kuliah xrd mr

260

Click here to load reader

Upload: ilma-inaroh-azizah

Post on 22-Jul-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Bahan Ajar Kuliah XRD-Spektroskopi Anorganik

TRANSCRIPT

Page 1: Kuliah Xrd Mr

Analisis Difraksi Sinar-X

(X-Ray Diffraction Analysis)

Page 2: Kuliah Xrd Mr

Crystal Structure

LATTICE = Kisi susunan titik dalam ruang yang memiliki lingkungan identik antara

satu dengan lainnya

CRYSTAL STRUCTURE = Susunan atom (kelompok atom) yang berulang .

It can be described by associating with each lattice point

a group of atoms called the MOTIF (BASIS)

Page 3: Kuliah Xrd Mr

Primitive Cell: simplest cell, contain one lattice point

Not necessary have the crystal symmetry

UNIT CELL = The smallest component of the crystal, which when

stacked together with pure translational repetition reproduces the

whole crystal

Page 4: Kuliah Xrd Mr

5 Kisi Bravais dalam 2D

P P NP

Page 5: Kuliah Xrd Mr

Definition:

Bravais Lattice: an infinite array of discrete points with an

arrangement and orientation that appears exactly the same from

whichever of the points the array is viewed.

Name

Number of Bravais lattices

Conditions

Triclinic

1 (P)

a1 a2 a3

Monoclinic

2 (P, C)

a1 a2 a3

= = 90°

Orthorhombic

4 (P, F, I, A)

a1 a2 a3

= = = 90°

Tetragonal

2 (P, I)

a1 = a2 a3

= = = 90°

Cubic

3 (P, F, I)

a1 = a2 = a3

= = = 90°

Trigonal

1 (P)

a1 = a2 = a3

= = < 120° 90°

Hexagonal

1 (P)

a1 = a2 a3

= = 90°

= 120°

3D: 14 Bravais Lattice, 7 Crystal System

Page 6: Kuliah Xrd Mr

Kisi FCC

Logam Cu memiliki kisi face-centered cubic Atom-atom identik terletak pada sudut dan pada bagian muka kisi

Jenis Kisi adalah type F

also Ag, Au, Al, Ni...

Page 7: Kuliah Xrd Mr

BCC Lattice

-Fe merupakan sebuah kisi body-centered cubic

Atom-atom Identik terletak pada sudut dan body center (nothing at face centers)

Lattice type I

Also Nb, Ta, Ba, Mo...

Page 8: Kuliah Xrd Mr

FCC Lattices

Sodium Chloride (NaCl) - Na is much smaller than Cs

Face Centered Cubic

Rocksalt structure

Lattice type F

Also NaF, KBr, MgO….

Page 9: Kuliah Xrd Mr

Unit cell contents Counting the number of atoms within the unit cell

Many atoms are shared between unit cells

Page 10: Kuliah Xrd Mr

Atoms Shared Between: Each atom counts:

corner 8 cells 1/8

face center 2 cells 1/2

body center 1 cell 1

edge center 4 cells 1/4

lattice type cell contents

P 1 [=8 x 1/8]

I 2 [=(8 x 1/8) + (1 x 1)]

F 4 [=(8 x 1/8) + (6 x 1/2)]

C

2 [=(8 x 1/8) + (2 x 1/2)]

Page 11: Kuliah Xrd Mr

e.g. NaCl

Na at corners: (8 1/8) = 1 Na at face centres (6 1/2) = 3

Cl at edge centres (12 1/4) = 3 Cl at body centre = 1

Unit cell contents are 4(Na+Cl-)

Page 12: Kuliah Xrd Mr
Page 13: Kuliah Xrd Mr

CRYSTAL STRUCTURE

DETERMINATION BY X-RAY DIFRACTION (XRD)

