desain pci girder

Upload: fajrin-hernata

Post on 07-Jul-2018

300 views

Category:

Documents


20 download

TRANSCRIPT

  • 8/19/2019 Desain Pci Girder

    1/114

  • 8/19/2019 Desain Pci Girder

    2/114

    PT  

    WIJAYA 

    KARYA 

    BETON 

     Job no. : 13014  A

    Rev. : 04

    TECHNICAL 

    CALCULATION  

     APPROVAL

    PCI  GIRDER MONOLITH  FOR HIGHWAY  BRIDGES

    PCI Girder  Monolith H‐125cm  ; L‐20.15m  ; CTC ‐160cm  ;  fc'  40MPa

     Approved  by  :

    TOLL SURABAYA ‐ GRESIK 

    Design by  :

    18  Juni  2013

    Suko

    Technical  Staff 

    Ir.  Achmad   Arifin Ignatius Harry  S., S.T.

    Technical  Manager Chief   of  Technical 

    Consultan  /  Owner 

     Approved  by  : Checked   by 

    18  Juni  2013 18  Juni  2013

  • 8/19/2019 Desain Pci Girder

    3/114

  • 8/19/2019 Desain Pci Girder

    4/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    4. BEAM SUPPORT REACTION

    Ultimate total = 1,2*(Beam+Diaphragm+Deck Slab)+1,3*Slab+2*Asphaltic+1,8*(LL+I)

    Beam support react ion : 

    a. Dead Load = 75.90 kN

    b. Additional Dead Load = 125.48 kN

    c. Live Load = 250.52 kN

    Ultimate support reaction = 713.78 kN

    5. CONTROL OF BEAM STRESSES

    Middle span position

    top stress = -0.57 MPa required > -1.41 MPa

    bottom stress = 17.34 MPa required < 19.20 MPa

    Middle span position

    top stress = 9.81 MPa required < 18.00 MPa

    bottom stress = 1.58 MPa required > -3.16 MPa

    6. CONTROL OF BEAM DEFLECTION

    Deflect ion at t he middle of beam span 

    1. Chamber due stressing

    initial = -17.68 mm

    = -

    2. Service Condition

    1. Initial Condition

    .

    2. Deflection at composite DL = -8.25 mm

    3. Deflection due live load = 7.48 mm,required 1) = 1.30

    Cracking Capacit y requir ement : 

    Mcrack = 3328.03 kN.m

    Mn / Mcr = 1.36

    CALCULATION RESUME

  • 8/19/2019 Desain Pci Girder

    5/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    19.55 M

    I. DATA

    0.3 L= 19.55 M 0.3

    Beam length = 20.15 m ( edge anchor to edge anchor : 19.85 m)

    Beam spacing (s)=

    1600 mmConcrete Slab thickness (CIP) = 200 mm

    Asphalt thickness = 50 mm

    Deck slab thickness = 70 mm

    Cross Section

    H = 1250 mm tfl-1 = 75 mm

    A = 350 mm tfl-2 = 75 mm

    B = 650 mm tfl-3 = 100 mm

    tweb = 170 mm tfl-4 = 125 mm

    II. MATERIAL

    2.1 Concrete

      Beam Slab

     

    at service fc' = 40.0 28.0 [N/mm2]

    at initial 80% fc' fc'i = 32.0 [N/mm2]

    Allowable stress

    19.2 [N/mm2]Compressive

      SPAN L =

    Compressive strength

    Allowable stress at initial ………… (SNI T-1 2-20 04 )

    0.6 * fc'i =

    TECHNICAL CALCULATION OF PCI MONOLITH BEAM FOR HIGHWAY BRIDGES

    A

    H

    B

    tfl-1

    tfl-2

    tfl-3

    tfl-4

    tweb

    Tensile 1.4 [N/mm ]

    18.0 12.6 [N/mm2]

    Tensile 3.2 2.6 [N/mm2]

    wc = 2500.0 2500.0 [kg/m3]

    Ec = wc1.5

    *0.043*sqrt(fc') = 33994.5 28441.8 [N/mm2]

    Eci = wc

    1.5

    *0.043*sqrt(fci') = 30405.6 [N/mm

    2

    ]Concrete flexural tension strength (fr)

    f r = 0.7*sqrt(fc') = 4.4 [N/mm2]

    2.2

     ( ASTM A 416 Grade 270 Low Relaxation or JIS G 3536 )

    dia : 12.7 [mm]

    Ast : 98.78 [mm2]

    Es : 1.93E+05 [N/mm2]

    fu : 1860 [N/mm2]

    2.3

    - Diameter dia : 13 [mm]- Eff. Section area Ast : 132.73 [cm

    2]

    - Modulus of elasticity Es : 2.10E+05 [N/mm2]

    - Yield stress fy : 400 [N/mm2]

    - Eff. Section area

    Compressive

    Steel Reinforcement

    [Uncoated stress relieve seven wires strand]

    - Diameter strand

    - Ultimate tensile strength

    - Modulus of elasticity

    Prestressing Cable

    0.25 * Sqrt(fc'i) =

    0.45 * fc' =

    0.5 * Sqrt(fc') =

    Modulus of elasticity

    Allowable stress at service ………. (SNI T-1 2-20 04 )

    Concrete unit weight

    page 1 / 15

  • 8/19/2019 Desain Pci Girder

    6/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    III. SECTION ANALYSIS

    Remark :

    Ep 1 = 33994 [N/mm2] [Girder]

    Ep 2 = 28442 [N/mm2] [Slab]

    n = Ep 2 / Ep 1

    n = 0.84

    3.1 Precast Beam

    [in mm ]

    Section Width Area Level Yb Area*Yb Io Area*d2 Ix

    Height Bottom Upper mm2 mm mm mm

    3mm

    4mm

    4mm

    4

    6 0.0 150.0 150.0 0 1250 1250.0 0 0 0 0

    5 75.0 350.0 350.0 26250 1175 1212.5 31828125 12304688 12613184758 12625489445

    4 75.0 170.0 350.0 19500 1100 1141.8 22265625 8775541 7556605867 7565381408

    3 875.0 170.0 170.0 148750 225 662.5 98546875 9490559896 3049566872 12540126768

    2 100.0 650.0 170.0 41000 125 165.2 6775000 30264228 5140086368 5170350595

    1 125.0 650.0 650.0 81250 0 62.5 5078125 105794271 16955415084 17061209355

    Total 1250.0 316750 519.3 164493750 9647698623 45314858949 54962557571

    3.2 Composite Beam

    [in mm ]Zone Height Width Area Level Yb Area*Yb Io Area*d

    2 Ix

    Section Bottom Upper mm2 mm mm mm

    3mm

    4mm

    4mm

    4

    2 200.0 1338.7 1338.7 267731 1320 1420.0 380178316 892437361.6 61987067626 62879504987

    70.0 167.3 167.3 11713 1250 1285.0 15051514 4782906.485 1403663073 1408445980

    1 1250.0 650.0 350.0 316750 0 519.3 164493750 54962557571 55744385803 1.10707E+11

    Zone

    Ya'

    1

    2

    3

    Yb'

    COMPOSITE BEAM

    1

    2

    3

    4

    5

    Ya

    Yb

    PRECAST BEAM

    Base Line

    o a . . . + . +

    3.3 R e s u m e

    [in mm ]

    Description Area (mm2) Ya (mm) Yb (mm) Ix (mm

    4) Wa (mm

    3) Wb (mm

    3)

    Precast Beam 316750 731 519.3 54962557571 75220826 105836180

    Composite Beam [composite] 596194 581 938.8 174994894341 301106490 186397337

    [precast] 311 562372124

     

    IV. LOADING4.1 Dead Load

    a. Precast Beam q1 = Ac precast girder x conc. Precast

    q1 = 0.317 x 2.50 = 0.792 [t/m'] = 7.77 [kN/m']

    b. Slab q2 = Ac slab CIP x conc. slab

    q2 = 0.334 x 2.40 = 0.802 [t/m'] = 7.86 [kN/m']

    c. Deck slab q3 = Ac deck slab x s

    q3 = 0.098 x 2.40 = 0.235 [t/m'] = 2.31 [kN/m']

    d. Asphaltic q4 = Ac asphaltic x s

    q4 = 0.080 x 2.20 = 0.176 [t/m'] = 1.73 [kN/m']

    e. Diaphragm p = Vol diaph with 0.20m thickness x diaph

    p = 0.294 x 2.40 = 0.706 [ton'] = 6.92 [kN']

    note :  from kg to N, multiply by 9.8060 

    Number of diaph = 4 pcs

    Diaph. placement 1 2 3 4

    Location 0.00 6.52 13.03 19.55

    Support Va 6.92 4.62 2.31 0.00

    Mid Moment 0.00 22.56 22.56 0.00

    Total Diaphragma Flexural Moment at Middle Span 45.11 kN.m

    eqivalen load q diaphragm q5= 0.94 [kN/m']

    page 2 / 15

  • 8/19/2019 Desain Pci Girder

    7/114

  • 8/19/2019 Desain Pci Girder

    8/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    V. MOMENT ANALYSIS

    [in kN-meter ]

