Detail Type Liquid Detail ID SO2 GAS Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 1900.0 mm Liquid Density 0.0000 kg/cm³

Element From Node 40 Detail Type Nozzle Detail ID Shell Outlet Dist. from "FROM" Node / Offset dist 450.00 mm Nozzle Diameter 10. in. Nozzle Schedule None Nozzle Class 300 Layout Angle 0. Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 N Grade of Attached Flange GR 2.5 Nozzle Matl SA-240 347H

Element From Node 40 Detail Type Nozzle Detail ID Shell Inlet Dist. from "FROM" Node / Offset dist 1551.0 mm Nozzle Diameter 8. in. Nozzle Schedule 40 Nozzle Class 300 Layout Angle 180. Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 N Grade of Attached Flange GR 2.5 Nozzle Matl SA-240 347H

--------------------------------------------------------------------

Element From Node 50 Element To Node 60 Element Type Cylinder Description channel tube outlet Distance "FROM" to "TO" 915.00 mm Inside Diameter 925.00 mm Element Thickness 5.0000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 5.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa

Page 15: Lap Puspet II Rev

Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-240 347H Allowable Stress, Ambient 137.90 MPa Allowable Stress, Operating 53.945 MPa Allowable Stress, Hydrotest 186.17 MPa Material Density 0.008027 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 140.24 MPa External Pressure Chart Name HA-2 UNS Number S34709 Product Form Plate Efficiency, Longitudinal Seam 1. Efficiency, Circumferential Seam 1.

Element From Node 50 Detail Type Liquid Detail ID FLUE GAS Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 915.00 mm Liquid Density 0.0000 kg/cm³

Element From Node 50 Detail Type Nozzle Detail ID Tube Outlet Dist. from "FROM" Node / Offset dist 459.00 mm Nozzle Diameter 16. in. Nozzle Schedule None Nozzle Class 300 Layout Angle 0. Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 N Grade of Attached Flange GR 2.5 Nozzle Matl SA-240 347H -------------------------------------------------------------------- Element From Node 60 Element To Node 70 Element Type Flange Description top flange Distance "FROM" to "TO" 70.000 mm Flange Inside Diameter 925.00 mm Element Thickness 70.000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 70.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-182 F347H Allowable Stress, Ambient 137.90 MPa Allowable Stress, Operating 53.945 MPa Allowable Stress, Hydrotest 186.17 MPa Material Density 0.008027 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 140.24 MPa External Pressure Chart Name HA-2 UNS Number S34709 Class / Thickness / Grade :: > 5 Product Form Forgings Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 N Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange --------------------------------------------------------------------

Page 16: Lap Puspet II Rev

Element From Node 70 Element To Node 80 Element Type Flange Description top blind flange Distance "FROM" to "TO" 42.000 mm Flange Inside Diameter 1045.0 mm Element Thickness 42.000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 42.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-182 F347H Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 N Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2011

2.Internal Pressure CalculationsElement Thickness, Pressure, Diameter and Allowable Stress :

| | Int. Press | Nominal | Total Corr| Element | Allowable | From| To | + Liq. Hd | Thickness | Allowance | Diameter | Stress(SE)| | | MPa | mm | mm | mm | MPa | --------------------------------------------------------------------------- btm blind| 0.3000 | 42.000 | ... | 1045.0 | 53.945 | btm flange| 0.3000 | 70.000 | ... | 925.00 | 53.945 | channel tu| 0.3000 | 5.0000 | ... | 925.00 | 53.945 | shell side| 0.3000 | 5.0000 | ... | 925.00 | 147.10 | channel tu| 0.3000 | 5.0000 | ... | 925.00 | 53.945 | top flange| 0.3000 | 70.000 | ... | 925.00 | 53.945 | top blind| 0.3000 | 42.000 | ... | 1045.0 | 53.945 |

Element Required Thickness and MAWP :

| | Design | M.A.W.P. | M.A.P. | Minimum | Required | From| To | Pressure | Corroded | New & Cold | Thickness | Thickness | | | MPa | MPa | MPa | mm | mm | ---------------------------------------------------------------------------- btm blind| 0.30000 | 1.16032 | 4.96440 | 42.0000 | No Calc | btm flange| 0.30000 | 1.16032 | 4.96440 | 70.0000 | No Calc | channel tu| 0.30000 | 0.57942 | 1.48120 | 5.00000 | 2.58075 | shell side| 0.30000 | 1.58002 | 2.54026 | 5.00000 | 1.50000 | channel tu| 0.30000 | 0.57943 | 1.48120 | 5.00000 | 2.58068 | top flange| 0.30000 | 1.16034 | 4.96440 | 70.0000 | No Calc | top blind| 0.30000 | 1.16034 | 4.96440 | 42.0000 | No Calc |

Summary of Heat Exchanger Maximum Allowable Working Pressures :

Note: The MAWPs and MAPs for the Exchanger elements all appear to be zero or some could not be calculated. Please fill these values in on the main tubesheet tab.

Internal Pressure Calculation Results :

Page 17: Lap Puspet II Rev

ASME Code, Section VIII, Division 1, 2010Cylindrical Shell From 30 To 40 SA-240 347H at 650 Cchannel tube inlet

Longitudinal Joint: Full Radiography per UW-11(a) Type 1Circumferential Joint: Full Radiography per UW-11(a) Type 1Material UNS Number: S34709

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (0.300*462.5000)/(53.95*1.00-0.6*0.300) = 2.5808 + 0.0000 = 2.5808 mm

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:Less Operating Hydrostatic Head Pressure of 0.000 MPa = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (53.95*1.00*5.0000)/(462.5000+0.6*5.0000) = 0.579 - 0.000 = 0.579 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (137.90*1.00*5.0000)/(462.5000+0.6*5.0000) = 1.481 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t) = (0.300*(462.5000+0.6*5.0000))/(1.00*5.0000) = 27.931 MPa

Percent Elongation per UHA-44 (50*tnom/Rf)*(1-Rf/Ro) 0.538 % Note: Please Check Requirements of Table UHA-44 for Elongation limits.

Cylindrical Shell From 40 To 50 SB-443 1 at 620 C

shell side

Longitudinal Joint: Full Radiography per UW-11(a) Type 1Circumferential Joint: Full Radiography per UW-11(a) Type 1

Material UNS Number: N06625

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (0.300*462.5000)/(147.10*1.00-0.6*0.300) = 0.9445 + 0.0000 = 0.9445 mm

Note: The thickness required was less than the Code Minimum, therefore the Code Minimum value of 1.5000 mm per UG-16 will be used.

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:Less Operating Hydrostatic Head Pressure of 0.000 MPa = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (147.10*1.00*5.0000)/(462.5000+0.6*5.0000) = 1.580 - 0.000 = 1.580 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (236.50*1.00*5.0000)/(462.5000+0.6*5.0000) = 2.540 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t) = (0.300*(462.5000+0.6*5.0000))/(1.00*5.0000) = 27.933 MPa

Cylindrical Shell From 50 To 60 SA-240 347H at 650 C

Page 18: Lap Puspet II Rev

channel tube outlet

Longitudinal Joint: Full Radiography per UW-11(a) Type 1Circumferential Joint: Full Radiography per UW-11(a) Type 1

Material UNS Number: S34709

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (0.300*462.5000)/(53.95*1.00-0.6*0.300) = 2.5807 + 0.0000 = 2.5807 mm

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:Less Operating Hydrostatic Head Pressure of 0.000 MPa = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (53.95*1.00*5.0000)/(462.5000+0.6*5.0000) = 0.579 - 0.000 = 0.579 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (137.90*1.00*5.0000)/(462.5000+0.6*5.0000) = 1.481 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t) = (0.300*(462.5000+0.6*5.0000))/(1.00*5.0000) = 27.930 MPa

Percent Elongation per UHA-44 (50*tnom/Rf)*(1-Rf/Ro) 0.538 % Note: Please Check Requirements of Table UHA-44 for Elongation limits.

Hydrostatic Test Pressure Results:

Exchanger Shell Side Hydrostatic Test Pressures:

Pressure per UG99b = 1.3 * M.A.W.P. * Sa/S 0.000 MPa Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S 0.627 MPa Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) 0.000 MPa Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S 0.000 MPa Pressure per PED = 1.43 * MAWP 0.000 MPa

Exchanger Channel Side Hydrostatic Test Pressures:

Pressure per UG99b = 1.3 * M.A.W.P. * Sa/S 0.000 MPa Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S 0.997 MPa Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) 0.000 MPa Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S 0.000 MPa Pressure per PED = 1.43 * MAWP 0.000 MPa

Horizontal Test performed per: UG-99bStresses on Elements due to Hydrostatic Test Pressure:

From To Stress Allowable Ratio PressureElements Suitable for Internal Pressure.PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2011

3.TEMA TubeSheet Calculation Input Echo, TubeSheet Item 1, Description: tubesheet

Tubesheet Design Code TEMA Shell Desc. shell side Shell Design Pressure Ps 0.30 MPa Shell Temperature for Internal Pressure TEMPS 620.00 C Shell Material SB-443 1 Shell Material UNS Number N06625 Shell Allowable Stress at Temperature Sos 147.10 MPa

Page 19: Lap Puspet II Rev

Shell Allowable Stress at Ambient Sas 236.50 MPa Shell Thickness Ts 5.0000 mm Shell Corrosion Allowance Cas 0.0000 mm Inside Diameter of Shell Ds 925.000 mm Mean Metal Temperature for Shell Tm 250.00 C

Channel Desc. channel tube inlet Channel Design Pressure Pc 0.30 MPa Channel Temperature for Internal Pressure TEMPC 650.00 C Channel Material SA-240 347H Channel Material UNS Number S34709 Channel Allowable Stress at Temperature Soc 53.95 MPa Channel Allowable Stress at Ambient Sac 137.90 MPa Channel Thickness Tc 5.0000 mm Channel Corrosion Allowance Cac 0.0000 mm Inside Diameter of Channel Dc 925.000 mm Mean Metal Temperature for Tubes tm 361.00 C

Tube Design Temperature Tubtmp 650.00 C Tube Material SB-444 2 Tube Material UNS Number N06625 Is This a Welded Tube No Tube Material Specification used Smls. pipe & tube Tube Allowable Stress at Temperature Sot 136.59 MPa Tube Allowable Stress At Ambient Sat 184.10 MPa Tube Yield Stress At Operating Temperature Syt 201.33 MPa Tube Wall Thickness Tt 2.1107 mm Tube Corrosion Allowance Catt 0.0000 mm Number of Tubes Holes Ntubs 1049 Tube Layout Pattern Square Tube Outside Diameter do 19.0500 mm Tube Pitch (Center to Center Spacing) PTube 24.0000 mm

Fillet Weld Leg af 0.0000 mm Groove Weld Leg ag 0.0000 mm Design Strength of Weld Fd 0.0000 N Tube-Tubesheet Joint Weld Type Seal/No Weld Is Tube-Tubesheet Joint Tested No Tube-Tubesheet Joint Classification i Tube Joint Reliability Factor fr 0.7000 Interface Pressure, after tube expansion Po 1.00 MPa Interface Pressure, due to diff. thermal exp. Pt 1.00 MPa

Total Straight Tube Length Lt 1950.000 mm Straight Tube Length, bet. inner tubsht faces RL 1830.000 mm Unsupported Tube Length for max. (k*SL) SL 521.0000 mm Tube end condition corres. to span (SL) k 0.8000 Length of Expanded Portion of Tube l 48.0000 mm Perimeter of Tube Layout PERI 2779.020 mm Area of Tube Layout AREA 579456.0 mm²

Tubesheet type: Fixed Tubesheet Exchanger Tubesheet Design Metal Temperature TEMPTS 650.00 C Tubesheet Material SB-446 2 Tubesheet Material UNS Number N06625 Tubesheet Allowable Stress at Temperature Sots 131.94 MPa Tubesheet Allowable Stress at Ambient Sats 184.10 MPa Thickness of Tubesheet Tts 60.0000 mm Tubesheet Corr. Allowance (Shell side) Cats 0.0000 mm Tubesheet Corr. Allowance (Channel side) Catc 0.0000 mm Depth of Groove in Tube Sheet hg 0.0000 mm TEMA Tubesheet class R

Additional Data for Fixed Tubesheet Exchangers Mean Metal Temperature for Tubesheet Tshm 407.70 C Run Multiple Load Cases for Fixed Tubesheets No Is this a Kettle-type configuration No

Page 20: Lap Puspet II Rev

Tubesheet Analysis, Tubesheet number 1,Description:tubesheetTEMA Standards, Eighth Edition, 1999, RCB-7 Tubesheets

TEMA R-7.131 Minimum Tubesheet Thickness for R-type: TMIN = MAX( do, CONST - ( CATS + CATC ) ) TMIN = MAX( 19.050 , 19.050 - ( 0.000 + 0.000 ) ) TMIN = 19.0500 mm Min. Thickness + CATS + CATC TREQMIN = 19.0500 mm