Page 14: Kuliah Xrd Mr
Page 15: Kuliah Xrd Mr
Page 16: Kuliah Xrd Mr
Page 17: Kuliah Xrd Mr
Page 18: Kuliah Xrd Mr
Page 19: Kuliah Xrd Mr
Page 20: Kuliah Xrd Mr
Page 21: Kuliah Xrd Mr
Page 22: Kuliah Xrd Mr
Page 23: Kuliah Xrd Mr
Page 24: Kuliah Xrd Mr
Page 25: Kuliah Xrd Mr
Page 26: Kuliah Xrd Mr
Page 27: Kuliah Xrd Mr
Page 28: Kuliah Xrd Mr
Page 29: Kuliah Xrd Mr
Page 30: Kuliah Xrd Mr
Page 31: Kuliah Xrd Mr
Page 32: Kuliah Xrd Mr
Page 33: Kuliah Xrd Mr
Page 34: Kuliah Xrd Mr
Page 35: Kuliah Xrd Mr
Page 36: Kuliah Xrd Mr
Page 37: Kuliah Xrd Mr
Page 38: Kuliah Xrd Mr
Page 39: Kuliah Xrd Mr
Page 40: Kuliah Xrd Mr
Page 41: Kuliah Xrd Mr
Page 42: Kuliah Xrd Mr
Page 43: Kuliah Xrd Mr
Page 44: Kuliah Xrd Mr
Page 45: Kuliah Xrd Mr
Page 46: Kuliah Xrd Mr
Page 47: Kuliah Xrd Mr

Bravais lattices Crystals possess a regular, repetitive

internal structure. The concept of symmetry

describes the repetition of structural features.

Symmetries are most frequently used to classify the

different crystal structures. In general one can generate 14

basic crystal structures through symmetries. These are called

Bravais lattices. Any crystal structures can be reduced to one

of these 14 Bravias lattices.

Page 48: Kuliah Xrd Mr
Page 49: Kuliah Xrd Mr
Page 50: Kuliah Xrd Mr
Page 51: Kuliah Xrd Mr
Page 52: Kuliah Xrd Mr
Page 53: Kuliah Xrd Mr
Page 54: Kuliah Xrd Mr
Page 55: Kuliah Xrd Mr
Page 56: Kuliah Xrd Mr
Page 57: Kuliah Xrd Mr
Page 58: Kuliah Xrd Mr
Page 59: Kuliah Xrd Mr

CRYSTAL STRUCTURE DETERMINATION

The determination of an unknown structure

proceeds in three major steps:

1. The shape and size of the unit cell are deduced

from the angular positions of the diffraction

lines.

2. The number of atoms per unit cell is then

computed from the shape and size of the unit cell,

the chemical composition of the specimen, and

its measured density.

3. Finally, the position of the atoms within the unit

cell are deduced from the relative intensities of

the diffraction

Page 60: Kuliah Xrd Mr

Size and Shape of the Unit Cell This step is same as the indexing of power diffraction pattern. It involves: • The accurate determination of peak positions. • Determination of the unit cell parameters from the peak positions.

Bragg’s Law Interplanar d-spacing Systematic Absences

Page 61: Kuliah Xrd Mr

Bragg's Law When x-rays are scattered from a crystal lattice, peaks of scattered intensity are observed which correspond to the following conditions: 1. The angle of incidence = angle of scattering.

2. The pathlength difference is equal to an integer number of

wavelengths. The condition for maximum intensity contained in Bragg's

law above allow us to calculate details about the crystal structure, or if the crystal structure is known, to determine the wavelength of the x-rays incident upon the crystal.

Page 62: Kuliah Xrd Mr
Page 63: Kuliah Xrd Mr
Page 64: Kuliah Xrd Mr
Page 65: Kuliah Xrd Mr
Page 66: Kuliah Xrd Mr
Page 67: Kuliah Xrd Mr
Page 68: Kuliah Xrd Mr
Page 69: Kuliah Xrd Mr
Page 70: Kuliah Xrd Mr
Page 71: Kuliah Xrd Mr
Page 72: Kuliah Xrd Mr
Page 73: Kuliah Xrd Mr
Page 74: Kuliah Xrd Mr
Page 75: Kuliah Xrd Mr
Page 76: Kuliah Xrd Mr
Page 77: Kuliah Xrd Mr
Page 78: Kuliah Xrd Mr
Page 79: Kuliah Xrd Mr
Page 80: Kuliah Xrd Mr
Page 81: Kuliah Xrd Mr
Page 82: Kuliah Xrd Mr
Page 83: Kuliah Xrd Mr
Page 84: Kuliah Xrd Mr
Page 85: Kuliah Xrd Mr
Page 86: Kuliah Xrd Mr

Indexing Tetragonal system:

2

2

2

22

2

1

c

l

a

kh

dhkl

hkld2/sin

222

2

2

2

2222

2 )(42

sin ClkhAc

l

a

kh

dhkl

2222 4/;4/ cCaA

The value of A is obtained from hk0 lines.