    Mid Sec 1-1 Sec 2-2 Sec 3-3 Sec 4-4 Sec 5-5 Sec 6-6

    span 0.00 6.28 13.28 19.55 19.55 9.78 (m)

    DL Precast beam 370.98 0.00 323.42 323.42 0.00 0.00 370.98

    370.98 0.00 323.42 323.42 0.00 0.00 370.98

    DL Slab 375.54 0.00 327.39 327.39 0.00 0.00 375.54

    ADL Asphaltic Layer 82.45 0.00 71.88 71.88 0.00 0.00 82.45

    SDL Diaphragm+Deck Slab 155.30 0.00 135.39 135.39 0.00 0.00 155.30

    613.29 0.00 534.66 534.66 0.00 0.00 613.29LL Distribution load 687.96 0.00 599.76 599.76 0.00 0.00 687.96

    KEL 536.45 0.00 467.68 467.68 0.00 0.00 536.45

    1224.42 0.00 1067.44 1067.44 0.00 0.00 1224.42

    2208.69 0.00 1925.52 1925.52 0.00 0.00 2208.69

    3488.59 0.00 3041.34 3041.34 0.00 0.00 3488.59

    Ultimate total = 1,2*(Beam+Diaphragm+Deck Slab)+1,3*Slab+2*Asphaltic+1,8*(LL+I)

    VI. SHEAR ANALYSIS

    [in kN]

    Mid Sec 1-1 Sec 2-2 Sec 3-3 Sec 4-4 Sec 5-5 Sec 6-6

    span 0.00 6.28 13.28 19.55 19.55 9.78 (m)

    DL 0.00 75.90 27.18 -27.18 -75.90 -75.90 0.00

    0.00 75.90 27.18 -27.18 -75.90 -75.90 0.00

    DL 0.00 76.84 27.51 -27.51 -76.84 -76.84 0.00

    ADL 0.00 16.87 6.04 -6.04 -16.87 -16.87 0.00

    SDL 0.00 31.77 11.38 -11.38 -31.77 -31.77 0.00

    0.00 125.48 44.93 -44.93 -125.48 -125.48 0.00

    Distribution load 0.00 140.76 50.40 -50.40 -140.76 -140.76 0.00

    KEL 54.88 109.76 74.53 -74.53 -109.76 -109.76 54.88

    54.88 250.52 124.93 -124.93 -250.52 -250.52 54.88

    54.88 451.91 197.04 -197.04 -451.91 -451.91 54.88Total (DL + LL)

    Asphaltic Layer

    Total (DL + LL)

    Description

    Subtot al 

    Subtot al 

    Subtot al 

    Subtot al 

    Type

    Precast beam

    Ultimate total

    Slab

    Diaphragm+Deck slab

     

    Subtot al 

    LL

    Type Description

    Subtot al 

    . . . - . - . - . .

    Ultimate total = 1,2*(Beam+Diaphragm+Deck Slab)+1,3*Slab+2*Asphaltic+1,8*(LL+I)

    VII. PRESTRESSING CABLE

    7.1 Cable Profile

    [in: mm ]

    ten- Nos Profile Total JF

    don strand Edge Middle left right tension (kN)

    0   0 0 0 0% 0% 0% 0

    0   0 0 0 0% 0% 0% 0

    0   0 0 0 0% 0% 0% 0

    0   0 0 0 0% 0% 0% 0

    1   12 600 200 75% 0% 75% 1654

    2   12 300 100 75% 0% 75% 1654

    total 24 450.00 150.00 75% 0% 75% 3307

    Parabol ic curve (Average of Str and's posi t ion ver t i ca l ly f rom t he bot tom of beam ( Value for Y axis ) ) 

    Y = A.x2+ B.x + C

    where : A = Constanta : ( (Ymiddle + Yedge)/(L/2)2) A = 0.003046

    B = Constanta : ( L x A ) B = -0.060453

    C = Average of strand's position when the parabolic curve reach the Y axis

     Average of Strand's position vertically from the bottom of beam ( Value for Y axis )

    Y = 0.003046 X + -0.0604534 X + 0.450000

    Cable tendon angle :

    tg o  = 0.006091 X + -0.0604534

    eccentricity of tendon at middle section

    Eccentricity [e] = Yb - Ys = 369.32 mm

    Yb = Distance of Neutral Axis from the bottom of non composite beam ( Chapter 3.3 - Resume )

    Ys = Distance of tendon from the bottom of the beam at the middle span ( Chapter 7.1, Cable Profile-middle)

    Tension

    ma e o a

    page 4 / 15

  • 8/19/2019 Desain Pci Girder

    9/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

     Average of Strand's position vertically from the bottom of beam ( Value for Y axis )

    7.2 Losses of Prestress

    1. Losses of Prestress (Short Term)

    a. Friction

    The equation for calculating the loss of prestress due to friction is :

    Px = Po.e-  + .x

    ( AASHTO 1992, Chapt. 9.16.1 )

    Where :

    Px = Prestress force at section distance x from tensile point.

    Po = Jacking force ( tensile force at anchor, initial)

     = friction coefficient

     = Change of cable angle from tensile point to x section

    k = Wobble coefficient

    x = Distance from tensile point to x  section

    Friction and Wooble coeficient for grouting tendon in metal sheating

    with Seven Wire Strand :    = 0.20

    When the jacking force is applied at the stressing end, the tendon will elongate. The elongation will be resisted by friction

    between the strand and its sheating or duct. As the result of this friction, force will be decreased with distance from the jacking

    end. The friction is comprised of two effects : curvature friction which is a function of the thendons profile, and wooble friction

    which is the result of minor horizontal or vertical deviation form intended profile.

    0.00

    0.20

    0.40

    0.60

    0.80

    0 5 10 15 20 25

    60.0%

    65.0%

    70.0%

    75.0%

    80.0%

    0.00 10.00 20.00 30.00

    k = 0.003

    Table of calculation due to Friction

    ten- Nos Profile % JF a b  

    don strand Edge Middle from UTS (rad) 0.00 9.925 19.85

    0 0 0 0 0% 0.00000 0 0.000 0.0% 0.00% 0.0%

    0 0 0 0 0% 0.00000 0 0.000 0.0% 0.00% 0.0%

    0 0 0 0 0% 0.00000 0 0.000 0.0% 0.00% 0.0%

    0 0 0 0 0% 0.00000 0 0.000 0.0% 0.00% 0.0%1 12 600 200 75% 0.00406 -0.0806045 0.161 75.0% 70.49% 68.4%

    2 12 300 100 75% 0.00203 -0.0403023 0.081 75.0% 71.64% 69.5%

    total 24 450.00 150.00 75% 0.00305 -0.0604534 0.121 75.0% 71.1% 69.0%

    b. Anchor set

    Exact calculation is typical done as an iterative process as follows :

    1. Calculated loss of prestress per length with assuming a linear variation in prestress at start to end of tendon

     = Loss of prestress per length

     = Fpu . (P at JF - P at end of tendon) / distance JF to end of tendon

    2. Assuming drawn-in ().

    3. The length, x, over which anchorage set is effective is determined as follows :

    x = Sqrt ( Es .  /  )

    effective anchorage set point position :

      , . ,

    retracts pulling the wedges in to the anchorage device and locks the strand in place. The lost in elongation is small . It depend on

    the wedges, the jack and the jacking procedure. This lost in elongation is resisted by friction just as the initial elongation is

    resisted by friction.

    Prestress force (Px) = % UTS

     

    Cable change

    angle  point 

     X  (effective anchorage set)

    Anchorage

    set area

     X  (effective anchorage set)

    Cable change

    angle  point 

    Anchorage

    set area

    page 5 / 15

  • 8/19/2019 Desain Pci Girder

    10/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    4. Check Assuming drawn-in (). The displacement of jacking end of tendon should be equal with assumption

      = Anchorage set area x Ult. Tensile Stress / Modulus Elasticity of PC Strand

      = Aset . Fpu / Es

      = equal with assumption (trial)

    Table of calculation due anchor set

    ten- Nos   draw in

    don strand Mpa/mm mm X (m) Px (% UTS) X (m) Px (% UTS) 0.00 9.925 19.85

    0 0 0.00000 0.00 0.00 0.00% 0.00 0.00% 0.0% 0.00% 0.0%

    0 0 0.00000 0.00 0.00 0.00% 0.00 0.00% 0.0% 0.00% 0.0%

    0 0 0.00000 0.00 0.00 0.00% 0.00 0.00% 0.0% 0.00% 0.0%

    0 0 0.00000 0.00 0.00 0.00% 0.00 0.00% 0.0% 0.00% 0.0%

    1 12 0.00616 8.00 15.83 69.26% 0.00 0.00% 63.5% 68.03% 68.4%

    2 12 0.00512 8.00 17.36 70.06% 0.00 0.00% 65.1% 68.49% 69.5%

    total 24 0.00564 8.00 16.60 69.66% 0.00 0.00% 64.33% 68.26% 68.98%

    c. Elastic Shortening ( ES )

    Elastic shortening refers to the shortening of the concrete as the postensioning force is applied.