Shellside Fixity Factor, F, per RCB 7.132 FS 1.0000 Shellside Effective Diameter, per RCB 7.132 GS 925.000 mm Tubeside Fixity Factor, F, per RCB 7.132 FC 1.0000 Tubeside Effective Diameter, per RCB 7.132 GC 925.000 mm TEMA Eta factor used in calculation ETA 0.5054

Material Properties for Thermal Expansion Analysis:

Shell - TE-4 N06625Shell - TM-4 N06625 ----------------------------------------------------------------- Th. Exp. Coeff. Metal Temperature 250.0 C 0.0000132540 /C Elastic Mod. at Metal Temperature 250.0 C 0.19425E+06 MPa

Tubes - TE-4 N06625Tubes - TM-4 N06625 ----------------------------------------------------------------- Th. Exp. Coeff. Metal Temperature 361.0 C 0.0000134332 /C Elastic Mod. at Metal Temperature 361.0 C 0.18805E+06 MPa

TubeSheet - TE-4 N06625TubeSheet - TM-4 N06625 ----------------------------------------------------------------- Th. Exp. Coeff. Metal Temperature 407.7 C 0.0000135558 /C Elastic Mod. at Metal Temperature 407.7 C 0.18528E+06 MPa

Note: Iterating to compute the required Tubesheet Thickness

TEMA RCB-7.132 Required Thickness for Shellside Pressure [Trs]: = FS * GS * SQRT ( PSU / ( ETA * SOTS ) ) / 3.0 = 1.0000 * 925.0000 * SQRT( 1.92 / ( 0.5054 * 131 ) ) / 3.0 = 52.2687 mmTEMA RCB-7.132 Required Thickness for Tubeside Pressure [Trc]: = FC * GC * SQRT ( PTU / ( ETA * SOTS ) ) / 3.0 = 1.0000 * 925.0000 * SQRT( 1.76 / ( 0.5054 * 131 ) ) / 3.0 = 50.0881 mmTEMA RCB-7.132 Required Thickness for Bending + Cats + MAX(Catc, hg): [Treq] = 52.2687 mm

Note: Recomputing Eff. pressures (PTU, PSU) at given Tubesheet thickness.

TEMA RCB-7.161 J Factor for Thermal Expansion = 1.0 (No Expansion Jt.)

TEMA RCB-7.161 K Factor for Thermal Expansion 0.1281 TEMA RCB-7.161 Fq Factor for Thermal Expansion 5.2589 TEMA RCB-7.161 Differential Expansion / Length -0.15E-02

TEMA RCB-7.161 Equivalent Differential Thermal Expansion Pressure: PD = 4 * J * ES * TS * DLL / ( DOS - 3.0*TS ) * ( 1.0 + J * RK * FQ ) PD = 4 * 1.0000 * 194247 * 5.0000 * -0.0015 / ( 935.0000 - 3.0 * 5.0000 ) * ( 1.0 + 1.0000 * 0.1281 * 5.2589 ) PD = -3.866 MPaTEMA RCB 7.163 Effective Shellside Design Pressure:TEMA RCB-7.163 FFs Factor for Shellside Design 0.5551 PSP1 = 0.4 * J * ( 1.5 + K * (1.5 + FFS ) )

Page 21: Lap Puspet II Rev

= 0.4 * 1.0000 * ( 1.5 + 0.1281 * (1.5 + 0.5551 ) ) PSP2 = ( ( 0.5 - J / 2.0 ) * ( DJ2 / G2 - 1.0 ) = ( ( 0.5 - 1.0000 / 2.0 ) * ( 925.0000 2 /925.0000 2 - 1.0 ) PSP3 = 1.0 + J * K * FQ = 1.0 + 1.0000 * 0.1281 * 5.2589 PSP = PS * ( ( PSP1 - PSP2 ) / PSP3 ) = 0.30 * ( ( 0.7053 - 0.0000 ) / 1.6735 ) PSP = 0.126 MPa

TEMA RCB-7.163 Effective Shell Side Design Pressure: PSU = Max (absolute) of PSP : 0.13 or PBS : 0.00 or ( PSP - PD ) / 2 : ( 0.13 - -3.87 ) / 2.0 or ( PSP - PD - PBS ) / 2 : ( 0.13 --3.87 -0.00 ) / 2.0 or ( PBS + PD ) / 2 : ( 0.00 + -3.87 ) / 2.0 or ( PSP - PBS ) : ( 0.13 - 0.00 ) PSU = : 1.996 MPaTEMA RCB 7.163 Shellside Shear Design Pressure, PBS=0: PSS = : 1.996 MPa

TEMA RCB 7.164 Effective Tubeside Design Pressure: TEMA RCB-7.164, FFt Factor for Tubeside Design 0.7304 PTP1 = 1.0 + 0.4 * J * K * ( 1.5 + FFT ) = 1.0 + 0.4 * 1.0000 * 0.1281 * ( 1.5 + 0.7304 ) PTP2 = 1.0 + J * K * FQ = 1.0 + 1.0000 * 0.1281 * 5.2589 PTP = PT * PTP1 / PTP2 = 0.30 * 1.1143 / 1.6735 PTP = 0.200 MPa

TEMA RCB-7.164 Effective Tube Side Design Pressure: PTU = Max (absolute) of : ( PTP + PBT + PD ) / 2 : ( 0.20 +0.00 +-3.87 ) / 2.0 or ( PTP + PBT ) : ( 0.20 + 0.00 ) PTU = : 1.833 MPaTEMA RCB 7.164 Tubeside Shear Design Pressure (PBT=0): PTS = : 1.833 MPa

No Shear Calculation, since Pressure is less than 8.9805 MPa

TEMA RCB-7.22 Shell Longitudinal Stress : Max. Effective Pressure for Longitudinal Stress, 3.966 MPa

TEMA RCB-7.22 Maximum Shell Longitudinal Stress : STSMAX = PSSMAX * CS * ( DOS - TS )/( 4 * TS ) STSMAX = 3.97 * 0.50 * ( 935.0000 - 5.0000 ) / ( 4 * 5.0000 ) STSMAX = 92. MPaTEMA RCB-7.22 Allowable Shell Longitudinal Stress : STSALL = 147. MPa

TEMA RCB-7.23 Tube Longitudinal Stress Results : Max. Effective Pressure for Longitudinal Stress, 0.158 MPa Min. Effective Pressure for Longitudinal Stress, -3.961 MPa

TEMA RCB-7.23 Maximum Tube Long. Stress (Tension): STTMAX = PTTMAX*CT*FQ*G*G /(4*NTUBS*TT*(do-TT)) STTMAX = 0.16 *1.00 *5.26 *925.0000 *925.0000 / ( 4*1049 *2.1107 *(19.0500 -2.1107 ) ) STTMAX = 4.74 MPa

TEMA RCB-7.23 Allowable Tube Long. Stress (Tension): STTALL = 136.59 MPa

TEMA RCB-7.23 Minimum Tube Comp. Longitudinal Stress : STTMIN = PTTMIN*CT*FQ*G*G/(4*NTUBS*TT*(do-TT)) STTMIN = -3.96 *1.00 *5.26 *925.0000 *925.0000 / ( 4*1049 *2.1107 *(19.0500 -2.1107 ) ) STTMIN = -118.79 MPa

Page 22: Lap Puspet II Rev

TEMA RCB-7.24 Allowable Tube Compressive Stress : STTCOM = -SYT*(1-RKLR/(2*CC))/FSAF STTCOM = -201 * ( 1.0 -69.0610 / ( 2.0 *135.7813 ) ) / 1.25 STTCOM = -120.11 MPa

TEMA RCB-7.25 Tube-To-Tubesheet Joint Load : Effective Pressure for Tube-to-Tubesheet Load : 0.158 MPa

TEMA RCB-7.25 Actual Tube-To-Tubesheet Load : WJ = PI * FQ * PTLOAD * G * G / ( 4.0 * NTUBS ) WJ = 3.14 * 5.26 * 0.158 * 925.00 * 925.00 / ( 4.0 * 1049 ) WJ = 532.52 N

Allowable Tube-To-Tubesheet Load per ASME App. A [Lmax]: = (PI/4)*(DT²-(DT-2*TT)²)*SOT*fr*fe*fy*ft = .785*(19.050²-(19.050-2*2.1107)²)*136*0.70*1.00*1.00*2.00 = 21477.33 N

Summary of Tubesheet Results: ------------------------------------------------------------------------ Condition Req Thk Actual Thk Actual Allow Result (+CA) (mm) Stress (MPa) ------------------------------------------------------------------------ Bending 52.269 60.000 156.45 197.92 Ok ------------------------------------------------------------------------

Longitudinal stresses: -------------------------------------------------------------------- Compressive Tensile Condition Actual Allow Actual Allow Result -------------------------------------------------------------------- Shell 0.000 0.000 92.216 147.103 Ok Long Tubes -118.793 120.106 4.741 136.587 Ok Tube Load 532.516 21477.330 Ok -------------------------------------------------------------------- Equivalent Differential Ther. Expansion Pressure -3.8660 MPa Shellside Prime Pressure 0.1264 MPa Tubeside Prime Pressure 0.1997 MPa

Maximum Axial Differential Thermal Expansion between Shell and Tubes: Tube has higher Thermal growth (Exp. Jt. Extension) : +2.804 mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2011

4.Vessel Design Summary

Design Code: ASME Code Section VIII Division 1, 2010

Diameter Spec : 925.000 mm ID Vessel Design Length, Tangent to Tangent 4115.00 mm

Distance of Bottom Tangent above Grade 0.00 mm Distance of Base above Grade 0.00 mm Specified Datum Line Distance 0.00 mm

Shell Material Specification SA-240 347H Shell Material Specification SB-443 1 Stiffening Ring Material Specification

Shell Side Design Temperature 620 C Channel Side Design Temperature 650 C

Shell Side Design Pressure 0.300 MPa Channel Side Design Pressure 0.300 MPa

Shell Side Hydrostatic Test Pressure 0.000 MPa

Page 23: Lap Puspet II Rev

Channel Side Hydrostatic Test Pressure 0.000 MPa

Wind Design Code ASCE-93 Earthquake Design Code UBC-94

Element Pressures and MAWP: MPa

Element Desc | Design Pres. | External | M.A.W.P | Corrosion | + Stat. head | Pressure | | Allowance --------------------------------------------------------------------- btm blind flange 0.300 0.000 1.160 0.0000 btm flange 0.300 0.000 1.160 0.0000 channel tube inlet 0.300 0.000 0.579 0.0000 shell side 0.300 0.000 1.580 0.0000 channel tube outlet 0.300 0.000 0.579 0.0000 top flange 0.300 0.000 1.160 0.0000 top blind flange 0.300 0.000 1.160 0.0000

Liquid Level: 3831.00 mm Dens.: 0.000 kg/cm³ Sp. Gr.: 0.000

Stiffener Ring Specifications: Elevation mm Selected Type User Description 1128.00 3077.97

Element "To" Elev Length Element Thk R e q d T h k Joint Eff Type mm mm mm Int. Ext. Long Circ ----------------------------------------------------------------------- Body Flg 42.0 42.0 42.0 No Cal ------- 1.00 1.00 Body Flg 112.0 70.0 70.0 No Cal ------- 1.00 1.00 Cylinder 1128.0 1016.0 5.0 2.6 ------- 1.00 1.00 Cylinder 3028.0 1900.0 5.0 1.5 ------- 1.00 1.00 Cylinder 4003.0 915.0 5.0 2.6 ------- 1.00 1.00 Body Flg 4073.0 70.0 70.0 No Cal ------- 1.00 1.00 Body Flg 4115.0 42.0 42.0 No Cal ------- 1.00 1.00

Element thicknesses are shown as Nominal if specified, otherwise are Minimum

Note: Wind and Earthquake moments include the effects of user defined forces and moments if any exist in the job and were specified to act (compute loads and stresses) during these cases. Also included are moment effects due to eccentric weights if any are present in the input.