When l = 0,

Possible values for h2 + k2 are 1, 2, 4, 5, 8, 9, 10, …

The rest of lines are

Possible values for l2 are 1, 4, 9, 16, …

Page 87: Kuliah Xrd Mr

Indexing Hexagonal system:

2

2

2

22

2 3

41

c

l

a

khkh

dhkl

222

2

22

2

2222 )(

43sin ClkhkhA

c

l

a

khkh

2222 4/;3/ cCaA

Possible values for h2 + hk + k2 are 1, 3, 4, 7, 9, 12, …

The rest of lines are

Possible values for l2 are 1, 4, 9, 16, …

2222

2222

)(sin

)(sin

ClkhkhA

atau

ClkhkhA

Page 88: Kuliah Xrd Mr

yCxAClkhkhA 2222 )(sin

l h,k

0,0 1,0 1,1 2,0 2,1 2,2 3,0 3,1

0 0 x 3x 4x 7x 12x 9x 13x

1 y x + y 3x + y 4x + y 7x + y 12x + y 9x + y 13x + y

2 4y x + 4y 3x + 4y 4x + 4y 7x + 4y 12x + 4y 9x + 4y 13x + 4y

3 9y x + 9y 3x + 9y 4x + 9y 7x + 9y 12x + 9y 9x + 9y 13x + 9y

4 16y x + 16y 3x + 16y 4x + 16y 7x + 16y 12x + 16y 9x + 16y 13x + 16y

h,k

1,0 1,1 2,0 2,1 2,2 3,0 3,1

Sin2 Sin2 /3

Sin2 /4

Sin2 /7 Sin2 /12 Sin2 /9 Sin2 /13

1 0,097 0,032 0,024

2 0,112 0,037 0,028

3 0,136 0,045 0,034

4 0,209 0,070 0,052

5 0,332 0,111 0,083

6 0,390 0,130 0,098 7 0,434 0,145 0,109 8 0,472 0,157 0,118 9 0,547 0,182 0,137

10 0,668 0,223 0,167 11 0,722 0,241 0,180

A = 0,112

Page 89: Kuliah Xrd Mr

Example:

sin2 sin2/3 sin2/4 sin2/7

0.097 0.032

0.112 0.037

0.136 0.045

0.209 0.070

0.332 0.111

0.390 0.130

0.434 0.145

0.472 0.157

0.547 0.182

0.668 0.223

0.722 0.241

0.024

0.028

0.034

0.052

0.083

0.098

0.109

0.118

0.137

0.167

0.180

0.014

0.016

0.019

0.030

0.047

0.056

0.062

0.067

0.078

0.095

0.103

100

110

Let’s say A = 0.112

1

2

3

4

5

6

7

8

9

10

11

Page 90: Kuliah Xrd Mr

sin2 sin2-A sin2-3A

0.097

0.112

0.136

0.209

0.332

0.390

0.434

0.472

0.547

0.668

0.722

0.806

0.879

0

0.024

0.097

0.220

0.278

0.322

0.360

0.435

0.556

0.610

0.694

0.767

0.054

0.098

0.136

0.211

0.332

0.386

0.470

0.543

0.097 belongs to Cl2.

What is the l?

There are two lines

between 100 and 110.

Probably, 10l1 and

10l2

0.024 and 0.097

are different ls.

0.097/0.024 ~ 4

0.220/0.024 ~ 9

0.390/0.024 ~ 16

C = 0.02441

1

2

3

4

5

6

7

8

9

10

11

12

13

100

110

101

102

002

112

Page 91: Kuliah Xrd Mr

0 2 4 6 8 10 12 14 16 18

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Cl2

l2

Slope = C = 0.02441

Page 92: Kuliah Xrd Mr

Indexing orthorhombic system:

222

2

2

2

2

2

222

4sin ClBkAh

c

l

b

k

a

h

More difficult! Consider any two lines having indices

hk0 and hkl Cl2; get a guesses value C then put it back

and get A and B. If the guess is right, the number will be

consistent. If not try another guesses value of C.