    From right sideFrom left side after anchorage set = % UTS

    55.0%

    60.0%

    65.0%

    70.0%

    75.0%

    80.0%

    0.00 10.00 20.00 30.00

    Prestress tendon section

    LOSSES 

    OF  

    PRESTRESS 

    DUE  

    TO 

     ANCHORAGE  

    SET 

    64.33%64.33%64.33%64.33%64.33%

    68.26%

    69.82%69.50%68.98%

    60.0%

    65.0%

    70.0%

    75.0%

    0.00 5.00 10.00 15.00 20.00 25.00

    Prestress 

    tendon 

    section

     AVERAGE  LOSSES OF  PRESTRESS 

    As the concrete shorterns, the tendon length also shortens, resulting in a loss of prestress.

    The following simplified equation to estimate the appropriate amount of prestress loss to attribute to elastic shortening

    for member with bonded tendons :

    ES = Kes . Es . f cir / Eci

    where:

    Kes = 0.50 for post-tensioned members when tendon are tensioned in sequential order to the same tension

    ES = Elastic modulus of tendon material

    Eci = Elastic modulus of the concrete at the time of prestress transfer

    f cir =

    Assumption Losses due ES 2.37%

    Pi = Total prestressing force at release

    Pi = 68.3% - 2.37% = 65.89% UTS x nos x Aps = 2905.4202 kN

    f cir = Pi / A + Pi. ec2/ I + Mg.ec/I

    f cir = 13.89 N/mm2

    so, ES = 44.08 N/mm2, percent actual ES losses = Es/fpu 2.37% equal with losses assumption

    2. Losses of Prestress ( Long Term )

    d. Shrinkage ( SH )

    SH = 8,2*e-6*Ksh*ES*(1-0,06*V/S)*(100-RH)  (ACI 318-95, Chapt. 18.6)

    SH = 30.33 N/mm2 percent actual SH losses = SH/fpu 1.63%

    Where :

    The factor Ksh account for the shringkage that will have taken place before the prestressing applied.for postensioning members, Ksh is taken from the following table :

    Days 1 3 5 7 10 20 30 60

    Ksh 0.92 0.85 0.8 0.77 0.73 0.64 0.58 0.45

    Ksh = 0.64

    V/S = 0.08 Volume = 6.38 m3

    Surface = 78.67 m2

    RH = 70.00

    concrete stress at the centre of gravity of prestressing tendons due to prestressing force at transfer and the self weight ofthe member at the section of maximum positive moment

    "days" is the number of days between the end of moist curing and the application of prestress.In a structures

    that are not moist cured, Ksh is typiclly based on when the concrete was cast

    page 6 / 15

  • 8/19/2019 Desain Pci Girder

    11/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    e. Creep ( CR )

    CR = Kcr*(Es/Ec)*(fcir-fcds) (ACI 318-95, Chapt. 18.6)

    CR = 90.40 N/mm2

    percent actual CR losses = CR/fpu 4.86%

    Where :

    Kcr = 1.60 (for postensioned member)fcir = stress at center point prestress force, initial condition

    fcir = 13.890 N/mm2

    Msd = Moment due to all superimposed permanent dead loads applied after prestressing

    Msd = 613.29 kN.m

    fcds = Stress in a concrete at the cgs of the tendon due to all superimposed dead load

    fcds 1 = Msdl.e/I = 3.57 N/mm2

    component of fcd due to load on the plain beam

    fcds 2 = Madl.e/Ic = 0.37 N/mm2

    component of fcd due to load on the composite beam

    fcds = fcds 1 + fcds 2 = 3.94 N/mm2

    f. Steel Relaxation ( RE )

    The equation for prestress loss due to relaxation of tendons is :

    RE = [ Kre - J*(SH+CR+ES) ] *C (ACI 318-95, Chapt. 18.6)

    RE = 18.38 N/mm2

    percent actual RE losses = RE/fpu 0.99%

    Where :

    Kre = 5000.00 (for 270 grade, low relaxation strand)

    J = 0.04 (for 270 grade, low relaxation strand)

     

    Relaxation is defined as a gradual decrease of stress in a material under constant strain. In the case of steel, relaxation is

    the result of permanent alteration of the grain structure. The rate of relaxation at any point in time depends on the

    stress level in the tendon at that time. Because of other prestress losses, there is a continual reduction of tendon strss;

    this causes a reduction in the relaxation rate.

    Over time, the compresive stress induced by postensioning causes a shortening of the concrete member. The increase in

    strain due to a sustained stress is refered to as creep. Loss of prestress due to a creep is nominally propotional to the net

    permanent compresive stressin the concrete. the net permanent compressive stress is the initial compressive stress in the

    concrete due to the prestressing minus the tensile stress due to self weight and superimposed deadload moments

      = . or p pu = .

    RESUME DUE TO SHORT & LONG TERM LOSSES

    Losses

    Section

    x (m)

    0.00 75.00% 64.33% 61.96% 13.04% 60.32% 55.46% 54.48% 20.52%

    0.00 75.00% 64.33% 61.96% 13.04% 60.32% 55.46% 54.48% 20.52%

    0.00 75.00% 64.33% 61.96% 13.04% 60.32% 55.46% 54.48% 20.52%

    0.00 75.00% 64.33% 61.96% 13.04% 60.32% 55.46% 54.48% 20.52%0.00 75.00% 64.33% 61.96% 13.04% 60.32% 55.46% 54.48% 20.52%

    9.93 71.07% 68.26% 65.89% 5.18% 64.26% 59.40% 58.41% 12.65%

    15.83 69.82% 69.82% 67.45% 2.37% 65.82% 60.96% 59.98% 9.85%

    17.36 69.50% 69.50% 67.13% 2.37% 65.50% 60.64% 59.65% 9.85%

    19.85 68.98% 68.98% 66.61% 2.37% 64.98% 60.12% 59.13% 9.85%

    friction Losses equotion :

    0 > x > 9.93

    75.00% -+ 0.40% x

    9.93 > x > 19.85

    71.07% + 0.07% x x - 9.925

    Long term Losses equotion :

    0 > x > 0.00 

    54.48% #DIV/0!

    0 > x > 9.93

    54.48% + 0.40% x x - 0

    9.925 > x > 15.83

    58.41% + 0.26% x x - 9.925

    15.83 > x > 17.36

    59.98% -+ 0.21% x x - 15.8329534

    17.36 > x > 19.85

    59.65% -+ 0.21% x x - 17.3636282

    II. Long Term Losses 

    FrictionShrinkage

    (SH)

    Elastic

    Shortening

    Steel

    RelaxationAnchor set

    I. Short Ter m Losses 

    Creep (CR)Total

    Losses (%)

    Total Losses

    (%)

    75.00% 75.00%

    71.07%69.82%   69.50% 68.98%

    64.33% 64.33%

    68.26%69.50% 68.98%

    61.96% 61.96%

    65.89%

    67.45%   67.13% 66.61%

    60.32% 60.32%

    64.26%65.82%   65.50% 64.98%

    55.46% 55.46%

    59.40%60.96%   60.64% 60.12%

    54.48% 54.48%

    58.41%59.98%   59.65% 59.13%

    50.00%

    65.00%

    80.00%

    0.00 0.00 9.93 15.83 17.36 19.85

    Friction

     Anchorset

    Elastic Shortening (ES)

    Shrinkage (SH)

    Creep (CR)

    Steel Relaxation (SR)

    LOSSES OF  PRESTRESS DIAGRAM 

    Prestress tendon section

    UTS

    page 7 / 15

  • 8/19/2019 Desain Pci Girder

    12/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    7.3 Effective Stress Force

    Resume Prestressed Force at middle

    Cable

    stress

    [N/mm2] [mm

    2] [kN]

    9.1% 65.9% 1226 2370.72 2905.42

    16.6% 58.4% 1086 2370.72 2575.64

    VIII. STRESS AND DEFFLECTION ANALYSIS

    Beam Segment 1 2 3 4 5 6 7 8

    Length (m)   6.275 7.000 6.275 0.00 0.00 0.00 0.00 0.00

    Additional length at the end of the beam = 0.30 m Total Length = 20.15 m

    8.1 Stress at initial

    Description Middle SEC 1-1 SEC 2-2 SEC 3-3 SEC 4-4 SEC 5-5 SEC 6-6

    x - [m] Span 0.00 6.28 13.28 19.55 19.55 9.78

    Moment DL [kN.m] 370.98 0.00 323.42 323.42 0.00 0.00 370.98

    Jacking Force [kN] 3307.15 3307.15 3307.15 3307.15 3307.15 3307.15 3307.15

    Losses due to friction % 4% 0% 2% 4% 3% 3% 4%

    Pi [kN] 3136.29 3307.15 3197.47 3144.40 3164.51 3164.51 3136.29

    e (eccentricity) [m] 0.369 0.078 0.332 0.332 0.078 0.078 0.369

    Pi.e [kN.m] -1158 -259 -1062 -1044 -248 -248 -1158

    Moment Net. [kN.m] -787 -259 -738 -721 -248 -248 -787

    Pi / A [N/mm2] 9.90 10.44 10.09 9.93 9.99 9.99 9.90

    M / Wa [N/mm2

    ] -10.47 -3.44 -9.81 -9.58 -3.29 -3.29 -10.47 Allow.