Weights: Fabricated - Bare W/O Removable Internals 4058.7 kg Shop Test - Fabricated + Water ( Full ) 6192.4 kg Shipping - Fab. + Rem. Intls.+ Shipping App. 4058.7 kg Erected - Fab. + Rem. Intls.+ Insul. (etc) 4058.7 kg Empty - Fab. + Intls. + Details + Wghts. 4058.7 kg Operating - Empty + Operating Liquid (No CA) 4060.2 kg Field Test - Empty Weight + Water (Full) 6545.5 kg

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2011

5.Perhitungan Hydrostatic Test Pressure : untuk shell side

Page 24: Lap Puspet II Rev

dibatasi oleh MAWP dari Nozzle shell inlet yaitu 0.729 MPa, maka hydrostatic test pressurenya adalah :

= 1.3 * MAWP * (Sa/S) = 1.3 * 0.729 * (137.9 / 73.44) = 1.78 MPa

Untuk channel sidedibatasi oleh MAWP dari Channel tube inlet yaitu 0.57942 MPa, maka hydrostatic test pressurenya adalah :

= 1.3 * MAWP * (Sa/S) = 1.3 * 0.57942 * (2.556)

= 1.925 MPa

Page 25: Lap Puspet II Rev

B. Untuk case 2.

Gambar 1.3. Hasil Design dengan PV Elite 2011

Page 26: Lap Puspet II Rev

Rincian hasil perhitungannya :1.Input DataPV Elite Vessel Analysis Program: Input Data

Exchanger Design Pressures and Temperatures

Shell Side Design Pressure 0.3000 MPa Channel Side Design Pressure 0.3000 MPa Shell Side Design Temperature 620 C Channel Side Design Temperature 650 C

Type of Hydrotest UG99-b Hydrotest Position Horizontal Projection of Nozzle from Vessel Top 0.0000 mm Projection of Nozzle from Vessel Bottom 0.0000 mm Minimum Design Metal Temperature 0 C Type of Construction Welded Special Service None Degree of Radiography RT 1 Miscellaneous Weight Percent 0. Use Higher Longitudinal Stresses (Flag) Y Select t for Internal Pressure (Flag) Y Select t for External Pressure (Flag) N Select t for Axial Stress (Flag) N Select Location for Stiff. Rings (Flag) N Consider Vortex Shedding N Perform a Corroded Hydrotest N Is this a Heat Exchanger Yes User Defined Hydro. Press. (Used if > 0) 0.0000 MPa User defined MAWP 0.0000 MPa User defined MAPnc 0.0000 MPa

Load Case 1 NP+EW+WI+FW+BW Load Case 2 NP+EW+EE+FS+BS Load Case 3 NP+OW+WI+FW+BW Load Case 4 NP+OW+EQ+FS+BS Load Case 5 NP+HW+HI Load Case 6 NP+HW+HE Load Case 7 IP+OW+WI+FW+BW Load Case 8 IP+OW+EQ+FS+BS Load Case 9 EP+OW+WI+FW+BW Load Case 10 EP+OW+EQ+FS+BS Load Case 11 HP+HW+HI Load Case 12 HP+HW+HE Load Case 13 IP+WE+EW Load Case 14 IP+WF+CW Load Case 15 IP+VO+OW Load Case 16 IP+VE+EW Load Case 17 NP+VO+OW Load Case 18 FS+BS+IP+OW Load Case 19 FS+BS+EP+OW

Wind Design Code ASCE-7 93 Basic Wind Speed [V] 150.00 km/hr Surface Roughness Category C: Open Terrain Importance Factor 1. Type of Surface Moderately Smooth Base Elevation 0.0000 mm Percent Wind for Hydrotest 70. Using User defined Wind Press. Vs Elev. N Damping Factor (Beta) for Wind (Ope) 0.0100 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000

Seismic Design Code UBC 94 UBC Seismic Zone (1=1,2=2a,3=2b,4=3,5=4) 1.000 UBC Importance Factor 1.250

Page 27: Lap Puspet II Rev

UBC Soil Type S1 UBC Horizontal Force Factor 3.000 UBC Percent Seismic for Hydrotest 0.000

Design Nozzle for Des. Press. + St. Head Y Consider MAP New and Cold in Noz. Design N Consider External Loads for Nozzle Des. Y Use ASME VIII-1 Appendix 1-9 N

Material Database Year Current w/Addenda or Code Year

Configuration Directives:

Do not use Nozzle MDMT Interpretation VIII-1 01-37 No Use Table G instead of exact equation for "A" Yes Shell Head Joints are Tapered Yes Compute "K" in corroded condition Yes Use Code Case 2286 No Use the MAWP to compute the MDMT Yes Using Metric Material Databases, ASME II D No

Complete Listing of Vessel Elements and Details:

Element From Node 10 Element To Node 20 Element Type Flange Description btm blind flange Distance "FROM" to "TO" 30.000 mm Flange Inside Diameter 740.00 mm Element Thickness 30.000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 30.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-182 F347H Allowable Stress, Ambient 137.90 MPa Allowable Stress, Operating 53.945 MPa Allowable Stress, Hydrotest 186.17 MPa Material Density 0.008027 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 140.24 MPa External Pressure Chart Name HA-2 UNS Number S34709 Class / Thickness / Grade :: > 5 Product Form Forgings Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 N Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 20 Element To Node 30 Element Type Flange Description btm flange Distance "FROM" to "TO" 55.000 mm Flange Inside Diameter 625.00 mm Element Thickness 55.000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 55.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C

Page 28: Lap Puspet II Rev

Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-182 F347H Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 N Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange

--------------------------------------------------------------------

Element From Node 30 Element To Node 40 Element Type Cylinder Description channel tube inlet Distance "FROM" to "TO" 815.00 mm Inside Diameter 625.00 mm Element Thickness 5.0000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 5.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-240 347H Allowable Stress, Ambient 137.90 MPa Allowable Stress, Operating 53.945 MPa Allowable Stress, Hydrotest 186.17 MPa Material Density 0.008027 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 140.24 MPa External Pressure Chart Name HA-2 UNS Number S34709 Product Form Plate Efficiency, Longitudinal Seam 1. Efficiency, Circumferential Seam 1.

Element From Node 30 Detail Type Liquid Detail ID FLUE GAS Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 815.00 mm Liquid Density 0.0000 kg/cm³

Element From Node 30 Detail Type Nozzle Detail ID Tube Inlet Dist. from "FROM" Node / Offset dist 407.50 mm Nozzle Diameter 14. in. Nozzle Schedule None Nozzle Class 300 Layout Angle 180. Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 N Grade of Attached Flange GR 2.5 Nozzle Matl SA-240 347H

--------------------------------------------------------------------

Element From Node 40 Element To Node 50 Element Type Cylinder Description shell side Distance "FROM" to "TO" 2900.0 mm Inside Diameter 625.00 mm Element Thickness 5.0000 mm

Page 29: Lap Puspet II Rev

Internal Corrosion Allowance 0.0000 mm Nominal Thickness 5.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 620 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 620 C Effective Diameter Multiplier 1.2 Material Name SB-443 1 Allowable Stress, Ambient 236.50 MPa Allowable Stress, Operating 147.10 MPa Allowable Stress, Hydrotest 372.33 MPa Material Density 0.008442 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 282.70 MPa External Pressure Chart Name NFN-17 UNS Number N06625 Class / Thickness / Grade Annealed:: Product Form Plate, sheet, strip Efficiency, Longitudinal Seam 1. Efficiency, Circumferential Seam 1.

Element From Node 40 Detail Type Liquid Detail ID SO2 GAS Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 2900.0 mm Liquid Density 0.0000 kg/cm³

Element From Node 40 Detail Type Nozzle Detail ID Shell Outlet Dist. from "FROM" Node / Offset dist 285.75 mm Nozzle Diameter 10. in. Nozzle Schedule None Nozzle Class 300 Layout Angle 0. Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 N Grade of Attached Flange GR 2.5 Nozzle Matl SA-240 347H

Element From Node 40 Detail Type Nozzle Detail ID Shell Inlet Dist. from "FROM" Node / Offset dist 2700.0 mm Nozzle Diameter 8. in. Nozzle Schedule 40 Nozzle Class 300 Layout Angle 180. Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 N Grade of Attached Flange GR 2.5 Nozzle Matl SA-240 347H

--------------------------------------------------------------------

Element From Node 50 Element To Node 60 Element Type Cylinder Description channel tube outlet Distance "FROM" to "TO" 711.00 mm Inside Diameter 625.00 mm Element Thickness 5.0000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 5.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa

Page 30: Lap Puspet II Rev

Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-240 347H Allowable Stress, Ambient 137.90 MPa Allowable Stress, Operating 53.945 MPa Allowable Stress, Hydrotest 186.17 MPa Material Density 0.008027 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 140.24 MPa External Pressure Chart Name HA-2 UNS Number S34709 Product Form Plate Efficiency, Longitudinal Seam 1. Efficiency, Circumferential Seam 1.

Element From Node 50 Detail Type Liquid Detail ID FLUE GAS Dist. from "FROM" Node / Offset dist 0.0000 mm Height/Length of Liquid 711.00 mm Liquid Density 0.0000 kg/cm³

Element From Node 50 Detail Type Nozzle Detail ID Tube Outlet Dist. from "FROM" Node / Offset dist 356.00 mm Nozzle Diameter 12. in. Nozzle Schedule None Nozzle Class 300 Layout Angle 0. Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 N Grade of Attached Flange GR 2.5 Nozzle Matl SA-240 347H -------------------------------------------------------------------- Element From Node 60 Element To Node 70 Element Type Flange Description top flange Distance "FROM" to "TO" 55.000 mm Flange Inside Diameter 625.00 mm Element Thickness 55.000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 55.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-182 F347H Allowable Stress, Ambient 137.90 MPa Allowable Stress, Operating 53.945 MPa Allowable Stress, Hydrotest 186.17 MPa Material Density 0.008027 kg/cm³ P Number Thickness 0.0000 mm Yield Stress, Operating 140.24 MPa External Pressure Chart Name HA-2 UNS Number S34709 Class / Thickness / Grade :: > 5 Product Form Forgings Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 N Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange --------------------------------------------------------------------

Page 31: Lap Puspet II Rev

Element From Node 70 Element To Node 80 Element Type Flange Description top blind flange Distance "FROM" to "TO" 30.000 mm Flange Inside Diameter 740.00 mm Element Thickness 30.000 mm Internal Corrosion Allowance 0.0000 mm Nominal Thickness 30.000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 0.3000 MPa Design Temperature Internal Pressure 650 C Design External Pressure 0.0000 MPa Design Temperature External Pressure 650 C Effective Diameter Multiplier 1.2 Material Name SA-182 F347H Perform Flange Stress Calculation (Y/N) Y Weight of ANSI B16.5/B16.47 Flange 0.0000 N Class of ANSI B16.5/B16.47 Flange Grade of ANSI B16.5/B16.47 Flange

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2011

2.Internal Pressure Calculation Element Thickness, Pressure, Diameter and Allowable Stress :

| | Int. Press | Nominal | Total Corr| Element | Allowable | From| To | + Liq. Hd | Thickness | Allowance | Diameter | Stress(SE)| | | MPa | mm | mm | mm | MPa | --------------------------------------------------------------------------- btm blind| 0.3000 | 30.000 | ... | 740.00 | 53.945 | btm flange| 0.3000 | 55.000 | ... | 625.00 | 53.945 | channel tu| 0.3000 | 5.0000 | ... | 625.00 | 53.945 | shell side| 0.3000 | 5.0000 | ... | 625.00 | 147.10 | channel tu| 0.3000 | 5.0000 | ... | 625.00 | 53.945 | top flange| 0.3000 | 55.000 | ... | 625.00 | 53.945 | top blind| 0.3000 | 30.000 | ... | 740.00 | 53.945 |

Element Required Thickness and MAWP :

| | Design | M.A.W.P. | M.A.P. | Minimum | Required | From| To | Pressure | Corroded | New & Cold | Thickness | Thickness | | | MPa | MPa | MPa | mm | mm | ---------------------------------------------------------------------------- btm blind| 0.30000 | 1.16032 | 4.96440 | 30.0000 | No Calc | btm flange| 0.30000 | 1.40690 | 4.96440 | 55.0000 | No Calc | channel tu| 0.30000 | 0.85491 | 2.18542 | 5.00000 | 1.74377 | shell side| 0.30000 | 2.33122 | 3.74800 | 5.00000 | 1.50000 | channel tu| 0.30000 | 0.85492 | 2.18542 | 5.00000 | 1.74370 | top flange| 0.30000 | 1.40691 | 4.96440 | 55.0000 | No Calc | top blind| 0.30000 | 1.16034 | 4.96440 | 30.0000 | No Calc |

Summary of Heat Exchanger Maximum Allowable Working Pressures :

Note: The MAWPs and MAPs for the Exchanger elements all appear to be zero or some could not be calculated. Please fill these values in on the main tubesheet tab.

Internal Pressure Calculation Results :

Page 32: Lap Puspet II Rev

ASME Code, Section VIII, Division 1, 2010

Cylindrical Shell From 30 To 40 SA-240 347H at 650 C

channel tube inletLongitudinal Joint: Full Radiography per UW-11(a) Type 1Circumferential Joint: Full Radiography per UW-11(a) Type 1Material UNS Number: S34709

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (0.300*312.5000)/(53.95*1.00-0.6*0.300) = 1.7438 + 0.0000 = 1.7438 mm

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:Less Operating Hydrostatic Head Pressure of 0.000 MPa = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (53.95*1.00*5.0000)/(312.5000+0.6*5.0000) = 0.855 - 0.000 = 0.855 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (137.90*1.00*5.0000)/(312.5000+0.6*5.0000) = 2.185 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t) = (0.300*(312.5000+0.6*5.0000))/(1.00*5.0000) = 18.931 MPa

Percent Elongation per UHA-44 (50*tnom/Rf)*(1-Rf/Ro) 0.794 % Note: Please Check Requirements of Table UHA-44 for Elongation limits.