Indexing Monoclinic and Triclinic system:

Even more complex, 6 variables, must have enough

diffraction lines for the computer to indexing.

Page 93: Kuliah Xrd Mr

Effect of Cell distortion on the powder Pattern:

Page 94: Kuliah Xrd Mr

Determination of the number of atoms in a unit cell:

After establishing shape and size we find the number

of atoms in that unit cell.

M

NVn C 0

VC: unit cell volume; : density

N0: Avogodro’s number;

M: molecular weight;

n: number of molecules in a unit cell

We need to index the powder pattern in order to obtain

the unit cell parameters unit cell volume

66054.1)10022.6()()10( 23

03

338 C

C

VN

cm

gcmVnM

in Å3

in g/cm3

A

Page 95: Kuliah Xrd Mr
Page 96: Kuliah Xrd Mr
Page 97: Kuliah Xrd Mr
Page 98: Kuliah Xrd Mr
Page 99: Kuliah Xrd Mr
Page 100: Kuliah Xrd Mr

MENENTUKAN INTENSITAS PUNCAK

DIFRAKSI SINAR X

Page 101: Kuliah Xrd Mr
Page 102: Kuliah Xrd Mr
Page 103: Kuliah Xrd Mr

Multiplicity factor

Lattice Index Multiplicity Planes

Cubic

(with highest

symmetry)

(100) 6 [(100) (010) (001)] ( 2 for negatives)

(110) 12 [(110) (101) (011), (110) (101) (011)] ( 2 for negatives)

(111) 12 [(111) (111) (111) (111)] ( 2 for negatives)

(210) 24* (210) 3! Ways, (210) 3! Ways,

(210) 3! Ways, (210) 3! Ways

(211) 24 (211) 3 ways, (211) 3! ways,

(211) 3 ways

(321) 48*

Tetragonal

(with highest

symmetry)

(100) 4 [(100) (010)] ( 2 for negatives)

(110) 4 [(110) (110)] ( 2 for negatives)

(111) 8 [(111) (111) (111) (111)] ( 2 for negatives)

(210) 8* (210) = 2 Ways, (210) = 2 Ways,

(210) = 2 Ways, (210) = 2 Ways

(211) 16 [Same as for (210) = 8] 2 (as l can be +1 or 1)

(321) 16* Same as above (as last digit is anyhow not permuted)

* Altered in crystals with lower symmetry

Page 104: Kuliah Xrd Mr

Cubic hkl hhl hk0 hh0 hhh h00

48* 24 24* 12 8 6

Hexagonal hk.l hh.l h0.l hk.0 hh.0 h0.0 00.l

24* 12* 12* 12* 6 6 2

Tetragonal hkl hhl h0l hk0 hh0 h00 00l

16* 8 8 8* 4 4 2

Orthorhombic hkl hk0 h0l 0kl h00 0k0 00l

8 4 4 4 2 2 2

Monoclinic hkl h0l 0k0

4 2 2

Triclinic hkl

2

* Altered in crystals with lower symmetry (of the same crystal class)

Multiplicity factor

Page 105: Kuliah Xrd Mr
Page 106: Kuliah Xrd Mr
Page 107: Kuliah Xrd Mr
Page 108: Kuliah Xrd Mr
Page 109: Kuliah Xrd Mr
Page 110: Kuliah Xrd Mr

If atom B is different from atom A the amplitudes must be weighed by the

respective atomic scattering factors (f)

The resultant amplitude of all the waves scattered by all the atoms in the UC gives

the scattering factor for the unit cell

The unit cell scattering factor is called the Structure Factor (F)

Scattering by an unit cell = f(position of the atoms, atomic scattering factors)

electronan by scattered waveof Amplitude

ucin atoms allby scattered waveof AmplitudeFactor StructureF

[2 ( )]i i h x k y l zE Ae fe 2 ( )h x k y l z In complex notation

2FI

[2 ( )]

1 1

j j j j

n ni i h x k y l zhkl

n j j

j j

F f e f e

Structure factor is independent of the shape and size of the unit cell

For n atoms in the UC

If the UC distorts so do the planes in it!!