    M / Wb [N/mm2] 7.44 2.45 6.97 6.81 2.34 2.34 7.44 stress

    Initial Stresses top ( T ) -0.57 7.00 0.28 0.35 6.70 6.70 -0.57 -1.4

    bot ( B ) 17.34 12.89 17.07 16.74 12.33 12.33 17.34 19.2

    8.2 Stress at service

     

    [N/mm2]

    PCondition

    Asp%UTS

    effective

    prestress

    % Losses of

    prestress

    long term

    short term

      oa o precas , s a , ap ragm an pres ress y eam =

    > Live load and asphalt by composite ( = M2 )

    Description Middle SEC 1-1 SEC 2-2 SEC 3-3 SEC 4-4 SEC 5-5 SEC 6-6

    x - [m] Span 0.00 6.28 13.28 19.55 19.55 9.78

    Moment DL [kN.m] 901.82 0.00 786.20 786.20 0.00 0.00 901.82

    Losses due to friction % 17% 21% 18% 16% 16% 16% 17%

    effective prestress P [kN] 2573.02 2402.15 2511.84 2614.77 2610.22 2610.22 2573.02

    P . e [m] -950.26 -188.13 -833.95 -868.13 -204.42 -204.42 -950.26

    Moment --- M1 [kN.m] -48.44 -188.13 -47.75 -81.93 -204.42 -204.42 -48.44

    Moment --- M2 [kN.m] 1306.87 0.00 1139.32 1139.32 0.00 0.00 1306.87

    P / A [N/mm2] 8.13 8.13 8.13 8.13 8.13 8.13 8.13

    M 1 / Wa [N/mm2] -0.64 -2.50 -0.63 -1.09 -2.72 -2.72 -0.64

    M 1 / Wb [N/mm2] 0.46 1.78 0.45 0.77 1.93 1.93 0.46

    M 2 / Wa' [N/mm2] 2.32 0.00 2.03 2.03 0.00 0.00 2.32 Allow.

    M 2 / Wb' [N/mm2] -7.01 0.00 -6.11 -6.11 0.00 0.00 -7.01 stress

    Stress at Service slab ( S ) 4.34 0.00 3.78 3.78 0.00 0.00 4.34 12.6

    top ( T ) 9.81 5.63 9.52 9.07 5.41 5.41 9.81 18.0

      bot ( B ) 1.58 9.91 2.47 2.79 10.06 10.06 1.58 -3.2

    Note :  Moment due to dead load ( Chapter V - Moment Analysis )

    Moment due to uniform load in balance condition ( Chapter 7.4 - Effective Stress Force )

    ( Moment DL + Moment Bal )

    Pi = Initial Prestress ( at transfer condition - chapt. 7.4. Effective Stress Force )

    P = Prestress at service condition….. ( Chapter 7.4 -effective Stress Force )

    M = Moment Net.

     A = Total Area of Precast Beam ( Chapter 3.1 - Precast Beam)

    Wa = Modulus Section for Top section of Precast condition

    Wb = Modulus Section for Bottom section of Precast condition

    Wa' = Modulus Section for Top section of composite Condition……. ( Chapter 3.3 - Resume )

    Wb' = Modulus section for bottom section of composite condition ……. ( Chapter 3.3 - Resume )

    Moment Bal =

    Moment DL =

    Moment Net =

    [N/mm2]

    page 8 / 15

  • 8/19/2019 Desain Pci Girder

    13/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    8.3 Stress diagram at center span :

    8. 3. 1. STRESS DIAGRAM AT INIT IAL

    a. Stress at beam end section when Prestress is applied :

    Pi/A = 10.44 MPa M/Wa = -3.05 MPa  top  = 7.39 MPa

    + =

    Pi/A = 10.44 MPa M/Wb = 2.17 MPa  bottom  = 12.61 MPa

    effective prestress = 75% UTS M = Mdl - Pi.e = -229.24 kN-m

    Pi = 3307.15 kN  allow comp  at initial = 19.20 MPa

    eccentricity (ei) = 69.32 mm  allow tension  initial = -1.41 MPa

    Mdl = Mbeam = 0 kN-m control allow stress = meet requirement

    b. Stress at beam middle section when Prestress is applied :

    Pi/A = 9.89 MPa M/Wa = -10.45 MPa  top  = -0.56 MPa

    + =

    Pi/A = 9.89 MPa M/Wb = 7.43 MPa  bottom  = 17.32 MPa

    effective prestress = 71% UTS M = Mdl - Pi.e = -786.3 kN-m

    Pi = 3133.66 kN  allow comp  at initial = 19.20 MPa

    eccentricity (ei) = 369.32 mm  allow tension  initial = -1.41 MPa

    Mdl = Mbeam = 370.98 kN-m control allow stress = meet requirement

    8. 3. 2. STRESS DIAGRAM AT CONSTRUCTION 

    a. Stress at beam middle section when diaphragm, RC deck is install and finish fresh concreting composite slab

    Pi/A = 9.17 MPa M/Wa = -2.28 MPa  top  = 6.90 MPa

    + =

    Pi/A = 9.17 MPa M/Wb = 1.62 MPa  bottom  = 10.79 MPa

    effective prestress = 66% UTS M = Mdl - Pi.e = -171.20 kN-m

    Pi = 2905.42 kN  allow comp  at initial = 19.20 MPa

    eccentricity (ei) = 369.32 mm   allow tension  initial = -1.41 MPa

    Mdl = Mbeam + Madl = 901.82 kN-m control allow stress = meet requirement

    b. Stress at composite beam middle section due to asphaltic layer:

      slab  = 0.27 MPa

    P/A = 9.17 MPa M1/Wa = -2.28 MPa M2/Wa'= 0.15 MPa  top  = 7.04 MPa

    + + =

    P/A = 9.17 MPa M1/Wb = 1.62 MPa M2/Wb'= -0.44 MPa  bottom  = 10.35 MPa

    effective prestress = 66% UTS M1 = Mdl + Pi.e = -171.20 kN-m

    Pi = 2905.42 kN M2 = Masphalt = 82.45 kN-m

    eccentricity (ei) = 369.32 mm   allow comp  at initial = 19.20 MPa

    Mdl = Mbeam + Madl = 901.82 kN-m  allow tension  initial = -1.41 MPa

    control allow stress = meet requirement

    page 9 / 15

  • 8/19/2019 Desain Pci Girder

    14/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    8. 3.3 . STRESS DIAGRAM AT SERVICE (at cent er of sp an) 

    Stress at composite beam middle section due to Live Load

      slab  = 4.34 MPa

    P/A = 8.13 MPa M1/Wa = -0.66 MPa M2/Wa'= 2.32 MPa  top  = 9.80 MPa

    + + =

    P/A = 8.13 MPa M1/Wb = 0.47 MPa M2/Wb'= -7.01 MPa  bottom  = 1.59 MPa

    effective prestress = 58% UTS M1 = Mdl + Pi.e = -49.41 kN-m

    Pi = 2575.64 kN M2 = Masphalt + LL = 1306.87 kN-m

    eccentricity (ei) = 369.32 mm   allow comp  at service = 18.00 MPa

    Mdl = Mbeam + Madl = 901.82 kN-m  allow tension  at service = -3.16 MPa

    control allow stress = meet requirement

    8.4 Deflection

    8.4.1 Chamber due to Prestress Load

    Deflection on middle section :

    pi=

    -26.52 mmwhere : P = Prestress force

    Eci = Modulus Elasticity of Concrete

    Ixi = Section Inertia

    l = length of anchor to anchor

    ee =

    [ee+(5/6)(ec-ee)] x (P. l2/8 Ec Ix)pi=

    Distance between c.g of strand and

    c.g of concrete at end

    P

    l

    l/2 l/2

    Pec

    ee

    ec =

    8.4.2 Deflection at initial, erection and service condition (based : PCI handbook 4.6.5 Long-Time Chamber Deflection)

    Deflection () on simple span structure : where : q = Uniform Load

    q= (5/384)*q*L4/Ec Ix) P = Point Load

    p= P.l3/48 Ec Ix l = Beam Span

    Deflection calculation table : Estimating long-time cambers and deflections

    q (kN/m) P (kN) Release (1)

    multipliers Erection (2)

    multipliers Service (3)

    1. Due to Prestress force -26.52 1.80 x (1) -47.74 2.20 x (1) -58.35

    2. Due to beam weight (DL) 7.77 8.84 1.85 x (1) 16.35 2.40 x (1) 21.21

    -17.68 -31.39 -37.14

    3. Due to ADL 3.25 3.31 3.00 x (2) 9.93

    -28.08 -27.21

    4. Due to Composite Overtoping 7.86 8.00 2.30 x (2) 18.40

    -20.08 -8.81

    5. Due to asphaltic (SDL) 1.73 0.55

    -8.25

    6. Due to Live Load = UDL + KEL 14.40 109.76 7.48

    -0.78

    Resume of deflection :