Cylindrical Shell From 40 To 50 SB-443 1 at 620 C

shell sideLongitudinal Joint: Full Radiography per UW-11(a) Type 1Circumferential Joint: Full Radiography per UW-11(a) Type 1

Material UNS Number: N06625

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (0.300*312.5000)/(147.10*1.00-0.6*0.300) = 0.6382 + 0.0000 = 0.6382 mm

Note: The thickness required was less than the Code Minimum, therefore the Code Minimum value of 1.5000 mm per UG-16 will be used.

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:Less Operating Hydrostatic Head Pressure of 0.000 MPa = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (147.10*1.00*5.0000)/(312.5000+0.6*5.0000) = 2.331 - 0.000 = 2.331 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (236.50*1.00*5.0000)/(312.5000+0.6*5.0000) = 3.748 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t) = (0.300*(312.5000+0.6*5.0000))/(1.00*5.0000) = 18.933 MPa

Cylindrical Shell From 50 To 60 SA-240 347H at 650 C

Page 33: Lap Puspet II Rev

channel tube outlet

Longitudinal Joint: Full Radiography per UW-11(a) Type 1Circumferential Joint: Full Radiography per UW-11(a) Type 1

Material UNS Number: S34709

Required Thickness due to Internal Pressure [tr]: = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (0.300*312.5000)/(53.95*1.00-0.6*0.300) = 1.7437 + 0.0000 = 1.7437 mm

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]:Less Operating Hydrostatic Head Pressure of 0.000 MPa = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (53.95*1.00*5.0000)/(312.5000+0.6*5.0000) = 0.855 - 0.000 = 0.855 MPa

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(R+0.6*t) per UG-27 (c)(1) = (137.90*1.00*5.0000)/(312.5000+0.6*5.0000) = 2.185 MPa

Actual stress at given pressure and thickness, corroded [Sact]: = (P*(R+0.6*t))/(E*t) = (0.300*(312.5000+0.6*5.0000))/(1.00*5.0000) = 18.930 MPa

Percent Elongation per UHA-44 (50*tnom/Rf)*(1-Rf/Ro) 0.794 % Note: Please Check Requirements of Table UHA-44 for Elongation limits.

Hydrostatic Test Pressure Results:

Exchanger Shell Side Hydrostatic Test Pressures:

Pressure per UG99b = 1.3 * M.A.W.P. * Sa/S 0.000 MPa Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S 0.627 MPa Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) 0.000 MPa Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S 0.000 MPa Pressure per PED = 1.43 * MAWP 0.000 MPa

Exchanger Channel Side Hydrostatic Test Pressures:

Pressure per UG99b = 1.3 * M.A.W.P. * Sa/S 0.000 MPa Pressure per UG99b[34] = 1.3 * Design Pres * Sa/S 0.997 MPa Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) 0.000 MPa Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S 0.000 MPa Pressure per PED = 1.43 * MAWP 0.000 MPa

Horizontal Test performed per: UG-99bStresses on Elements due to Hydrostatic Test Pressure:

From To Stress Allowable Ratio PressureElements Suitable for Internal Pressure.

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2011

3.TEMA Tubesheet CalculationInput Echo, TubeSheet Item 1, Description: tubesheet

Tubesheet Design Code TEMA Shell Desc. shell side Shell Design Pressure Ps 0.30 MPa Shell Temperature for Internal Pressure TEMPS 620.00 C Shell Material SB-443 1 Shell Material UNS Number N06625 Shell Allowable Stress at Temperature Sos 147.10 MPa

Page 34: Lap Puspet II Rev

Shell Allowable Stress at Ambient Sas 236.50 MPa Shell Thickness Ts 5.0000 mm Shell Corrosion Allowance Cas 0.0000 mm Inside Diameter of Shell Ds 625.000 mm Mean Metal Temperature for Shell Tm 250.00 C

Channel Desc. channel tube inlet Channel Design Pressure Pc 0.30 MPa Channel Temperature for Internal Pressure TEMPC 650.00 C Channel Material SA-240 347H Channel Material UNS Number S34709 Channel Allowable Stress at Temperature Soc 53.95 MPa Channel Allowable Stress at Ambient Sac 137.90 MPa Channel Thickness Tc 5.0000 mm Channel Corrosion Allowance Cac 0.0000 mm Inside Diameter of Channel Dc 625.000 mm Mean Metal Temperature for Tubes tm 356.10 C

Tube Design Temperature Tubtmp 650.00 C Tube Material SB-444 2 Tube Material UNS Number N06625 Is This a Welded Tube No Tube Material Specification used Smls. pipe & tube Tube Allowable Stress at Temperature Sot 131.94 MPa Tube Allowable Stress At Ambient Sat 184.10 MPa Tube Yield Stress At Operating Temperature Syt 201.33 MPa Tube Wall Thickness Tt 2.1107 mm Tube Corrosion Allowance Catt 0.0000 mm Number of Tubes Holes Ntubs 749 Tube Layout Pattern Square Tube Outside Diameter do 12.7000 mm Tube Pitch (Center to Center Spacing) PTube 19.0500 mm

Fillet Weld Leg af 0.0000 mm Groove Weld Leg ag 0.0000 mm Design Strength of Weld Fd 0.0000 N Tube-Tubesheet Joint Weld Type Seal/No Weld Is Tube-Tubesheet Joint Tested No Tube-Tubesheet Joint Classification i Tube Joint Reliability Factor fr 0.7000 Interface Pressure, after tube expansion Po 1.00 MPa Interface Pressure, due to diff. thermal exp. Pt 1.00 MPa

Total Straight Tube Length Lt 3150.000 mm Straight Tube Length, bet. inner tubsht faces RL 2650.000 mm Unsupported Tube Length for max. (k*SL) SL 500.0000 mm Tube end condition corres. to span (SL) k 0.8000 Length of Expanded Portion of Tube l 200.0000 mm Perimeter of Tube Layout PERI 1851.500 mm Area of Tube Layout AREA 258387.0 mm²

Tubesheet type: Fixed Tubesheet Exchanger Tubesheet Design Metal Temperature TEMPTS 650.00 C Tubesheet Material SB-446 2 Tubesheet Material UNS Number N06625 Tubesheet Allowable Stress at Temperature Sots 131.94 MPa Tubesheet Allowable Stress at Ambient Sats 184.10 MPa Thickness of Tubesheet Tts 250.0000 mm Tubesheet Corr. Allowance (Shell side) Cats 0.0000 mm Tubesheet Corr. Allowance (Channel side) Catc 0.0000 mm Depth of Groove in Tube Sheet hg 0.0000 mm TEMA Tubesheet class R

Additional Data for Fixed Tubesheet Exchangers Mean Metal Temperature for Tubesheet Tshm 403.05 C Run Multiple Load Cases for Fixed Tubesheets No Is this a Kettle-type configuration NoTubesheet Analysis, Tubesheet number 1,Description:tubesheet

Page 35: Lap Puspet II Rev

TEMA Standards, Eighth Edition, 1999, RCB-7 Tubesheets

TEMA R-7.131 Minimum Tubesheet Thickness for R-type: TMIN = MAX( do, CONST - ( CATS + CATC ) ) TMIN = MAX( 12.700 , 19.050 - ( 0.000 + 0.000 ) ) TMIN = 19.0500 mm Min. Thickness + CATS + CATC TREQMIN = 19.0500 mm

Shellside Fixity Factor, F, per RCB 7.132 FS 1.0000 Shellside Effective Diameter, per RCB 7.132 GS 625.000 mm Tubeside Fixity Factor, F, per RCB 7.132 FC 1.0000 Tubeside Effective Diameter, per RCB 7.132 GC 625.000 mm TEMA Eta factor used in calculation ETA 0.6511

Material Properties for Thermal Expansion Analysis:

Shell - TE-4 N06625Shell - TM-4 N06625 ----------------------------------------------------------------- Th. Exp. Coeff. Metal Temperature 250.0 C 0.0000132540 /C Elastic Mod. at Metal Temperature 250.0 C 0.19425E+06 MPa

Tubes - TE-4 N06625Tubes - TM-4 N06625 ----------------------------------------------------------------- Th. Exp. Coeff. Metal Temperature 356.1 C 0.0000134015 /C Elastic Mod. at Metal Temperature 356.1 C 0.18829E+06 MPa

TubeSheet - TE-4 N06625TubeSheet - TM-4 N06625 ----------------------------------------------------------------- Th. Exp. Coeff. Metal Temperature 403.0 C 0.0000135257 /C Elastic Mod. at Metal Temperature 403.0 C 0.18556E+06 MPa

Note: Iterating to compute the required Tubesheet Thickness

TEMA RCB-7.132 Required Thickness for Shellside Pressure [Trs]: = FS * GS * SQRT ( PSU / ( ETA * SOTS ) ) / 3.0 = 1.0000 * 625.0000 * SQRT( 2.41 / ( 0.6511 * 131 ) ) / 3.0 = 34.8802 mmTEMA RCB-7.132 Required Thickness for Tubeside Pressure [Trc]: = FC * GC * SQRT ( PTU / ( ETA * SOTS ) ) / 3.0 = 1.0000 * 625.0000 * SQRT( 2.26 / ( 0.6511 * 131 ) ) / 3.0 = 33.7696 mmTEMA RCB-7.132 Required Thickness for Bending + Cats + MAX(Catc, hg): [Treq] = 34.8802 mm

Note: Recomputing Eff. pressures (PTU, PSU) at given Tubesheet thickness.

TEMA RCB-7.161 J Factor for Thermal Expansion = 1.0 (No Expansion Jt.)

TEMA RCB-7.161 K Factor for Thermal Expansion 0.1941 TEMA RCB-7.161 Fq Factor for Thermal Expansion 1.3012 TEMA RCB-7.161 Differential Expansion / Length -0.15E-02

TEMA RCB-7.161 Equivalent Differential Thermal Expansion Pressure: PD = 4 * J * ES * TS * DLL / ( DOS - 3.0*TS ) * ( 1.0 + J * RK * FQ ) PD = 4 * 1.0000 * 194247 * 5.0000 * -0.0015 / ( 635.0001 - 3.0 * 5.0000 ) * ( 1.0 + 1.0000 * 0.1941 * 1.3012 ) PD = -7.282 MPa

TEMA RCB 7.163 Effective Shellside Design Pressure:TEMA RCB-7.163 FFs Factor for Shellside Design 0.6907 PSP1 = 0.4 * J * ( 1.5 + K * (1.5 + FFS ) ) = 0.4 * 1.0000 * ( 1.5 + 0.1941 * (1.5 + 0.6907 ) )

Page 36: Lap Puspet II Rev

PSP2 = ( ( 0.5 - J / 2.0 ) * ( DJ2 / G2 - 1.0 ) = ( ( 0.5 - 1.0000 / 2.0 ) * ( 625.0000 2 /625.0000 2 - 1.0 ) PSP3 = 1.0 + J * K * FQ = 1.0 + 1.0000 * 0.1941 * 1.3012 PSP = PS * ( ( PSP1 - PSP2 ) / PSP3 ) = 0.30 * ( ( 0.7701 - 0.0000 ) / 1.2526 ) PSP = 0.184 MPa

TEMA RCB-7.163 Effective Shell Side Design Pressure: PSU = Max (absolute) of PSP : 0.18 or PBS : 0.00 or ( PSP - PD ) / 2 : ( 0.18 - -7.28 ) / 2.0 or ( PSP - PD - PBS ) / 2 : ( 0.18 --7.28 -0.00 ) / 2.0 or ( PBS + PD ) / 2 : ( 0.00 + -7.28 ) / 2.0 or ( PSP - PBS ) : ( 0.18 - 0.00 ) PSU = : 3.733 MPaTEMA RCB 7.163 Shellside Shear Design Pressure, PBS=0: PSS = : 3.733 MPa

TEMA RCB 7.164 Effective Tubeside Design Pressure: TEMA RCB-7.164, FFt Factor for Tubeside Design 0.8622 PTP1 = 1.0 + 0.4 * J * K * ( 1.5 + FFT ) = 1.0 + 0.4 * 1.0000 * 0.1941 * ( 1.5 + 0.8622 ) PTP2 = 1.0 + J * K * FQ = 1.0 + 1.0000 * 0.1941 * 1.3012 PTP = PT * PTP1 / PTP2 = 0.30 * 1.1834 / 1.2526 PTP = 0.283 MPa