Page 111: Kuliah Xrd Mr

nnie )1(

)(2

Cosee ii

Structure factor calculations

A Atom at (0,0,0) and equivalent positions

[2 ( )]j j j ji i h x k y l z

j jF f e f e

[2 ( 0 0 0)] 0i h k lF f e f e f

22 fF F is independent of the scattering plane (h k l)

nini ee

Simple Cubic

1) ( inodde

1) ( inevene

Page 112: Kuliah Xrd Mr

B Atom at (0,0,0) & (½, ½, 0) and equivalent positions

[2 ( )]j j j ji i h x k y l z

j jF f e f e

1 1[2 ( 0)]

[2 ( 0 0 0)] 2 2

[ 2 ( )]0 ( )2 [1 ]

i h k li h k l

h ki

i h k

F f e f e

f e f e f e

F is independent of the ‘l’ index

C- centred Orthorhombic

Real

]1[ )( khiefF

fF 2

0F

22 4 fF

02 F

e.g. (001), (110), (112); (021), (022), (023)

e.g. (100), (101), (102); (031), (032), (033)

Page 113: Kuliah Xrd Mr
Page 114: Kuliah Xrd Mr
Page 115: Kuliah Xrd Mr
Page 116: Kuliah Xrd Mr
Page 117: Kuliah Xrd Mr
Page 118: Kuliah Xrd Mr
Page 119: Kuliah Xrd Mr
Page 120: Kuliah Xrd Mr
Page 121: Kuliah Xrd Mr
Page 122: Kuliah Xrd Mr
Page 123: Kuliah Xrd Mr
Page 124: Kuliah Xrd Mr
Page 125: Kuliah Xrd Mr
Page 126: Kuliah Xrd Mr
Page 127: Kuliah Xrd Mr
Page 128: Kuliah Xrd Mr
Page 129: Kuliah Xrd Mr
Page 130: Kuliah Xrd Mr
Page 131: Kuliah Xrd Mr
Page 132: Kuliah Xrd Mr
Page 133: Kuliah Xrd Mr
Page 134: Kuliah Xrd Mr
Page 135: Kuliah Xrd Mr
Page 136: Kuliah Xrd Mr
Page 137: Kuliah Xrd Mr
Page 138: Kuliah Xrd Mr
Page 139: Kuliah Xrd Mr
Page 140: Kuliah Xrd Mr
Page 141: Kuliah Xrd Mr
Page 142: Kuliah Xrd Mr
Page 143: Kuliah Xrd Mr
Page 144: Kuliah Xrd Mr
Page 145: Kuliah Xrd Mr
Page 146: Kuliah Xrd Mr
Page 147: Kuliah Xrd Mr
Page 148: Kuliah Xrd Mr
Page 149: Kuliah Xrd Mr
Page 150: Kuliah Xrd Mr
Page 151: Kuliah Xrd Mr
Page 152: Kuliah Xrd Mr
Page 153: Kuliah Xrd Mr
Page 154: Kuliah Xrd Mr
Page 155: Kuliah Xrd Mr
Page 156: Kuliah Xrd Mr
Page 157: Kuliah Xrd Mr
Page 158: Kuliah Xrd Mr
Page 159: Kuliah Xrd Mr
Page 160: Kuliah Xrd Mr
Page 161: Kuliah Xrd Mr
Page 162: Kuliah Xrd Mr
Page 163: Kuliah Xrd Mr
Page 164: Kuliah Xrd Mr
Page 165: Kuliah Xrd Mr
Page 166: Kuliah Xrd Mr
Page 167: Kuliah Xrd Mr
Page 168: Kuliah Xrd Mr
Page 169: Kuliah Xrd Mr
Page 170: Kuliah Xrd Mr
Page 171: Kuliah Xrd Mr
Page 172: Kuliah Xrd Mr
Page 173: Kuliah Xrd Mr
Page 174: Kuliah Xrd Mr
Page 175: Kuliah Xrd Mr
Page 176: Kuliah Xrd Mr
Page 177: Kuliah Xrd Mr
Page 178: Kuliah Xrd Mr
Page 179: Kuliah Xrd Mr
Page 180: Kuliah Xrd Mr
Page 181: Kuliah Xrd Mr
Page 182: Kuliah Xrd Mr