    1. Deflection at service = -8.25 mm

    2. Deflection due to Live Load = 7.48 mm < allow. deflection L/800 = 24.4375 mm OK

    3. Total deflection with LL = -0.78 mm, chamber upward

    WORKING LOAD

    Loading

    Distance between c.g of strand and

    c.g of concrete at centre

    Long time cambers and deflection

    page 10 / 15

  • 8/19/2019 Desain Pci Girder

    15/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    IX. FLEXURAL STRENGTH AND DUCTILITY

    9.1 Steel Index Requirement (SNI Beton 03-2847-2002 pasal 20.8)

    Effectif slab width, is minimum length from :

    1. Girder web thickness + 16 Slab thickness =3370 mm for slab with fc' = 28.00 MPa

    2. Beam Ctc =1600 mm …. Control    Value = 0.85

    3. Span length / 4 =4887.5 mm

    Thus, Effectif slab width is : =1600 mm

    Partial Rebar:

    fy = 400 MPa

    Use 0 Dia.13 mm at tension area

    As = 0.00 mm2 b web = 170 mm

    d = 1190.5 mm

    Partial tension rebar ratio : Rebar in compresion area is neglected due calculation

    t = As / (bweb x d )   t = 0.00000   c =  

    t =   t . fy / fc   t = 0.000   c =  

    Low Relaxation strand :

    fpu = 1860 MPa

    Strand stress ratio fpu / fpy = 0.9 value p = 0.28

    dp = 1370.0 mm Aps = 2370.72 mm2

    beff  = 1600 mm

    Prestress ratio :

    p = Aps / (beff  x dp )   p = 0.00108153

    fps = fpu {1 - p /  (p.fpu/fc + d/dp (t-c))) fps = 1816.0 MPa

    p =   p fps/fc   p = 0.070

    Resume of Steel Index Requirement (SNI Beton 03-2847-2002 pasal 20.8)p + d/dp (t-c) < 0.36

    0.070 < 0.306 Under Reinf, Meet With Steel Index Requirement

    9.2 Momen Capacity

    b. eff 

    Tps = Aps . Fps

    Tps = 4305180.91 N

    strength reduction factor

    = 0.8

    Location of Depth of Concrete Compression Block (a) :

    Zone hi wi Aci=hi.wi Comp (i) Compresion

    (mm) (mm) (mm2) Point (mm) Point (mm)

    4 113.06 1600 180889.95 28.00 CIP Slab 57

    3 0.00 335 0 28.00 CIP Slab 113

    2 0.00 350 0 40.00 Beam 113

    1 0.00 170 0 40.00 Beam 113

    a = Tps / ( 0.85 x fc'' slab x beff ) a= 113.06 mm

    Mn = Mn = 5654.73 kN.m

    Mn = 4523.7873 kN.m

    Bridge life time design for 50 year,so Transient act factor = 1

    Mult = 1x 3,489kN-m   Mn / Mult = 1.297 >1, Moment capacity meet with requirement

    9.3 Cracking Capacity

    Stress at bottom girder section due to service load (bot at service) = 1.58 MPa

    Concrete flexural tension strength fr = 4.4 MPa

    Crack Moment, Mcr =  (bot at service + fr ) Wb.comp + Momen (DL+ADL+LL+I)

    Mcr = 3328.03 kN.m

    Mn / Mcr = 1.359 > 1.2 ---- Cracking Capacity requirement is achieve

    0

    (Tps (dp - comp. point) + As.fy (d-comp. point)

    Conc. Strength fc'i Cci=0.85 fc'i.Aci

    N

    0

    4305181

    Depth of Concrete Compression Block is located at zone 4

    056.53

    MPa

    Zone 3

    dp d

    Cc3

    Cc2

    Cc1

    Tps=Aps.fps

    T = As.fy

    c

    COMPOSITE BEAM

    a

    Zone 2

    one

    Zone 1

    i

    Zone 3

    page 11 / 15

  • 8/19/2019 Desain Pci Girder

    16/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    X. SHEAR ANALYSIS

    10.1 Shear calculation based on SNI 03-2847-2002

    40% Ultimate Tensile Strength = 744 MPa

    Effective Prestress = 1086 MPa Effective Prestress > 40% fpu

    Section Properties :

    Ix = 5.496E+10 mm4 Ixcomp = 1.75E+11 mm4

    Yb = 519.31728 mm Ybcomp = 938.8 mmAg = 316750 mm2

    Load :

    Effective prestress Pe = 2575.64 kN

    Factored Load : Unfactored Load :

    qult DL + ADL = 26.89 kN/m q DL + ADL = 18.88 kN/m

    qult LL = 25.92 kN/m q sdl = 1.73 kN/m

    Pult LL = 197.57 kN q DL + ADL = 20.60 kN/m

    Concrete Shear resistance contribution (Vc)

    Nominal shear strength provide by concrete

    Vc = {0.05sqrt(fc') + 5 (Vu.dp/Mu)}bw.d

    but nominal strength (Vc) should taken between : (1/6).sqrt(fc').bw.d < Vc < 0.4sqrt(fc').bw.d

    and Vu.dp/Mu ≤ 1

    where :

    Mu = Maximum factored moment at section

    Vu = Maximum factored shear force at section

    d = distance from extreme compresion fiber to centroid of prestress tendon.

    But d need not to take n less than 0.8 hcomposite

    bw = width of shear section

    Alternatif solution to calculated shear on prestress element is use for structure element which have effective prestress above 40%

    of ultimate tensile stress

    Vn = Vc + Vs where : Vn = Nominal Shear force Vu = Ultimate Shear force

    Vn = Vu / Vc = Concrete shear contribution    = Shear reduction factor

    Vs = Shear steel contribution    = 0.75

    Zonafication for shear steel stirup calculation

    Zone 1 Vn < 0.5 Vc No need to use stirup

    Zone 2 Vn < Vc+[0.35 or (75/1200) sqrt(fc')] bw d Required stirup spacing with minimum spacing :

    S ≤ 0.75 H S ≤ (av.fy) / (0.35 bw)

    S ≤ 600mm S ≤ (av.fy/fpu) (80/Aps) d sqrt(bw/d)

    Zone 3 Vn < Vc+0.33 sqrt(fc') bw d Required stirup spacing with spacing :

    S ≤ (av.fy.d) / ((Vu/)-Vc)

    S ≤ 0.75 H

    S ≤ 600mm

    Zone 4 Vn < Vc+0.67 sqrt(fc') bw d Required tight stirup spacing with spacing :

    S ≤ (av.fy.d) / ((Vu/)-Vc)

    S ≤ 0.375 H

    S ≤ 300mm

    Zone 5 Vn > Vc+0.67 sqrt(fc') bw d Section to small, change beam section

    RSNI T-12-2005 : Shear force on beam is hold a part by concrete and the rest of force is hold by shear steel. Concrete contribution

    (vc), is define as shear force when diagonal cracking appear.

    page 12 / 15

  • 8/19/2019 Desain Pci Girder

    17/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    Shear rebar steel

    fy = 400 MPa shear width :

    Use 2 leg Dia.13 mm bw = 170 mm

    Av = 265.46 mm2 bw-e = 650 mm

    Shear steel requirement calculation table :

    dist. ecomp d=dp>0.8H Vu Mu dp(Vu/Mu) Vc Vn Vs Shear Use Space use

    m m m kN kN-m kN kN kN Zonasi mm mm

    0.1 0.504 1.08 707.49 71.01 1.00 980.51 943.32 -37.19 2 600 300

    0.3875 0.520 1.10 689.40 271.11 1.00 995.59 919.20 -76.39 2 600 3000.775 0.542 1.12 665.02 531.25 1.00 1015.20 886.69 -128.51 2 600 300

    1.7 0.590 1.17 606.82 1107.91 0.64 701.82 809.10 107.27 3 600 300

    2 0.605 1.19 587.95 1281.52 0.54 612.19 783.93 171.74 3 600 300

    3 0.649 1.23 525.03 1812.74 0.36 438.72 700.04 261.32 3 500 300

    4 0.687 1.27 462.12 2270.95 0.26 346.48 616.16 269.68 3 499 300

    5 0.719 1.30 399.20 2656.13 0.20 286.00 532.27 246.27 3 561 300

    6 0.745 1.33 336.29 2968.30 0.15 240.79 448.38 207.59 3 600 300

    7 0.765 1.35 273.37 3207.44 0.11 203.75 364.50 160.75 3 600 300

    8 0.779 1.36 210.46 3373.56 0.08 171.27 280.61 109.34 3 600 300

    9 0.787 1.37 147.54 3466.66 0.06 141.27 196.72 55.45 2 600 300

    9.775 0.789 1.37 98.78 3488.59 0.04 118.82 131.71 12.89 2 600 300

    1000.0

    1200.0

    1400.0

    1600.0

    1800.0

    2000.0

     Zona 1

     Zona 2

    Shear  

    Steel  

    Requirement  

    PositionkN

    x (m) from range nos shear

    span edge (m) (row)