TEMA RCB-7.164 Effective Tube Side Design Pressure: PTU = Max (absolute) of : ( PTP + PBT + PD ) / 2 : ( 0.28 +0.00 +-7.28 ) / 2.0 or ( PTP + PBT ) : ( 0.28 + 0.00 ) PTU = : 3.499 MPaTEMA RCB 7.164 Tubeside Shear Design Pressure (PBT=0): PTS = : 3.499 MPaNo Shear Calculation, since Pressure is less than 23.4568 MPa

TEMA RCB-7.22 Shell Longitudinal Stress : Max. Effective Pressure for Longitudinal Stress, 7.298 MPaTEMA RCB-7.22 Maximum Shell Longitudinal Stress : STSMAX = PSSMAX * CS * ( DOS - TS )/( 4 * TS ) STSMAX = 7.30 * 0.50 * ( 635.0001 - 5.0000 ) / ( 4 * 5.0000 ) STSMAX = 115. MPaTEMA RCB-7.22 Allowable Shell Longitudinal Stress : STSALL = 147. MPa

TEMA RCB-7.23 Tube Longitudinal Stress Results : Max. Effective Pressure for Longitudinal Stress, 0.085 MPa Min. Effective Pressure for Longitudinal Stress, -7.307 MPa

TEMA RCB-7.23 Maximum Tube Long. Stress (Tension): STTMAX = PTTMAX*CT*FQ*G*G /(4*NTUBS*TT*(do-TT)) STTMAX = 0.08 *1.00 *1.30 *625.0000 *625.0000 / ( 4*749 *2.1107 *(12.7000 -2.1107 ) ) STTMAX = 0.64 MPa

TEMA RCB-7.23 Allowable Tube Long. Stress (Tension): STTALL = 131.94 MPa

TEMA RCB-7.23 Minimum Tube Comp. Longitudinal Stress : STTMIN = PTTMIN*CT*FQ*G*G/(4*NTUBS*TT*(do-TT)) STTMIN = -7.31 *1.00 *1.30 *625.0000 *625.0000 / ( 4*749 *2.1107 *(12.7000 -2.1107 ) ) STTMIN = -55.46 MPaTEMA RCB-7.24 Allowable Tube Compressive Stress : STTCOM = -SYT*(1-RKLR/(2*CC))/FSAF STTCOM = -201 * ( 1.0 -104.7801 / ( 2.0 *135.8691 ) ) / 2.00

Page 37: Lap Puspet II Rev

STTCOM = -61.85 MPa

TEMA RCB-7.25 Tube-To-Tubesheet Joint Load : Effective Pressure for Tube-to-Tubesheet Load : 0.085 MPa

TEMA RCB-7.25 Actual Tube-To-Tubesheet Load : WJ = PI * FQ * PTLOAD * G * G / ( 4.0 * NTUBS ) WJ = 3.14 * 1.30 * 0.085 * 625.00 * 625.00 / ( 4.0 * 749 ) WJ = 45.11 N

Allowable Tube-To-Tubesheet Load per ASME App. A [Lmax]: = (PI/4)*(DT²-(DT-2*TT)²)*SOT*fr*fe*fy*ft = .785*(12.700²-(12.700-2*2.1107)²)*131*0.70*1.00*1.00*2.00 = 12969.78 N

Summary of Tubesheet Results: ------------------------------------------------------------------------ Condition Req Thk Actual Thk Actual Allow Result (+CA) (mm) Stress (MPa) ------------------------------------------------------------------------ Bending 34.880 250.000 5.97 197.92 Ok ------------------------------------------------------------------------

Longitudinal stresses: -------------------------------------------------------------------- Compressive Tensile Condition Actual Allow Actual Allow Result -------------------------------------------------------------------- Shell 0.000 0.000 114.951 147.103 Ok Long Tubes -55.463 61.851 0.643 131.945 Ok Tube Load 45.115 12969.783 Ok -------------------------------------------------------------------- Equivalent Differential Ther. Expansion Pressure -7.2819 MPa Shellside Prime Pressure 0.1844 MPa Tubeside Prime Pressure 0.2834 MPa

Maximum Axial Differential Thermal Expansion between Shell and Tubes: Tube has higher Thermal growth (Exp. Jt. Extension) : +3.857 mm

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2011

4.Vessel Design SummaryDesign Code: ASME Code Section VIII Division 1, 2010

Diameter Spec : 625.000 mm ID Vessel Design Length, Tangent to Tangent 4846.00 mm

Distance of Bottom Tangent above Grade 0.00 mm Distance of Base above Grade 0.00 mm Specified Datum Line Distance 0.00 mm

Shell Material Specification SA-240 347H Shell Material Specification SB-443 1 Stiffening Ring Material Specification

Shell Side Design Temperature 620 C Channel Side Design Temperature 650 C

Shell Side Design Pressure 0.300 MPa Channel Side Design Pressure 0.300 MPa

Shell Side Hydrostatic Test Pressure 0.000 MPa Channel Side Hydrostatic Test Pressure 0.000 MPa

Wind Design Code ASCE-93 Earthquake Design Code UBC-94

Page 38: Lap Puspet II Rev

Element Pressures and MAWP: MPa

Element Desc | Design Pres. | External | M.A.W.P | Corrosion | + Stat. head | Pressure | | Allowance --------------------------------------------------------------------- btm blind flange 0.300 0.000 1.160 0.0000 btm flange 0.300 0.000 1.407 0.0000 channel tube inlet 0.300 0.000 0.855 0.0000 shell side 0.300 0.000 2.331 0.0000 channel tube outlet 0.300 0.000 0.855 0.0000 top flange 0.300 0.000 1.407 0.0000 top blind flange 0.300 0.000 1.160 0.0000

Liquid Level: 4426.00 mm Dens.: 0.000 kg/cm³ Sp. Gr.: 0.000

Stiffener Ring Specifications: Elevation mm Selected Type User Description 900.00 4049.96

Element "To" Elev Length Element Thk R e q d T h k Joint Eff Type mm mm mm Int. Ext. Long Circ ----------------------------------------------------------------------- Body Flg 30.0 30.0 30.0 No Cal ------- 1.00 1.00 Body Flg 85.0 55.0 55.0 No Cal ------- 1.00 1.00 Cylinder 900.0 815.0 5.0 1.7 ------- 1.00 1.00 Cylinder 3800.0 2900.0 5.0 1.5 ------- 1.00 1.00 Cylinder 4761.0 711.0 5.0 1.7 ------- 1.00 1.00 Body Flg 4816.0 55.0 55.0 No Cal ------- 1.00 1.00 Body Flg 4846.0 30.0 30.0 No Cal ------- 1.00 1.00

Element thicknesses are shown as Nominal if specified, otherwise are Minimum

Note: Wind and Earthquake moments include the effects of user defined forces and moments if any exist in the job and were specified to act (compute loads and stresses) during these cases. Also included are moment effects due to eccentric weights if any are present in the input.

Weights: Fabricated - Bare W/O Removable Internals 3341.9 kg Shop Test - Fabricated + Water ( Full ) 4476.3 kg Shipping - Fab. + Rem. Intls.+ Shipping App. 3341.9 kg Erected - Fab. + Rem. Intls.+ Insul. (etc) 3341.9 kg Empty - Fab. + Intls. + Details + Wghts. 3341.9 kg Operating - Empty + Operating Liquid (No CA) 3342.9 kg Field Test - Empty Weight + Water (Full) 4609.4 kg

PV Elite is a trademark of Intergraph CADWorx & Analysis Solutions, Inc. 2011

5.Perhitungan Hydrostatic Test Pressure : untuk shell side

Page 39: Lap Puspet II Rev

dibatasi oleh MAWP dari Nozzle shell inlet yaitu 1.062 MPa, maka hydrostatic test pressurenya adalah :

= 1.3 * MAWP * (Sa/S) = 1.3 * 1.062 * (137.9 / 53.95) = 3.529 MPa

Untuk channel sidedibatasi oleh MAWP dari channel tube inlet yaitu 0.85491 MPa, maka hydrostatic test pressurenya adalah :

= 1.3 * MAWP * (Sa/S) = 1.3 * 0.85491 * (2.556)

= 2.84 MPa

BAB II PRODUCTION DEPARTMENT

Page 40: Lap Puspet II Rev

Departemen produksi terdiri dari 3 unit, yaitu :1. Unit PPC (Production Planning Control)2. Unit Fabrication3. Unit PMS (Production Maintenance & Service)

Dimana bagan organisasinya dapat dilihat pada gambar 2.1. di halaman selanjutnya.

2.1. Unit PPCSesuai namanya unit ini terdiri dari 2 bagian yaitu Planning (Perencanaan Produksi) dan Control. Bagian Planning membuat perencanaan tentang :

1. Schedule General untuk fabrikasi2. Detail Fabrication Schedule3. Fabrication Sequence Diagram4. Equipment List

Sedangkan bagian Control :1. Membuat Machining List

Mengecek kesiapan mesin / peralatan agar tidak terjadi pemakaian ganda pada waktu yang bersamaan.

2. Mengecek Kesiapan teknologi (kemampuan kapasitas produksi)Dalam arti berdasarkan schedule pengerjaan proyek jika kapasitas equipment yang ada tidak mampu lagi menampung suatu pekerjaan atau jika teknologi yang dibutuhkan tidak dimiliki oleh perusahaan maka bisa dikerjakan di luar dalam bentuk subvendor. Penentuan subvendor ditentukan oleh bagian pengadaan barang.

3. Mengecek Aplikasi di lapangan Mengontrol kesesuaian schedule dengan aplikasi pengerjaan di lapangan.

4. Membuat rincian Man Hour dan Machine Hour

Selain itu Unit PPC ini juga membuat :1. Weekly progress report2. Weekly loading machine3. Machine Hour4. Workshop Loading

Kendala yang terjadi di unit ini adalah :- Untuk bagian planning terkadang adanya salah satu dokumen yang belum diapprove

sehingga harus menunggu untuk estimasi schedule pabrikasi- Oleh karena inventory tidak masuk menjadi bagian dari PPC, maka tidak dapat

mengontrol persediaan material sewaktu-waktu, dalam arti jika terjadi kekurangan material bagian ini selalu terkendala mengestimasi schedule produksi.

Page 41: Lap Puspet II Rev

PRODUKSI

PPC PFB PMS

PLANNING CONTROL MAINTENANCE SERVICE

STAFF STAFF

MEKANIKAL

ELEKTRIKAL

WELDING SECTION

ASSEMBLYPREPARATION

SECTIONCOORDINATOR

SHIFTAREA IN CHARGE

MARKING

CUTTING

MACHINING

SHIFT I

SHIFT II

WS III A

WS III B

STAFF

ADMIN

Gambar 2.1. Bagan Organisasi Departemen Produksi PT. Puspetindo

Page 42: Lap Puspet II Rev

2.2. Unit Production Fabrication (PFB) Unit ini bertugas dan bertanggung jawab dalam hal :1. Merangkai komponen sesuai drawing dari bagian Engineering2. Mengontrol penggunaan material las3. Mengontrol pengelasan selama fabrikasi sesuai WPS dan drawing4. Menentukan welder ahli dan operator welding5. Memelihara material sisa selama fabrikasi6. Melatih dan mengkualifikasi welder ahli dan operator welding7. Menerbitkan, memperbaharui, dan memelihara daftar kualifikasi welder dan operator

welding8. Memelihara daftar rincian keahlian welder dan operator welding9. Memelihara pelaksanaan safety10. Mengontrol lay out marking dan cutting material sesuai inspeksi, test plan dan

drawing11. Machining dan metal forming sesuai drawing dan prosedur

Unit ini memiliki 3 workshop, yaitu workshop I, workshop II, dan workshop III.

Workshop I Kemampuan handling 20 ton, terdapat berbagai mesin antara lain :1. bending machine2. bending roll machine 25mm3. bending press machine 500 ton (untuk ukuran yang lebih kecil)4. flanging (untuk membuat head)5. press machine6. milling machine 7. drilling machine8. dan area untuk fabrikasiSaat ini di workshop I terdapat proyek Exterran yaitu repair 2 unit HP suction bottle for EPF 3 Banyu Urip.

W orkshop II Kemampuan handling 5 ton, disini hanya terdapat area untuk fabrikasi.