X-Ray Fluorescence Analysis

Page 183: Kuliah Xrd Mr

Analisis X-ray Fluoresensi

Pendahuluan

Prinsip Kerja

Skema Cara Kerja Alat

Preparasi Sampel

Instrumen XRF

Contoh spektra

Page 184: Kuliah Xrd Mr

Radiasi Elektromagnetik

1Hz - 1kHz 1kHz - 1014Hz

1014Hz - 1015Hz

1015Hz - 1021Hz

Extra-Low Frequency

(ELF)

Radio Microwave Infrared

Visible Light

X-Rays,

Gamma Rays

Low energy High energy

Page 185: Kuliah Xrd Mr

Pendahuluan

Teknik fluoresensi sinar x (XRF) merupakan suatu teknik analisis yang dapat menganalisa unsur-unsur yang membangun suatu material, dengan dasar interaksi sinar-X dengan materi analit.

Teknik ini juga dapat digunakan untuk menentukan konsentrasi unsur berdasarkan pada panjang gelombang dan jumlah sinar x yang dipancarkan kembali setelah suatu material ditembaki sinar X.

Page 186: Kuliah Xrd Mr

Fitur XRF

• Akurasi yang relative tinggi

• Dapat menentukan unsur dalam material tanpa adanya standar (bandingkan dg. AAS)

• Dapat menentukan kandungan mineral dalam bahan biologis maupun dalam tubuh secara langsung.

Kelebihan

• tidak dapat mengetahui senyawa apa yang dibentuk oleh unsur-unsur yang terkandung dalam material yang akan kita teliti.

• tidak dapat menentukan struktur dari atom yang membentuk material itu.

Kelemahan

Page 187: Kuliah Xrd Mr

Prinsip Kerja

Menembakkan radiasi foton elektromagnetik

ke material yang diteliti.

Radiasi elektromagnetik yang

dipancarkan akan berinteraksi dengan

elektron yang berada di kulit K suatu unsur.

Elektron yang berada di kulit K akan

memiliki energi kinetik yang cukup untuk

melepaskan diri dari ikatan inti, sehingga

elektron itu akan terpental keluar.

Page 188: Kuliah Xrd Mr

Peristiwa pada tabung sinar-X.

Page 189: Kuliah Xrd Mr
Page 190: Kuliah Xrd Mr

Prinsip Kerja XRF

Pada teknik XRF,

• dienggunakan sinar-X dari tabung pembangkit sinar-X untuk mengeluarkan electron dari kulit bagian dalam untuk menghasilkan sinar-X baru dari sample yang di analisis.

Page 191: Kuliah Xrd Mr

Prinsip Kerja XRF

• Untuk setiap atom di dalam sample,

intensitas dari sinar-X karakteristik tersebut

sebanding dengan jumlah (konsentrasi)

atom di dalam sample.

• Intensitas sinar–X karakteristik dari setiap

unsur, dibandingkan dengan suatu standar

yang diketahui konsentrasinya, sehingga

konsentrasi unsur dalam sample bisa

ditentukan.

Page 192: Kuliah Xrd Mr

Skema Cara Kerja Alat

Page 193: Kuliah Xrd Mr

Instrumen XRF

Instrumen XRF terdiri dari :

• Sumber cahaya

• Optik

• Detektor

Page 194: Kuliah Xrd Mr

Syarat Sampel

Serbuk Ukuran serbuk < 4 00 mesh

Padatan Permukaan yang dilapisi akan meminimalisir efek

penghamburan Sampel harus datar untuk menghasilkan analisis kuantitatif

yang optimal

Cairan Sampel harus segar ketika dianalisis dan analisis dilakukan

secara cepat jika sampel mudah menguap Sampel tidak boleh mengandung endapan

Page 195: Kuliah Xrd Mr

Sumber Cahaya

• Tabung Sinar X

• End Window

• Side Window

• Radioisotop

Page 196: Kuliah Xrd Mr

Tabung sinar x

• End Window

Page 197: Kuliah Xrd Mr

Side Window

Be W indow

Silicone Insulation

Glass En v elope

Filament

Electron beam

Target (Ti, Ag,

Rh, etc.)