    Shear spacing S - 75 0 0 0

    Shear spacing S - 100 0 0 0

    Shear spacing S - 125 0 0 0

    Shear spacing S - 150 0 0 0

    Shear spacing S - 200 0 0 0

    Shear spacing S - 250 0 0 0

    Shear spacing S - 300 9.775 9.775 33

    total shear rebar per half span (row) = 33

    total shear rebar per span (row) = 66

    Shear Rebar configuration

    0.0

    200.0

    400.0

    600.0

    800.0

    . Zona 3

     Zona 4

    Vn =Vu/f 

    beam section 

     point 

    page 13 / 15

  • 8/19/2019 Desain Pci Girder

    18/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    10.2 Horisontal Shear

    Width of contact surface area bv = 200 mm

    Effective Height d = 1216 mm

      = 0.75

    fy = 400 MPa

    Use 2 leg Dia.13 mm

    Area horisontal Shear Steel Avh = 265.46 mm2

    Horisontal Shear steel Spacing s = 300 mmHorisontal Shear steel ratio   v = 0.442%

    Shear horisontal Nominal

    Vnh = (1.8 Mpa + 0.6 v. fy) . bv .d

    Vnh = 696.00 KN

    Requirement for shear horisontal steel :

    Vult comp = 46.03 MPa

    ten- Nos Anchor sheath Ult. Point Block End Bearing

    don strand Height hole Load Area Stress

    ( ai ) (Pu) (A) (EBS=Pu/A)

    mm kN mm2 Mpa Mpa

    0 0

    0 0

    0 0

    0 0

    1 12 215 63 1984.29 43107.75 46.03 38.08 EBS > Nominal compresion (not good)

    2 12 215 63 1984.29 43107.75 46.03 38.08 EBS > Nominal compresion (not good)

    Remark

    Nominal

    comp. fci

    page 14 / 15

  • 8/19/2019 Desain Pci Girder

    19/114

    PCI Monolith H-125cm ; L-20.15m ; CTC-160cm - RSNI (Rev.04)

    2. Stirrup and Spalling Reinforcement

    Load factor = 1.2

    Reduction factor () = 0.85

    fy = 400 MPa

    Bursting Steel

    Diameter closed stirup = 13 mm

    Stirup Area = 132.7 mm2

    ten- Nos Anchor sheath Jacking Bursting End

    don strand Heighthole Force Area Bearing sp

    ( ai ) (Abs) (EBS) fcc' fl   p

    mm kN mm2 Mpa Mpa Mpa (mm)

    0   0

    0   0

    0   0

    0   0

    1   12 215 63 1653.5772 43107.75 38.36 64.47 7.9 3.96% 62.4

    2   12 215 63 1653.5772 43107.75 38.36 64.47 7.9 3.96% 62.4

    total 24

     Anchor Zone Stirrup

    JF Load = 3307.15 kN    a1 = 430.00 mm

    Ult. JF = 3968.59 kN H = 1250 mm

    T bursting = 0.25  Ult.JF (1-a1/H) d bursting = 0.5(h-2e)

    T bursting = 650.84799 kN d bursting = 694.317285 mm

    Diameter closed stirup = 13 mm Anchor Stirup Rebar = T bursting / 0.5 fy

    No. Leg of stirrup = 4 leg Anchor Stirup Rebar = 3254.2 mm2

    Stirup Area = 530.9 mm2 use no of stirup = 7 pcs

    Spalling Rebar 

    Spalling Force = 2% JF

    Spalling Force = 66.1 kN

    EBS/0.7 (fcc'-fci)/4.1 fl / 0.5 fy

    Diameter closed stirup = 13 mm

    Stirup Area = 132.7 mm2

    use no of stirup = 3 pcs

    page 15 / 15

  • 8/19/2019 Desain Pci Girder

    20/114

    PT  WIJAYA KARYA BETON 

    TECHNICAL CALCULATION 

    PCI  GIRDER MONOLITH  FOR HIGHWAY  BRIDGES

    Project : TOLL SURABAYA ‐ GRESIK 

    Product : PCI Girder  Monolith H‐125cm  ; L‐20.80m  ; CTC ‐160cm  ;  fc'  50MPa

     Job no : 13014 B

    Rev. No. : 04

    Design Reff. :   -   SNI T ‐12‐2004

    Perencanaan Struktur  Beton Untuk   Jembatan

    -   RSNI T ‐02‐2005

    Standar  Pembebanan Untuk   Jembatan

    -   PCI : Bridge Design Manual 

    Gedung  JW, 1st

    & 2nd

     floor 

     Jl.  Jatiwaringin no. 54, Pondok  Gede ‐ Bekasi 

    Ph: +62‐21‐8497 ‐3363   fax  : +62‐21‐8497 ‐3391

    www.wika‐beton.co.id 

  • 8/19/2019 Desain Pci Girder

    21/114

    PT  

    WIJAYA 

    KARYA 

    BETON 

     Job no. : 13014 B

    Rev. : 04

    TECHNICAL 

    CALCULATION  

     APPROVAL

    PCI  GIRDER MONOLITH  FOR HIGHWAY  BRIDGES

    PCI Girder  Monolith H‐125cm  ; L‐20.80m  ; CTC ‐160cm  ;  fc'  50MPa

     Approved  by  :

    TOLL SURABAYA ‐ GRESIK 

    Design by  :

    18  Juni  2013

    Suko

    Technical  Staff 

    Ir.  Achmad   Arifin Ignatius Harry  S., S.T.

    Technical  Manager Chief   of  Technical 

    Consultan  /  Owner 

     Approved  by  : Checked   by 

    18  Juni  2013 18  Juni  2013

  • 8/19/2019 Desain Pci Girder

    22/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    1. BEAM SPECIFICATION

    Span = 20.20 m (beam length = 20.80 m)

    Beam Height ( H ) = 1250 mm

    Distance ctc of beam ( s ) = 1600 mm

    Slab thickness = 200 mm

    Beam Compressive strength = 50 MPaSlab Compressive strength = 28 MPa

    Bridge life time = 50 years

    Segment Arr angement 

    Beam Segment 1 2 3 4 5 6 7

    Length (m) 6.600 7.000 6.600 0.00 0.00 0.00 0.00

    Additional length at the end of beam = 0.30 m

    Total length of the beam = 20.80 m

    Total beam weight = 17.41 ton

    2. STRESSING

    Nos of PC Strand = 28 strand 12.7 mm (PC Strand 270 grade, low relaxation)

    Strand configurationNo. number H strand bottom (mm)

    Tendon strand edge mid Jacking Force = 75% UTS

    0 0 0 0 UTS of Strand = 1860.00 MPa

    0 0 0 0 Total Losses = 16.89% at middle

    0 0 0 0 fc initial = 80.0% fc'

    RESUME OF PCI GIRDER MONOLITH TECHNICALLY CALCULATION

    1 4 900 300

    2 12 600 200

    3 12 300 100

    total 28 514.29 171.43

    3. LOADING

    1. Dead Loada. Precast Beam = 7.77 kN/m

    b. Slab = 7.86 kN/m Slab thickness = 200 mm

    c. Deck Slab = 2.31 kN/m Deck slab thickness = 70 mm

    d. Asphalt = 1.73 kN/m Asphalt thickness = 50 mm

    e. Diaphragm = 6.92 kN for 1 diaphragm

    No. Diaphragm 4 pcs equivalent load = 0.91 kN/m

    2. Live Load

    Taken from "Pembebanan Untuk Jembatan RSNI T-02-2005"

    Moment force cause by D Loading is bigger than Truck Loading

    a. Dynamic Load Allowance (DLA) = 1.40 for span length

  • 8/19/2019 Desain Pci Girder

    23/114

  • 8/19/2019 Desain Pci Girder

    24/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    20.20 M

    I. DATA

    0.3 L= 20.20 M 0.3

    Beam length = 20.80 m ( edge anchor to edge anchor : 20.50 m)

    Beam spacing (s)=

    1600 mmConcrete Slab thickness (CIP) = 200 mm

    Asphalt thickness = 50 mm

    Deck slab thickness = 70 mm

    Cross Section

    H = 1250 mm tfl-1 = 75 mm

    A = 350 mm tfl-2 = 75 mm

    B = 650 mm tfl-3 = 100 mm

    tweb = 170 mm tfl-4 = 125 mm

    II. MATERIAL

    2.1 Concrete

      Beam Slab

     

    at service fc' = 50.0 28.0 [N/mm2]

    at initial 80% fc' fc'i = 40.0 [N/mm2]

    Allowable stress

    24.0 [N/mm2]Compressive

      SPAN L =

    Compressive strength

    Allowable stress at initial ………… (SNI T-1 2-20 04 )

    0.6 * fc'i =

    TECHNICAL CALCULATION OF PCI MONOLITH BEAM FOR HIGHWAY BRIDGES

    A

    H

    B

    tfl-1

    tfl-2

    tfl-3

    tfl-4

    tweb

    Tensile 1.6 [N/mm ]

    22.5 12.6 [N/mm2]

    Tensile 3.5 2.6 [N/mm2]

    wc = 2500.0 2500.0 [kg/m3]

    Ec = wc1.5

    *0.043*sqrt(fc') = 38007.0 28441.8 [N/mm2]