Workshop IIILuas workshop ini adalah 50 x 200 meter dan dibagi menjadi 2 area yaitu III A dan III B. Area III A memiliki kemampuan handling 225 ton, 100 ton, dan 40 ton, sedangkan area III B memiliki kemampuan handling 40 ton (terdapat 3 buah crane) terdapat berbagai mesin antara lain :1. bending tube machine2. finning tube machine3. CNC (computerized numerical cutter) machine4. phototracing (memotong ukuran sesuai aslinya/menjiplak pola)5. bending press machine 3000 ton6. bending roll machine 120 mm7. mesin las (SAW, SMAW, GTAW, FCAW, dan GMAW) 8. Furnace PWHT 15x5x5 (T = 950°C) biasanya dipakai pada suhu 625°C 9. Furnace PWHT 24x8x8 (T = 800°C)10. CNC drilling (high speed 4x speed CNC yg pertama)

Page 43: Lap Puspet II Rev

Saat ini di workshop III sedang mengerjakan proyek :1. Ammonia Receiver Tank PUSRI2. Shell Kiln Semen Padang3. Retubing HPH-6 Unit 2 PJB paiton

Selain workshop juga terdapat Gantry area seluas 2500 x 200 m, dimana pada area ini terdapat crane 40 ton setinggi 25 meter. Kegunaan area ini adalah untuk asse,bling equipment yang panjangnya lebih dari 50 meter.

Jika terdapat sisa material (scrap) dari proyek maka ada batasan dalam prosentase untuk dijual atau dibuang ke gudang (ditentukan dari cutting plan).

Unit PFB (Production Fabrication) terbagi ke dalam berbagai seksi antara lain :

1. Welding Section :Unit ini bertanggung jawab terhadap pengerjaan pengelasan, yaitu :

1. Menetapkan dan menugaskan welder yang berkualifikasi untuk melakukan proses welding berdasarkan qualifikasi masing-masing dalam sebuah daftar qualifikasi welder (List of Welder Qualification) dan WPQ, serta memberikan instruksi dengan mengacu pada kebutuhan WPS.

2. Supervisi atau pengawasan terhadap welder.3. Menjelaskan kepada welder tentang spesifikasi syarat-syarat yang dijelaskan dalam

WPS.4. Semua pekerjaan pengelasan harus dimuat sesuai dengan WPS/WP yang telah

disahkan, dan welder ahli. Hal ini harus diverifikasi oleh bagian QC (Quality Control).

5. Masing-masing welder harus melampirkan identifikasinya selama pengelasan pada setiap interval maksimum 3 feet (0.9 meter) dengan stempel atau paint mark sebagai tanda identitas pengelasan secara jelas.

6. Tack weld pada bagian pressure harus dilakukan oleh welder ahli dengan menggunakan WPS yang telah terkualifikasi.Tack weld ini harus diuji secara visual untuk mendeteksi cacat dan harus dihilangkan jika cacat ditemukan.

Di bagian welding section ini terdapat welding consumables material dengan mengeluarkan bon consumables material (welding material bill) sebanyak 3 rangkap. Form ini dapat digunakan untuk melacak kebenaran identitas material untuk keperluan repair jika suatu saat terjadi suatu masalah, seperti contoh kebocoran pada bejana/vessel.

2. Assembly Section :Merangkai atau menyambung hasil kerja dari preparation section berdasarkan fabrication procedure yang diperoleh dari departemen engineering kemudian diserahkan ke bagian inspeksi (Quality Control) untuk pengecekan. Dan adakalanya dari assembly section ini dikembalikan ke welding section untuk dilas kembali dan dirangkai kembali di unit ini.

3. Preparation Section :Di unit ini terdiri dari 3 bagian yaitu :

1. Marking2. Cutting3. Machining

Page 44: Lap Puspet II Rev

Unit Marking bertugas untuk membuat pola pada material berdasarkan cutting plan yang diperoleh dari bagian engineering. Pada material terdapat transfer heat number yang berfungsi untuk identifikasi material. Pada bagian transfer heat number ini tidak boleh dipotong jika ada sisa dan harus ditulis kembali/ditransfer untuk pembedaan identitas dengan material-material yang lain.Unit Cutting bertugas untuk memotong material yang telah diberi pola oleh unit marking baik dengan cara manual atau dengan mesin potong CNC dan phototracer.Setelah melalui proses cutting ada yang dilanjutkan ke unit Machining seperti proses bending, rolling, dan forming sesuai prosedur dari engineering, dan jika tidak diperlukan proses machining maka bisa diteruskan ke Assembly section.Semua pekerjaan welding, assembly, dan preparation terus berkaitan satu sama lainnya dan continue dengan melibatkan inspeksi dari QC.

4. Coordinator Shift Section :Unit ini terdapat 2 orang yaitu satu orang bertugas menjadi coordinator shift I dan yang lainnya coordinator shift II.Tugas coordinator shift I adalah lebih melayani kebutuhan seksi welding, assembly, dan preparation, sedangkan pengawasan dilakukan oleh kepala seksi masing-masing.Sedangkan tugas coordinator shift II adalah melanjutkan dan mengawasi kinerja seksi welding, assembly, dan preparation karena pada shift II tidak ada kepala masing-masing seksi sehingga dengan adanya coordinator shift II dianggap sangat efektif.

5. Area in Charge Section :Seksi ini hanya terdapat pada workshop 3, dan area pada workshop 3 dibagi jadi 2 wilayah, sehingga area in charge section ada 2 bagian yaitu Workshop III A dan Workshop III B. Tugas seksi ini lebih kepada penguasaan keberadaan personel siapa saja yang bertugas menjalankan pekerjaan pada saat itu, sehingga mengetahui siapa person in charge pada waktu yang bersangkutan.

Secara sederhana tahapan produksi sebuah Vessel atau Equipment adalah :

- STRENGTHCALCULATION- DRAWING

CUTTING PLAN

PROSEDUR

FABRICATION &

INSPECTION

Gambar 2.2. Tahapan produksi equipment secara sederhana

Page 45: Lap Puspet II Rev

Sedangkan flowchart tahapan produksi secara keseluruhan adalah sebagai berikut :

Gambar 2.3. Tahapan produksi equipment secara menyeluruh

Page 46: Lap Puspet II Rev

Kendala yang terjadi di unit pabrikasi adalah :- Terkadang ada suatu prosedur pengelasan yang tidak sesuai dengan pengerjaan di

lapangan, akan tetapi hasil akhir yang didapat sesuai dan lolos inspeksi.- Terkadang welder salah ambil material las.- Cutting plan dari bagian engineering terkadang susah diterapkan di lapangan.

2.3. Unit Maintenance & Service

Unit ini terbagi menjadi 2 bagian yaitu :1. Maintenance elektrikal dan mekanikal (pemeliharaan mesin dan equipment)2. Service, dimana bagian ini juga bekerjasama dengan unit quality control dalam hal:

- Kalibrasi alat tes dan alat ukur serta memelihara dokumen hasil kalibrasi,- Heat Treatment (uji PWHT),- Pressure Testing (Hydrotest Pressure),- Painting, - dan handling untuk packing equipment.

Page 47: Lap Puspet II Rev

BAB III QUALITY CONTROL

Secara umum unit ini memiliki tugas dan tanggung-jawab dalam hal :1. Inspeksi penerimaan material2. In-process dan final inspection sesuai inspeksi dan test plan3. Memastikan penggunaan alat tes dan alat ukur yang terkalibrasi4. Menyediakan prosedur DE (destructive examination) / NDE (non-destructive

examination) 5. Melakukan NDE sesuai prosedur6. Memastikan NDE dilakukan oleh personal ahli NDE yang berkualifikasi7. Mengevaluasi hasil NDE8. Mengontrol safety dalam hal radiasi9. Memelihara praktek tertulis untuk pelatihan, qualifikasi, dan sertifikasi operator NDE

dan memastikan pelaksanaannya serta memelihara dokumen10. Menyaksikan tes mekanikal11. Menyaksikan dan meninjau kembali NDE di tempat subcontractor, jika dibutuhkan.12. Membuat dokumen dari hasil semua inspeksi (dimensi, penerimaan material, NDE,

dan welding).

Berikut adalah letak unit Quality Control dalam struktur organisasi :

QUALITY & SAFETY DEPARTMENT

DEPARTMENT HEAD

QUALITY ASSURANCE UNIT

UNIT HEAD

QUALITY CONTROL UNIT

UNIT HEAD

HEALTH & SAFETY SECTION

SECTION HEAD

Gambar 3.1. Struktur Organisasi Quality Department

Sedangkan unit QC sendiri dibagi menjadi 3 bagian yaitu :1. Preparation2. Assembly3. Testing

1. QC Preparation Saat penerimaan material, berdasarkan dokumen dari engineering terutama MR & MS (material requirement & material specification) QC preparation mengecek kesesuaian identifikasi material dengan sertifikat material yang didapat dari pabrik pembuat dengan mengacu pada standard dan code yang dipakai.Pengecekan ini meliputi cek dimensi material (mulai panjang, lebar, dan thickness), komposisi material dan uji mekanikal yang diperlukan.

Page 48: Lap Puspet II Rev

2. QC Assembly :Bagian ini melakukan :

1. cek aplikasi marking & cutting sesuai dengan general drawing2. cek dimensi setelah dilakukan rolling atau machining agar sesuai dengan spec data

sheet & drawing general3. cek masing-masing dimensi nozzle, dll

Standard yang umum dipakai dalam QC adalah ASME, yaitu :1. ASME section I : Boiler2. ASME section II : Material Specification3. ASME section V : Pemeriksaan NDE4. ASME section VIII : Acceptance criteria untuk NDE5. ASME section IX : Welder Qualfication

3. QC Testing :Dibagi menjadi 2 yaitu :

1. DT (Destructive Test), yang terdiri dari :a. hardness testb. impact test

2. NDT (Non Destructive Test), yang terdiri dari :a. magnetic particle test (MT)b. liquid penetrant test (PT)c. radiographic test (RT)d. ultrasonic test (UT)e. pneumatic test (uji kebocoran)f. eddy current test (khusus pipa)g. TOFD (time of flight difraction)

A. Destructive Testing Sesuai dengan namanya uji ini bersifat merusak material, maka dalam melakukan uji ini dilakukan dengan mengambil sebagian kecil specimen dari material yang akan diuji untuk mewakili sifat dari keseluruhan material.Hardness test : menguji kekerasan suatu material.Impact test : menguji kekuatan material dengan jalan menekan sampai bengkokBaik hardness test dan impact test mengacu pada ASME II.

B. Non Destructive Testing Uji ini tidak bersifat merusak material. Prosedur NDT diminta oleh clien biasanya tertera di dalam data sheet dan tidak semua NDT dilakukan untuk semua equipment. Standar umum yang dipakai untuk semua uji NDT adalah ASME V, ASME VIII, API, TEMA, dan spesifikasi dari clien. Diantara semua standard tersebut, spesifikasi yang diminta dari clien adalah yang paling diutamakan.

1. Magnetic Particle Test (MT)Atau uji untuk mengetahui cacat material atau luasan cacat dengan metode induksi magnet sesuai dengan metode ASME V artikel 7. Jika terdapat indikasi cacat atau untuk penerimaannya mengacu berdasarkan ASME VIII.Bagian yang diuji adalah :

- edge preparation (untuk tebal > 38mm biasanya dilakukan uji MT)- Hanya dilakukan terhadap material ferromagnetic saja

Page 49: Lap Puspet II Rev

- Jika MT tidak dapat dilakukan maka dilakukan Liquid Penetrant Test (PT) sebagai ganti

Uji MT sendiri ada 2 yaitu:a. Visible (cacat terdeteksi dengan adanya pergerakan atau garis-garis yang ditimbulkan

oleh serbuk besi / MPI ink)b. Fluorescent (cacat terdeteksi dengan adanya perpendaran cahaya dengan bantuan

sinar Ultra Violet)

Material untuk pengujian ini adalah :1. Field Gauge Indicator

Indikator ini digunakan untuk kalibrasi.

garis2 cacat buatan untuk indikasi garis gaya magnet

Gambar 3.2. Field gauge indicator2. Yoke

Merupakan instrument untuk menimbulkan medan magnet sehingga garis-garis gaya magnet bisa diidentifikasi dengan pemberian material yaitu :

a. WCP-2 (white contrast paint)b. MPI Ink (black magnetic ink) 7 HF (untuk visible test) dan 14 HF (untuk

fluorescent test) atau bisa dikatakan serbuk besi

kutub utara

kutub selatan

(1) (2)

Gambar 3.3. (1)Yoke (Magnaflux), (2) Material Uji MT WCP-2 & MPI-ink 7HF

Alat uji dan material tersebut dengan instrument uji harus berasal dari satu merk yang sama. PT. Puspetindo menggunakan merk Magnaflux.

Page 50: Lap Puspet II Rev

Berikut adalah skema pengujian MT :

U Scacat

garis gaya magnet yang timbul akibat adanya medan magnet yang diberikan oleh Yoke, garis gaya tersebut diperjelas setelah material disemprot dengan WCP -2 dan MPI ink

object uji

field gauge

semprotan WCP-ink

U S

(2) (2)

setelah disemprot dgn MPI-Ink terlihat adanya garis2 pada field gauge

(3)Gambar 3.5. Langkah kerja uji MT

Langkah kerja uji MT secara sederhana adalah :(1). Pertama-tama bersihkan material atau object uji, letakkan field gauge indicator diatas object uji yang diduga ada cacat lalu semprotkan WCP-2 diatasnya,(2). Letakkan Yoke (yang sudah dihubungkan dengan sumber listrik) dengan arah melintang seperti pada gambar, (3). Lalu semprotkan MPI-Ink 7HF, cacat terdeteksi jika ada pergerakan atau terbentuknya garis oleh serbuk besi tersebut yang terlihat pada field indicator (garis gaya yang terlihat adalah yang melintang terhadap arah garis kutub Utara-Selatan).