Copper Anode

H V Lead

Page 198: Kuliah Xrd Mr

Radioisotop

Isotope

Fe-5 5

Cm-244

Cd-109

Am-241

Co-57

Energy (keV)

5.9

14.3, 18.3

22, 88

59.5

122

Elements (K-lines)

Al – V

Ti-Br

Fe-Mo

Ru-Er

Ba - U

Elements (L-lines)

Br-I

I- Pb

Yb-Pu

None

none

Page 199: Kuliah Xrd Mr

Optik

Source Detector

Page 200: Kuliah Xrd Mr

Filter

Detector

X-Ray

Source

Source Filter

Page 201: Kuliah Xrd Mr

Contoh Spektra

Page 202: Kuliah Xrd Mr

Contoh Spektra

Page 203: Kuliah Xrd Mr

Detektor

• Si(L i)

• P N Diode

• Silicon Drift Detectors

• Proportional Counters

• Scintillation Detectors

Page 204: Kuliah Xrd Mr

Si ( Li) Detektor

WIndow

Si(Li)

crystal

Dewar

filled with

LN 2

Super-Cooled Cryostat

Cooling: LN2 or Peltier

Window: Beryllium or Polymer

Counts Rates: 3,000 – 50,000 cps

Resolution: 120-170 eV at Mn K-alpha

FET

Pre-Amplifier

Page 205: Kuliah Xrd Mr

PIN Diode

• Cooling: Thermoelectrically cooled (Peltier)

• Window: Beryllium

• Count Rates: 3,000 – 20,000 cps

• Resolution: 170-240 eV at Mn k-alpha

Page 206: Kuliah Xrd Mr

Silicon Drift Detector

Packaging: Similar to PIN Detector Cooling: Peltier Count Rates; 10,000 – 300,000 cps Resolution: 140-180 eV at Mn K-alpha

Page 207: Kuliah Xrd Mr

Proportional Counter

Anode Filament

Fill Gases: Neon, Argon, Xenon, Krypton

Pressure: 0.5- 2 ATM

Windows: Be or Polymer

Sealed or Gas Flow Versions

Count Rates EDX: 10,000-40,000 cps WDX: 1,000,000+

Resolution: 500-1000+ eV

Window

Page 208: Kuliah Xrd Mr

Scintillation Detector

PMT (Photo-multiplier tube) Sodium Iodide Disk Electronics

Connector Window: Be or Al Count Rates: 10,000 to 1,000,000+ cps Resolution: >1000 eV

Page 209: Kuliah Xrd Mr
Page 210: Kuliah Xrd Mr

(0,0,0)

(0, ½, ½)

(½, ½, 0)

(½, 0, ½)

Fractional Coordinates

Page 211: Kuliah Xrd Mr

Cs (0,0,0)

Cl (½, ½, ½)

Page 212: Kuliah Xrd Mr

Density

Calculation

AC NV

nA

n: number of atoms/unit cell

A: atomic mass

VC: volume of the unit cell

NA: Avogadro’s number

(6.023x1023 atoms/mole)

Calculate the density of copper.

RCu =0.128nm, Crystal structure: FCC, ACu= 63.5 g/mole

n = 4 atoms/cell, 333 216)22( RRaVC

3

2338/89.8

]10023.6)1028.1(216[

)5.63)(4(cmg

8.94 g/cm3 in the literature

Page 213: Kuliah Xrd Mr

(100) (111)

(200) (110)

Page 214: Kuliah Xrd Mr

2

222

2

1

a

lkh

dhkl

For cubic system

Lattice spacing

Page 215: Kuliah Xrd Mr

Bragg’s Law

For cubic system:

But no all planes have the

diffraction !!!

sin2

sinsin

hkl

hklhkl

d

dd

QTSQn

222 lkh

adhkl

Page 216: Kuliah Xrd Mr

• X-ray diffraction from a crystal: Bragg’s Law

sin2 hkldn

222 lkh

adhkl

X-Ray Diffraction

n: order of

diffraction peak

dhkl: interplanar

spacing

(hkl): Miller

indices of plane

Page 217: Kuliah Xrd Mr

Crystal Structures [OGN 21.2] • Body-centered

cubic (BCC)

Page 218: Kuliah Xrd Mr
Page 219: Kuliah Xrd Mr

(200) (211)

Powder diffraction

X-Ray

Page 220: Kuliah Xrd Mr

Phase purity. In a mixture of compounds each crystalline phase present will contribute to

the overall powder X-ray diffraction pattern. In preparative materials

chemistry this may be used to identify the level of reaction and purity of the

product. The reaction between two solids Al2O3 and MgO to form MgAl2O4

may be monitored by powder X-ray diffraction.