    Eci = wc

    1.5

    *0.043*sqrt(fci') = 33994.5 [N/mm

    2

    ]Concrete flexural tension strength (fr)

    f r = 0.7*sqrt(fc') = 4.9 [N/mm2]

    2.2

     ( ASTM A 416 Grade 270 Low Relaxation or JIS G 3536 )

    dia : 12.7 [mm]

    Ast : 98.78 [mm2]

    Es : 1.93E+05 [N/mm2]

    fu : 1860 [N/mm2]

    2.3

    - Diameter dia : 13 [mm]- Eff. Section area Ast : 132.73 [cm

    2]

    - Modulus of elasticity Es : 2.10E+05 [N/mm2]

    - Yield stress fy : 400 [N/mm2]

    - Eff. Section area

    Compressive

    Steel Reinforcement

    [Uncoated stress relieve seven wires strand]

    - Diameter strand

    - Ultimate tensile strength

    - Modulus of elasticity

    Prestressing Cable

    0.25 * Sqrt(fc'i) =

    0.45 * fc' =

    0.5 * Sqrt(fc') =

    Modulus of elasticity

    Allowable stress at service ………. (SNI T-1 2-20 04 )

    Concrete unit weight

    page 1 / 15

  • 8/19/2019 Desain Pci Girder

    25/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    III. SECTION ANALYSIS

    Remark :

    Ep 1 = 38007 [N/mm2] [Girder]

    Ep 2 = 28442 [N/mm2] [Slab]

    n = Ep 2 / Ep 1

    n = 0.75

    3.1 Precast Beam

    [in mm ]

    Section Width Area Level Yb Area*Yb Io Area*d2 Ix

    Height Bottom Upper mm2 mm mm mm

    3mm

    4mm

    4mm

    4

    6 0.0 150.0 150.0 0 1250 1250.0 0 0 0 0

    5 75.0 350.0 350.0 26250 1175 1212.5 31828125 12304688 12613184758 12625489445

    4 75.0 170.0 350.0 19500 1100 1141.8 22265625 8775541 7556605867 7565381408

    3 875.0 170.0 170.0 148750 225 662.5 98546875 9490559896 3049566872 12540126768

    2 100.0 650.0 170.0 41000 125 165.2 6775000 30264228 5140086368 5170350595

    1 125.0 650.0 650.0 81250 0 62.5 5078125 105794271 16955415084 17061209355

    Total 1250.0 316750 519.3 164493750 9647698623 45314858949 54962557571

    3.2 Composite Beam

    [in mm ]Zone Height Width Area Level Yb Area*Yb Io Area*d

    2 Ix

    Section Bottom Upper mm2 mm mm mm

    3mm

    4mm

    4mm

    4

    2 200.0 1197.3 1197.3 239466 1320 1420.0 340041823 798220242.5 61294439175 62092659418

    70.0 149.7 149.7 10477 1250 1285.0 13462483 4277961.612 1441454078 1445732040

    1 1250.0 650.0 350.0 316750 0 519.3 164493750 54962557571 49359610133 1.04322E+11

    Zone

    Ya'

    1

    2

    3

    Yb'

    COMPOSITE BEAM

    1

    2

    3

    4

    5

    Ya

    Yb

    PRECAST BEAM

    Base Line

    o a . . . + . +

    3.3 R e s u m e

    [in mm ]

    Description Area (mm2) Ya (mm) Yb (mm) Ix (mm

    4) Wa (mm

    3) Wb (mm

    3)

    Precast Beam 316750 731 519.3 54962557571 75220826 105836180

    Composite Beam [composite] 566693 606 914.1 167860559162 277030629 183640372

    [precast] 336 499692375

     

    IV. LOADING4.1 Dead Load

    a. Precast Beam q1 = Ac precast girder x conc. Precast

    q1 = 0.317 x 2.50 = 0.792 [t/m'] = 7.77 [kN/m']

    b. Slab q2 = Ac slab CIP x conc. slab

    q2 = 0.334 x 2.40 = 0.802 [t/m'] = 7.86 [kN/m']

    c. Deck slab q3 = Ac deck slab x s

    q3 = 0.098 x 2.40 = 0.235 [t/m'] = 2.31 [kN/m']

    d. Asphaltic q4 = Ac asphaltic x s

    q4 = 0.080 x 2.20 = 0.176 [t/m'] = 1.73 [kN/m']

    e. Diaphragm p = Vol diaph with 0.20m thickness x diaph

    p = 0.294 x 2.40 = 0.706 [ton'] = 6.92 [kN']

    note :  from kg to N, multiply by 9.8060 

    Number of diaph = 4 pcs

    Diaph. placement 1 2 3 4

    Location 0.00 6.73 13.47 20.20

    Support Va 6.92 4.62 2.31 0.00

    Mid Moment 0.00 23.31 23.31 0.00

    Total Diaphragma Flexural Moment at Middle Span 46.61 kN.m

    eqivalen load q diaphragm q5= 0.91 [kN/m']

    page 2 / 15

  • 8/19/2019 Desain Pci Girder

    26/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    4.2 Live Load

    Taken from "Pembebanan Untuk Jembatan RSNI T-02-2005"

    4.2.1. 

    "T" 

    Loading 

    (Beban 

    Truk)

    Unit   P1 P2 P3 M.max di x =   10.100   m

    kN   225 225 50 DLA  = 30%

    1.3 1.3 1.3 Impact = 1 + DLA = 1.3

    kN   292.5 292.5 65

    m   6.100 10.100 15.100

    kN   204.17 146.25 16.41

    kNkN-m

    kN-m

    4.2.2. "D" Loading (Beban Lajur)

    Taken from "Pembebanan Untuk Jembatan RSNI T-02-2005"

    Load type :

    Distribution Load Chart : Dynamics Load Factored Chart :

    0.47

    Impact

    DF = S/3.4

    Load

    Item

    LL + I

    1192.94

    M max

    Va

    Va

    M x DF

    2535.00

    Distance

    366.83

    225kN 225kN50kN

    Line Load (D load)

    a. Dynamic Load Allowance [DLA] DLA = 1 + 0,4 = 1.40 Span = 90 m

    b. Knife Edge Load (KEL) = 49.00 [kN/m']

    c. Distribution Factor (DF) = 1.00

    d. Distribution Loadq = 9.00 kN/m which : q = 9 kN/m for Span 30 m

    e. Live load

    Distribution load, qudl = DF x q x s

    = 1.00 x 9.00 x 1.60 = 14.40 [kN/m']

    KEL, PKEL = DF x DLA x KEL x s

    = 1.00 x 1.40 x 49.00 x 1.60 = 109.76 [kN']

    M.max at 0.5 span =   10.100 m

    Va = 200.32 kN

    M LL = 1 28 8. 76 k N. m

    RESUME : Moment force cause by D Loading is bigger than Truck Loading

    page 3 / 15

  • 8/19/2019 Desain Pci Girder

    27/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    V. MOMENT ANALYSIS

    [in kN-meter ]

    Mid Sec 1-1 Sec 2-2 Sec 3-3 Sec 4-4 Sec 5-5 Sec 6-6

    span 0.00 6.60 13.60 20.20 20.20 10.10 (m)

    DL Precast beam 396.06 0.00 348.50 348.50 0.00 0.00 396.06

    396.06 0.00 348.50 348.50 0.00 0.00 396.06

    DL Slab 400.92 0.00 352.78 352.78 0.00 0.00 400.92

    ADL Asphaltic Layer 88.03 0.00 77.46 77.46 0.00 0.00 88.03

    SDL Diaphragm+Deck Slab 164.25 0.00 144.52 144.52 0.00 0.00 164.25

    653.20 0.00 574.76 574.76 0.00 0.00 653.20LL Distribution load 734.47 0.00 646.27 646.27 0.00 0.00 734.47

    KEL 554.29 0.00 487.73 487.73 0.00 0.00 554.29

    1288.76 0.00 1134.00 1134.00 0.00 0.00 1288.76

    2338.02 0.00 2057.26 2057.26 0.00 0.00 2338.02

    3689.39 0.00 3246.35 3246.35 0.00 0.00 3689.39

    Ultimate total = 1,2*(Beam+Diaphragm+Deck Slab)+1,3*Slab+2*Asphaltic+1,8*(LL+I)

    VI. SHEAR ANALYSIS

    [in kN]

    Mid Sec 1-1 Sec 2-2 Sec 3-3 Sec 4-4 Sec 5-5 Sec 6-6

    span 0.00 6.60 13.60 20.20 20.20 10.10 (m)

    DL 0.00 78.43 27.18 -27.18 -78.43 -78.43 0.00

    0.00 78.43 27.18 -27.18 -78.43 -78.43 0.00

    DL 0.00 79.39 27.51 -27.51 -79.39 -79.39 0.00

    ADL 0.00 17.43 6.04 -6.04 -17.43 -17.43 0.00

    SDL 0.00 32.52 11.27 -11.27 -32.52 -32.52 0.00

    0.00 129.35 44.82 -44.82 -129.35 -129.35 0.00

    Distribution load 0.00 145.44 50.40 -50.40 -145.44 -145.44 0.00

    KEL 54.88 109.76 73.90 -73.90 -109.76 -109.76 54.88

    54.88 255.20 124.30 -124.30 -255.20 -255.20 54.88

    54.88 462.97 196.30 -196.30 -462.97 -462.97 54.88Total (DL + LL)

    Asphaltic Layer

    Total (DL + LL)

    Description

    Subtot al 

    Subtot al 

    Subtot al 

    Subtot al 

    Type

    Precast beam

    Ultimate total

    Slab

    Diaphragm+Deck slab

     

    Subtot al 

    LL

    Type Description

    Subtot al 

    . . . - . - . - . .