Setelah object dilakukan MT, maka harus di-demagnetisasi untuk menghilangkan sumber magnet yang telah tertinggal di object tersebut dengan jalan membalik kutub U menjadi S atau S menjadi U (membalik posisi Yoke berlawanan dengan posisi waktu uji), lalu menarik Yoke perlahan-lahan dan dilakukan berulang-ulang. Cara yang kedua adalah mengecilkan tegangan pada travo sumber listrik perlahan-lahan sesaat setelah dilakukan uji MT. Selain itu demagnetisasi bisa dilakukan dengan perlakuan PWHT (post weld heat treatment).

Demagnetisasi sangat penting dilakukan karena pada saat painting dilakukan, jika daya magnet masih tertinggal dalam object / material maka cat mudah akan pecah atau rusak.

Page 51: Lap Puspet II Rev

2. Liquid Penetrant Test (PT)Merupakan deteksi untuk cacat yang terbuka pada suatu material yang bersifat non-porous baik ferromagnetic maupun non-ferromagnetic. Uji PT ini mengacu pada standard ASME sect V artikel 6 dan sect VIII.PT sendiri terbagi menjadi 3 yaitu :

a. Visible (untuk surface yg areanya tidak terlalu besar) b. Waterwashable (untuk surface area yang besar dan lebar)c. Emulsion

Material yang digunakan untuk uji PT adalah :1. Penetrant SKL – SP1 (cairan berwarna merah)2. Developer SKD – S2 (berwarna putih)3. Cleaner / remover SKC – S

Gambar 3.6. material untuk uji PTSecara sederhana cara pengujian PT adalah:Bersihkan object yang akan diuji dengan menggunakan cleaner / remover sampai benar-benar bersih, lalu semprotkan penetrant pada brush dan oleskan pada object, dan biarkan selama 10 menit agar cairan penetrant ini meresap ke dalam permukaan. Setelah itu bersihkan kembali sampai benar-benar bersih (sampai warna merah tidak terlihat) dengan menggunakan kain yang berwarna putih. Semprotkan developer pada luasan object yang telah disemprot dengan penetrant, lalu cacat akan terdeteksi jika terdapat spot, crack, ataupun bintik-bintik berwarna merah. Agar tidak terjadi confuseness pada hasil uji PT maka permukaan object harus smooth. Batasan spot diameter min 4.6mm, jika melebihi maka harus segera direpair. Sedangkan jika berupa bintik-bintik merata, maka akumulasikan ukuran diameternya sepanjang 1 inchi jika melebihi 4.6mm maka harus segera direpair. Setelah selesai maka bersihkan kembali object dengan cleaner / remover.Berikut adalah skemanya :

surface material

cacat yang teridentif ikasi oleh cairan uji PT

surface material

cacat terbuka

pengujian PT

pore (cacat)

Gambar 3.7. Cacat yang teridentifikasi oleh uji PT

Page 52: Lap Puspet II Rev

3. Radiographic Test (RT)Merupakan uji untuk mendeteksi cacat pada surface, subsurface, dan internal dengan menggunakan radiasi dari sinar X atau sinar gamma. Sinar gamma yang umum digunakan adalah Iridium, Selenium, dan Cobalt. Dilihat dari sifatnya radiasi dari sinar X lebih berbahaya daripada dinar gamma karena massa peluruhan sinar X lebih lama daripada sinar gamma. Standard yang dipakai untuk uji RT adalah ASME sect V artikel 2 dan VIII. Uji radiografi ada 2 macam yaitu spot radiorafi dan full radiografi. Bagian yang dilakukan uji RT adalah pada bagian joint yang mengacu pada ASME sec VIII div I.Sedangkan untuk keperluan training personal RT ada 2 sumber yaitu :1. Negara, yaitu BATAN untuk perijinan personel yang terbagi menjadi 3 tingkat yaitu :

- PPR (petugas proteksi radiasi)- AR (ahli radiografi)- OR (operator radiografi)

2. ASNT, juga terdapat 3 tingkatan yaitu :- Level I yang setara dengan OR- Level II yang setara dengan AR- Level III

Batasan terpapar radiasi adalah minimal 1.5miliRad. Jika seseorang telah terpapar mencapai atau melebihi dari nilai ini maka orang tersebut harus ”diistirahatkan” sementara selama 1 bulan untuk tidak berinteraksi lagi dengan aktivitas uji radiasi.Material untuk uji RT ini terdiri dari :1. film, yang terbagi menjadi 3 kelas yaitu :

No jenis filmkesetaraan merk

AGFA Kodak Fuji harga1 tingkat kerapatan besar D7 AA x100 murah

2tingkat kerapatan sedang, 0.5x dari yg pertama

D4 M x1000 mahal

3tingkat kerapatan kecil, 0.25x dari yang kedua

D3 M x1000lebih

mahal

Kualitas dari film ini harus :- bebas fogging- bebas process defect, dan watermark- tidak terdapat bekas guratan, crimp mark, dirtiness, dan static, sehingga untuk

mengambil film baru dari tempatnya harus diangkat perlahan-lahan tidak boleh ditarik sehingga menimbulkan bekas gesekan.

- bebas cacat lainnya sehingga menyebabkan false indication2. image quality indicator (IQI), ada 2 jenis yaitu tipe kawat dengan diameter tertentu,

dan plat yang memiliki diameter hole tertentu. Sensitivity dari IQI ini menunjukkan kemampuan kawat untuk mendeteksi cacat sampai pada diameter yang paling terkecil.

Gambar 3.8. IQI jenis kawat

Page 53: Lap Puspet II Rev

3. location marker yang terbuat dari material Pb (timbal)4. densitometer (alat untuk cek kehitaman suatu film). Maximum density untuk x-ray

adalah 1,8 – 4, dan 2 – 4 untuk gamma ray. Sedangkan untuk film komposit (film yang ditumpuk) adalah 1,3.

5. viewer (alat untuk membaca film)

Standar acceptance untuk hasil RT mengacu pada :1. ASME sec 8 Div I part UW – 51 untuk full radiografi2. ASME sec 8 Div I part UW – 52 untuk spot radiografiSystem identifikasi hasil RT harus tertera dengan jelas hal-hal berikut:

- nama fabrikator- nama proyek- jenis sambungan las- thickness material- IQI yang dipakai- Welder identification- Welding process (SAW, SMAW, GTAW, dll)- Interest area- Tanggal uji

Saat pengujian dilakukan jarak tumpukan film dari satu ke lainnya adalah 1 inchi, berikut adalah skemanya :

0 1 2 3

1" 1" 1"

object yg diuji

film

Sedangkan skema pengujian adalah :

4. Ultrasonic Test Merupakan pengujian ultrasonic dengan teknik piso-elektrik yang mengacu pada standard ASME section V artikel 4 dan ASME VIII.UT ini dilakukan pada area joint nozzle to shell, channel, dan head, serta area dimana RT tidak bisa dilakukan, seperti pada area closing joint.Instrument yang digunakan untuk UT ada 2 macam yaitu manual (analog) dan digital.Kalibrasi alat uji UT manual dilakukan setiap 3 bulan sekali, dan 1 tahun sekali untuk UT digital. Yang dikalibrasi adalah :1. screen height linearity yang mengacu pada ASME sec V artikel 42. amplitude control linearity yang juga mengacu pada ASME sec V artikel 4Pengujian ini dilakukan dengan menggunakan probe dengan frekuensi 1 – 5MHz, dan couplant (penghantar) biasanya dipakai CMC (carboxy methyl cellulose), oil SAE, atau gliceryn. Penggunaan oil sebagai couplant karena dari sisi cleaning lebih merepotkan (misal perlu chemical lain untuk menghilangkan bekas oil tersebut) daripada CMC dan gliceryn (karena cukup dibersihkan dengan air saja).Jenis probe yang digunakan ada 2 macam yaitu probe sudut (yang dipakai biasanya ada 3 yaitu 45°, 60°, 70°) dan probe normal (lurus).

Page 54: Lap Puspet II Rev

Sebelum probe digunakan, maka harus dikalibrasi terlebih dahulu dengan menggunakan calibration block yaitu :1. type V12. type V23. step wap4. DAC

5. block dengan bentuk lingkaran untuk diameter > 500mm, dan < 500 mm.

Berikut adalah contoh calibration block :lubang cacat buatan dengan dia 15 mm

reflector utk cek sudut

(1)

thickness

cacat buatan pada kedalaman t

(2) (3)Gambar 3.9. bentuk calibration block (1) V1, (2) step wap, (3) DAC

Material untuk calibration block yang digunakan ada 2 :- similar weld material (sama dengan material object yang akan diuji)- dissimilar weld material (digunakan material yang jenisnya paling sulit, jika beda

ketebalan maka dilakukan dari yang paling tipis dahulu. Dan object adalah material cladding, maka block juga harus di-clad dengan prosedur yang sama)

Kualitas dari block harus bagus.Jika object material dilakukan PWHT (post weld heat treatment), maka block juga harus di-PWHT.

5. Pneumatic testAtau yang disebut dengan test kebocoran, dimana suatu equipment diisi dengan angin lalu pada bagian joint disemprot dengan air sabun, jika timbul gelembung maka didaerah tersebut terindikasi adanya kebocoran maka harus segera dilakukan repair.

Setelah uji diatas, tugas QC testing selanjutnya adalah bersama-sama dengan bagian service (PMS Unit) untuk melakukan :1. PWHT (post weld heat treatment)

Merupakan perlakuan pemberian panas pada suatu material atau equipment pada suhu tertentu dengan menggunakan furnace. Standard perlakuan PWHT yang digunakan mengacu pada ASME sec VIII div 1.Hal ini dilakukan untuk mengurangi konsentrasi tegangan sisa atau stress yang masih tertinggal akibat proses pengelasan, ataupun bekas area uji MT (magnetic particle test).

Page 55: Lap Puspet II Rev

Spesifikasi furnace yang digunakan PT. Puspetindo adalah :1. Furnace type : Modular Furnace with 6 LPG burners2. Thermometer recorder : Max. available 12 thermocouples connected to

automatic time temperature chart recorder3. Dimensions : 15500 mm x 5400 mm x 5400 mm4. Maximum operating Temp. : 950 °C5. Maximum furnace load – Weight : 150 Ton

PWHT dilakukan terhadap :1. semua material carbon steel yang memiliki carbon content minimal 0,3% 2. semua material carbon steel yang memiliki thickness 1 inch meskipun carbon

contentnya <0,3%3. material khusus karena digunakan untuk proses panas dan dingin4. PWHT dilakukan terhadap equipment yang telah difabrikasi lengkap dimasukkan

ke dalam sebuah furnace, dimana pada bagian tertentu ditempelkan sebuah termocouple yang berjumlah 6 buah (lokasi mengikuti geometri dari equipment). Perekaman data PWHT dilakukan pada saat temperature termocouple yang terbaca pada layar mencapai angka 425°C sampai pada batasan suhu yang diijinkan sesuai dengan sifat dan jenis material itu sendiri, dan pada angka tersebut ditahan selama minimal 15 menit, lalu diturunkan perlahan sesuai dengan prosedur PWHT.

Berikut adalah contoh kurva PWHT :

Gambar 3.10. Kurva PWHT

2. Hidrostatic TestUji ini mengikuti standard ASME sec VIII div 1.Hal yang harus sudah dilakukan sebelum hidrotest adalah :

1. uji NDE 2. inspeksi dimensi equipment3. tes kebocoran udara untuk reinforcement pad pada 50 psig4. inspeksi pengelasan visual5. fabrikasi lengkapUntuk test pressure yang lebih dari 568,9 psig, pemberian tekanan dilakukan secara gradual (bertahap) dengan jeda 10 menit, tahapan tekanan yang direkomendasikan adalah :- 0 – 1/3 P- 1/3 P – 2/3 P- 2/3 P – P

Page 56: Lap Puspet II Rev

Tekanan maksimum yang digunakan adalah 1.3 MAWP yang merupakan hasil dari strength calculation.Berikut adalah kurva uji hydrotest :

Gambar 3.11. Kurva Hydrotest

Setelah melewati tekanan MAWP baru yang dilakukan adalah :1. cek kesesuaian pressure indikator apakah bekerja sesuai range.2. cek kebocoran dari equipment3. cek peregangan material yang menyebabkan material berubah dimensi atau tidak.4. cek kekuatan komponen material dalam arti apakah pada tekanan yang diberikan

terjadi baut lepas, atau ring dan komponen lainnya lepas.5. Dalam konteks tangki / vessel, untuk menguji pondasi apakah turun dari posisi

semula atau tidak karena adanya gaya berat sebuah volume yang bekerja pada tangki tersebut.