Page 221: Kuliah Xrd Mr

•At the start of the reaction a mixture of Al2O3 and MgO will produce an X-

ray pattern combining those of the pure phases. As the reaction proceeds,

patterns (a) and (b), a new set of reflections corresponding to the product

MgAl2O4, emerges and grows in intensity at the expense of the reflection

from Al2O3 and MgO. On completion of the reaction the powder diffraction

pattern will be that of pure MgAl2O4.

•A materials chemist will often use PXRD to monitor the progress of a

reaction.

•The PXRD method is widely employed to identify impurities in materials

whether it be residual reactant in a product, or an undesired by-product.

•However the impurity must be crystalline.

Page 222: Kuliah Xrd Mr

Observable diffraction

peaks

222 lkh Ratio

Simple

cubic

SC: 1,2,3,4,5,6,8,9,10,11,12..

BCC: 2,4,6,8,10, 12….

FCC: 3,4,8,11,12,16,24….

222 lkh

adhkl

nd sin2

Page 223: Kuliah Xrd Mr
Page 224: Kuliah Xrd Mr
Page 225: Kuliah Xrd Mr
Page 226: Kuliah Xrd Mr
Page 227: Kuliah Xrd Mr
Page 228: Kuliah Xrd Mr
Page 229: Kuliah Xrd Mr
Page 230: Kuliah Xrd Mr

Ex: An element, BCC or FCC, shows diffraction peaks

at 2: 40, 58, 73, 86.8,100.4 and 114.7.

Determine:(a) Crystal structure?(b) Lattice constant?

(c) What is the element?

2theta theta (hkl)

40 20 0.117 1 (110)

58 29 0.235 2 (200)

73 36.5 0.3538 3 (211)

86.8 43.4 0.4721 4 (220)

100.4 50.2 0.5903 5 (310)

114.7 57.35 0.7090 6 (222)

2sin222 lkh

a =3.18 A, BCC, W

Page 231: Kuliah Xrd Mr
Page 232: Kuliah Xrd Mr
Page 233: Kuliah Xrd Mr
Page 234: Kuliah Xrd Mr
Page 235: Kuliah Xrd Mr
Page 236: Kuliah Xrd Mr
Page 237: Kuliah Xrd Mr
Page 238: Kuliah Xrd Mr
Page 239: Kuliah Xrd Mr
Page 240: Kuliah Xrd Mr
Page 241: Kuliah Xrd Mr
Page 242: Kuliah Xrd Mr
Page 243: Kuliah Xrd Mr
Page 244: Kuliah Xrd Mr
Page 245: Kuliah Xrd Mr
Page 246: Kuliah Xrd Mr
Page 247: Kuliah Xrd Mr
Page 248: Kuliah Xrd Mr
Page 249: Kuliah Xrd Mr

0

5

10

15

20

25

30

0 20 40 60 80

Bragg Angle (, degrees)

Lo

ren

tz-P

ola

riza

tio

n f

act

or

Polarization factor Lorentz factor

2

1

2

1

SinCos

SinfactorLorentz 21 2CosIP

CosSin

CosfactoronPolarizatiLorentz

2

2 21

Page 250: Kuliah Xrd Mr

Intensity of powder pattern lines (ignoring Temperature & Absorption factors)

CosSin

CospFI

2

22 21

Valid for Debye-Scherrer geometry

I → Relative Integrated “Intensity”

F → Structure factor

p → Multiplicity factor

POINTS

As one is interested in relative (integrated) intensities of the lines constant

factors are omitted

Volume of specimen me , e (1/dectector radius)

Random orientation of crystals in a with Texture intensities are

modified

I is really diffracted energy (as Intensity is Energy/area/time)

Ignoring Temperature & Absorption factors valid for lines close-by in

pattern

Page 251: Kuliah Xrd Mr
Page 252: Kuliah Xrd Mr
Page 253: Kuliah Xrd Mr
Page 254: Kuliah Xrd Mr
Page 255: Kuliah Xrd Mr
Page 256: Kuliah Xrd Mr
Page 257: Kuliah Xrd Mr
Page 258: Kuliah Xrd Mr
Page 259: Kuliah Xrd Mr
Page 260: Kuliah Xrd Mr