Masalah-masalah yang terjadi saat testing dilakukan diantaranya terbagi menjadi 2 yaitu masalah teknis dan non teknis.Masalah teknis diantaranya adalah :

1. Sering terjadi deformasi pengelasan akibat kesalahan pelaksanaan sequence (urutan) pengelasan karena operator tidak memperhatikan faktor pre-heat dan post heat.

2. Pemasangan support brassing yang salah karena dilas pada kedua sisi sehingga menimbulkan bekas pada bagian yang ditempeli oleh support brassing tersebut yang berpotensi cacat ataupun bentuk-bentuk deformasi lainnya dan mengakibatkan repair.

Dan masalah yang terjadi kebanyakan bersumber dari non-teknis, seperti :1. psikologis pekerja, dimana emosi pekerja sangat mempengaruhi kualitas hasil kerja,2. kesalahan transfer info urutan maupun hasil pekerjaan pada shift I ke shift berikutnya

maupun sebaliknya (hal ini dikarenakan susunan sistem manajemen),3. adanya kebijakan manajemen yang menuntut penghematan di segala bidang seperti

penggunaan material karena harganya murah tapi dengan thickness melebihi spesifikasi dari MR/MS sehingga terpaksa dilakukan penipisan material, dan pemakaian support brassing carbon steel pada material stainless steel,

4. dan lain-lain.

Setelah melakukan Testing, maka tahap selanjutnya kembali pada QC assembling yang mencakup painting dan packing yang bekerjasama dengan unit Service (PMS).Pada inspeksi painting dilakukan pengecekan terhadap thickness paint sudah benar (sesuai yang dituliskan di prosedur) atau tidak, dan cek ada tidaknya gelembung dalam paint (holiday test).Pada inspeksi packing, dilakukan pengawasan tata cara packing sesuai dengan prosedur dari bagian PPC (production planning control).Setelah semua dilakukan, maka tugas selanjutnya adalah membuat manufacturing data report yang dilakukan oleh QA (Quality Assurance).

Page 57: Lap Puspet II Rev

BAB IV PRODUCTION & FABRICATION HEAT EXCHANGER

Dalam bab ini dijelaskan tentang contoh produksi dan pabrikasi Heat Exchanger secara umum dan untuk itu diambil contoh proyek PUSRI yaitu Ammonia Recovery Absorber yang telah selesai pada akhir tahun 2009. Sesuai tahapan produksi pada bab II di atas maka produksi Heat Exchanger tersebut dapat dilihat pada halaman selanjutnya.

Page 58: Lap Puspet II Rev

Berikut adalah As Built Drawingnya :

Gambar 3.1. As Built Drawing General Arangement & Detail Heat Exchanger

Page 59: Lap Puspet II Rev

Gambar 3.2. As Built Drawing Name Plate & Bracket Detail

Page 60: Lap Puspet II Rev

Gambar 3.3. As Built Drawing Pass Partition & Cover Detail

Page 61: Lap Puspet II Rev

Gambar 3.4. Cutting Plan Detail

Page 62: Lap Puspet II Rev

Gambar 3.5. Cutting Plan Pipe

Page 63: Lap Puspet II Rev

Gambar 3.6. Cutting Plan Plate

Page 64: Lap Puspet II Rev

A. Prosedur FabrikasiProsedur Fabrikasi (Fabrication Procedure) untuk project JE 090700 adalah sebagai berikut :A. Receiving Inspection of Material

1. Material CertificateAll materials containing pressure part and all internal part materials shall have mill certificate issued by mill maker or inspection agencies. Material certificate shall identify charge no. and/or heat no. of material. It shall contain following states:a. Chemical compositions.b. Mechanical properties.c. Dimension.d. Other tests as specified by applicable codes / standard and material

specification.2. Material Inspection

All received material shall be checked by QC inspector includes the following :a. Visual check.b. Dimensional check.c. Conforming to material specification and material certificate.

3. StoringMaterial shall be stored in appropriate place and gives clear identification by mean of label (for small parts) and color mark / lettering (for plates, pipes, tubes, bars, etc.).

B. Marking and Cutting1. Marking and mark shift

Prior to cut material plates, pipes, tubes, bars, etc. they shall be layout marking and material identification (heat number / charge number and material quality) shall be transferred to each parts by low stress stamping, sharp hard stamping shall not be acceptable.

2. Marking checkPrior to cut, QC shall inspect the marking to conform with cutting plan and ensure correct dimension and the material identification is transferred properly.

3. CuttingPlates, pipes, tubes, bars shall be cut by using saw or gas cutting. For retaining plate material, shear cutting shall not be utilized.

4. DrillingBaffle plate shall be drilled as per approved drawing.

C. Bending of TubeTube shall be cold bending to perform U-tube as per required dimension. For tube flowed by fluid that contain Caustic, Chlor and its similar shall be stress relieved after bending.U-tube shall be of one piece construction. The following examination shall be conducted for U-Bend Tube :- Flattening- Bend Radius- Crimping

Page 65: Lap Puspet II Rev

1. Tolerance Plane Bend for U-tubeAfter bend tube dimension shall not exceed the following tolerances:

Location of measurement Tolerances

Straight leg portion

Outside diameter ( D ) ± 0.10 mm.

Wall thickness ( t ) ± 10 %.

Straight leg ( SL ) + 3.2 mm : - 0 , Exclude cut after bend.

Leg spacing ( P )± 1.0 mm ( R < 5do ). ± 1.5 mm ( R > 5do ).

U - bend portion

Reduction of Wall thickness ( to )

Reduction thickness in bend portion shall not exceed 17% of original tube wall thickness.

Flattening10 % for 1.5do <R< 2do. 6 % for R> 2do.

Deviation ( s )Measurement from the point of tangency 1.5 mm.

2. List of U-Tube

Page 66: Lap Puspet II Rev

D. Tube to tubesheet expansion1. Outside surface of tube, edge of inside tube and tubesheet holes shall be

thoroughly cleaned to remove any foreign particle/material.2. After assembly tube to tubesheet, the edge of tube shall be arranged using wooden

hammer.3. Hydraulic expand shall be carried out to the required depth of tube using the wall

reduction ratio percentages as procedure.4. Tube to tubesheet expansion shall be performed by hydraulic expand as per ‘Tube

to Tubesheet Expansion Procedure’. The document to be submitted separately.E. Welding

1. Welder qualificationWelders and welding operators shall be qualified as per Section IX ASME Code and to be certified by DEPNAKER.

2. Welding Procedure shall be performed as per WPS / PQR which shall be qualified in according with Section IX of ASME Code.

3. Edge preparation and joint preparation for welding joint may be made by machining or gas cutting. When gas cutting is performed, the joint surface shall be ground to obtain sound metal. It shall be a curtained that shapes and dimensions of edges to be joined are as per approved drawing. Tolerance of weld joint preparation unless noted in approved drawings the following tolerance are to be considered satisfactorily.a. Groove angle ± 5°b. Root gap ± 2.0 mmc. Alignment of section at edge per UW 33 ASME Section VIII Div.1 :

Note : “ t “ is nominal thickness of the thinner section at the joint.4. Tack welding

Tack welds shall be made to a qualified welding procedure and by approved welders. Tack weld shall be completely removed prior to welding.

5. Temporary weldingTemporary welds for temporary handling attachments, lug, etc. shall be minimized. When temporary welding is deemed necessary, welding shall be performed with the same approved procedures as for main fabrication welding and shall be done by approved welders. The temporary welds shall subsequently be ground flush and then inspected by liquid penetrant test. The method of removing attachments shall not injure the metal surface (i.e. removing by hammering off is not permitted).

6. Prior to start welding, QC shall check the edge preparation and cleanliness of edge. All surfaces to be welded shall be visually inspected to ensure free from lamination or other injurious defect.

Page 67: Lap Puspet II Rev

7. After completion of welding the spatters or slag shall be removed by wire brush or grinding. Visual inspection shall be performed to the surface of weld and it should meet the following allowance :a. The joint shall have completed penetration and full fusion.b. Crack or pit : nonec. Undercut : noneThe thickness of reinforcement on each side of all butt welded joint is as per UW-35 ASME Section VIII Div.1 as follow :

8. Repair of welding defectsAny rejectable discontinuities found in the welding on visual and nondestructive examination shall be repaired. The repair shall be done according to repair procedure by welding that is described in “Welding Procedure” separately submitted.

F. Nondestructive Examination1. Visual inspection

The complete welded shell shall be visually inspected to ensure no harmful defect. Inspection shall include the followings :- Visual appearance of the weld bead (under cut, porosity, bead overlap, spatter,

objectionable form, arc strikes, etc).- Any defect on surface of material.- Dent or deformation.- Height of weld bead.- Alignment of weld joint.

2. Liquid Penetrant test (PT)Liquid Penetrant test shall be done as per “Liquid Penetrant Procedure".Part to be examined.- Back Chipping, if done.- Tube to tube sheet welds before PWHT.- Weld overlay if any before PWHT.- Nozzle and Manhole neck to Vessel attachment welds (for non ferromagnetic

material) before PWHT.- All areas where temporary lugs have been removed shall be ground flush. (for

non ferromagnetic material) before PWHT.G. Dimensional Inspection

The manufacture shall prepare dimensional inspection data for the equipment. Dimensional check shall conform to permissible tolerance as per tolerance and approved drawing.

Page 68: Lap Puspet II Rev

H. Hydrostatic TestApplication of pressure :1. Application Pressure for the Heat exchanger shall be increased slowly and a quick

change of the pressure shall be avoided (as per pressure chart attached).2. Pressurization shall be gradual, for test pressures higher than (568.9 Psi G) 40

kg/cm2, pressurization shall be in stages, with a pause of a 10 minutes between stages. Pressurization stages is recommended to use as following:- 0 to 1/3 P- 1/3 P to 2/3 P

- 2/3 P to P

3. There after, the pressure shall be gradually increased up to the required test pressure with holding time of 60 minutes for required test pressure.

4. The visual examination for leakage shall be made for all connections and welded seam at pressure as per sketch. During visual examination, the pressure shall be held sufficiently for which will be performed by inspection PSP and client inspection.

5. After the visual inspection examination, the pressure test reduced slowly to zero (0) through the vent.Note: a. Leakage from temporary seals shall be directed away to as to avoid masking leaks from other joints.

Page 69: Lap Puspet II Rev

Gambar 3.7. Skema uji hidrotestI. Transportation Style

After completing for manufacturing, the shipping preparation shall be carried out in accordance to Transportation Style. Rust prevention shall be performed by Nitrogen gas purging.

J. Fabrication SequenceDiagram urutan fabrikasi dapat dilihat pada gambar 3.8.

Page 70: Lap Puspet II Rev

Gambar 3.8. Fabrication sequence diagram

Page 71: Lap Puspet II Rev

BAB IV RENCANA KEGIATAN SELANJUTNYA

Rencana kegiatan selanjutnya adalah melanjutkan tugas yang telah diberikan yaitu membuat sebuah panduan design sizing Heat Exchanger dan Test Separator.

Page 72: Lap Puspet II Rev

DAFTAR PUSTAKA

Engineering Department. 2009. Fabrication & Inspection Procedure JE 090700. Replacement of Ammonia Converter Effluent / BFW Exchanger ordered by PT. PUPUK SRIWIDJAJA.Puspetindo. 2010. Quality Control Manual For Shop Construction and field assembly of Boilers, Pressure Vessels & Heat Exchangers in accordance with : ASME Boiler & Pressure Vessel Code Section I, VIII Div. 1 & 2 ASME B31.1 and Repair & Alteration of Pressure Retaining Items in Accordance with National Board Inspection Code (NBIC). Document No : QCM – P – 01. Gresik.www.wikipedia.com

Page 73: Lap Puspet II Rev

Kegiatan Harian di PT. PUSPETINDO bulan Kedua

NO URAIAN KEGIATANOktober Nopember

12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11

1 membuat laporan                                                              

2 rapat project lengowangi + buat laporan                                                              

3 excel lengowangi + buat laporan                                                              

4 ke marketing dpt PQCM                                                              

5Penjelasan tentang marketing global oleh P. Eddy A.                                                              

6 tutorial hysys utk HE                                                              

7 laporan                                                              

8 kunjungan pusbindiklat bppt                                                              

9 strength calc HE                                                              

10Prod & fabrication HE (sequence diagram, dll)                                                              

11Pengerjaan Laporan bulan kedua dan revisi bulan pertama                                                              

Page 74: Lap Puspet II Rev