    Ultimate total = 1,2*(Beam+Diaphragm+Deck Slab)+1,3*Slab+2*Asphaltic+1,8*(LL+I)

    VII. PRESTRESSING CABLE

    7.1 Cable Profile

    [in: mm ]

    ten- Nos Profile Total JF

    don strand Edge Middle left right tension (kN)

    0   0 0 0 0% 0% 0% 0

    0   0 0 0 0% 0% 0% 0

    0   0 0 0 0% 0% 0% 0

    1   4 900 300 75% 0% 75% 551

    2   12 600 200 75% 0% 75% 1654

    3   12 300 100 75% 0% 75% 1654

    total 28 514.29 171.43 75% 0% 75% 3858

    Parabol ic curve (Average of Str and's posi t ion ver t i ca l ly f rom t he bot tom of beam ( Value for Y axis ) ) 

    Y = A.x2+ B.x + C

    where : A = Constanta : ( (Ymiddle + Yedge)/(L/2)2) A = 0.003263

    B = Constanta : ( L x A ) B = -0.066899

    C = Average of strand's position when the parabolic curve reach the Y axis

     Average of Strand's position vertically from the bottom of beam ( Value for Y axis )

    Y = 0.003263 X + -0.066899 X + 0.514286

    Cable tendon angle :

    tg o  = 0.006527 X + -0.066899

    eccentricity of tendon at middle section

    Eccentricity [e] = Yb - Ys = 347.89 mm

    Yb = Distance of Neutral Axis from the bottom of non composite beam ( Chapter 3.3 - Resume )

    Ys = Distance of tendon from the bottom of the beam at the middle span ( Chapter 7.1, Cable Profile-middle)

    Tension

    ma e o a

    page 4 / 15

  • 8/19/2019 Desain Pci Girder

    28/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

     Average of Strand's position vertically from the bottom of beam ( Value for Y axis )

    7.2 Losses of Prestress

    1. Losses of Prestress (Short Term)

    a. Friction

    The equation for calculating the loss of prestress due to friction is :

    Px = Po.e-  + .x

    ( AASHTO 1992, Chapt. 9.16.1 )

    Where :

    Px = Prestress force at section distance x from tensile point.

    Po = Jacking force ( tensile force at anchor, initial)

     = friction coefficient

     = Change of cable angle from tensile point to x section

    k = Wobble coefficient

    x = Distance from tensile point to x  section

    Friction and Wooble coeficient for grouting tendon in metal sheating

    with Seven Wire Strand :    = 0.20

    When the jacking force is applied at the stressing end, the tendon will elongate. The elongation will be resisted by friction

    between the strand and its sheating or duct. As the result of this friction, force will be decreased with distance from the jacking

    end. The friction is comprised of two effects : curvature friction which is a function of the thendons profile, and wooble friction

    which is the result of minor horizontal or vertical deviation form intended profile.

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    0 5 10 15 20 25

    60.0%

    65.0%

    70.0%

    75.0%

    80.0%

    0.00 10.00 20.00 30.00

    k = 0.003

    Table of calculation due to Friction

    ten- Nos Profile % JF a b  

    don strand Edge Middle from UTS (rad) 0.00 10.25 20.50

    0 0 0 0 0% 0.00000 0 0.000 0.0% 0.00% 0.0%

    0 0 0 0 0% 0.00000 0 0.000 0.0% 0.00% 0.0%

    0 0 0 0 0% 0.00000 0 0.000 0.0% 0.00% 0.0%

    1 4 900 300 75% 0.00571 -0.1170732 0.233 75.0% 69.42% 67.3%2 12 600 200 75% 0.00381 -0.0780488 0.156 75.0% 70.50% 68.4%

    3 12 300 100 75% 0.00190 -0.0390244 0.078 75.0% 71.60% 69.4%

    total 28 514.29 171.43 75% 0.00326 -0.066899 0.134 75.0% 70.8% 68.7%

    b. Anchor set

    Exact calculation is typical done as an iterative process as follows :

    1. Calculated loss of prestress per length with assuming a linear variation in prestress at start to end of tendon

     = Loss of prestress per length

     = Fpu . (P at JF - P at end of tendon) / distance JF to end of tendon

    2. Assuming drawn-in ().

    3. The length, x, over which anchorage set is effective is determined as follows :

    x = Sqrt ( Es .  /  )

    effective anchorage set point position :

      , . ,

    retracts pulling the wedges in to the anchorage device and locks the strand in place. The lost in elongation is small . It depend on

    the wedges, the jack and the jacking procedure. This lost in elongation is resisted by friction just as the initial elongation is

    resisted by friction.

    Prestress force (Px) = % UTS

     

    Cable change

    angle  point 

     X  (effective anchorage set)

    Anchorage

    set area

     X  (effective anchorage set)

    Cable change

    angle  point 

    Anchorage

    set area

    page 5 / 15

  • 8/19/2019 Desain Pci Girder

    29/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    4. Check Assuming drawn-in (). The displacement of jacking end of tendon should be equal with assumption

      = Anchorage set area x Ult. Tensile Stress / Modulus Elasticity of PC Strand

      = Aset . Fpu / Es

      = equal with assumption (trial)

    Table of calculation due anchor set

    ten- Nos   draw in

    don strand Mpa/mm mm X (m) Px (% UTS) X (m) Px (% UTS) 0.00 10.25 20.50

    0 0 0.00000 0.00 0.00 0.00% 0.00 0.00% 0.0% 0.00% 0.0%

    0 0 0.00000 0.00 0.00 0.00% 0.00 0.00% 0.0% 0.00% 0.0%

    0 0 0.00000 0.00 0.00 0.00% 0.00 0.00% 0.0% 0.00% 0.0%

    1 4 0.00697 8.00 14.88 68.47% 0.00 0.00% 61.9% 67.52% 67.3%

    2 12 0.00602 8.00 16.01 69.30% 0.00 0.00% 63.6% 68.10% 68.4%

    3 12 0.00505 8.00 17.49 70.07% 0.00 0.00% 65.1% 68.54% 69.4%

    total 28 0.00574 8.00 16.48 69.51% 0.00 0.00% 64.02% 68.20% 68.67%

    c. Elastic Shortening ( ES )

    Elastic shortening refers to the shortening of the concrete as the postensioning force is applied.

    From right sideFrom left side after anchorage set = % UTS

    55.0%

    60.0%

    65.0%

    70.0%

    75.0%

    80.0%

    0.00 10.00 20.00 30.00

    Prestress tendon section

    LOSSES 

    OF  

    PRESTRESS 

    DUE  

    TO 

     ANCHORAGE  

    SET 

    64.02%64.02%64.02%64.02%

    68.20%

    69.85%69.61%69.30%68.67%

    60.0%

    65.0%

    70.0%

    75.0%

    0.00 5.00 10.00 15.00 20.00 25.00

    Prestress 

    tendon 

    section

     AVERAGE  LOSSES OF  PRESTRESS 

    As the concrete shorterns, the tendon length also shortens, resulting in a loss of prestress.

    The following simplified equation to estimate the appropriate amount of prestress loss to attribute to elastic shortening

    for member with bonded tendons :

    ES = Kes . Es . f cir / Eci

    where:

    Kes = 0.50 for post-tensioned members when tendon are tensioned in sequential order to the same tension

    ES = Elastic modulus of tendon material

    Eci = Elastic modulus of the concrete at the time of prestress transfer

    f cir =

    Assumption Losses due ES 2.39%

    Pi = Total prestressing force at release

    Pi = 68.2% - 2.39% = 65.82% UTS x nos x Aps = 3385.9865 kN

    f cir = Pi / A + Pi. ec2/ I + Mg.ec/I

    f cir = 15.64 N/mm2

    so, ES = 44.39 N/mm2, percent actual ES losses = Es/fpu 2.39% equal with losses assumption

    2. Losses of Prestress ( Long Term )

    d. Shrinkage ( SH )

    SH = 8,2*e-6*Ksh*ES*(1-0,06*V/S)*(100-RH)  (ACI 318-95, Chapt. 18.6)

    SH = 30.33 N/mm2 percent actual SH losses = SH/fpu 1.63%

    Where :

    The factor Ksh account for the shringkage that will have taken place before the prestressing applied.for postensioning members, Ksh is taken from the following table :

    Days 1 3 5 7 10 20 30 60

    Ksh 0.92 0.85 0.8 0.77 0.73 0.64 0.58 0.45

    Ksh = 0.64

    V/S = 0.08 Volume = 6.59 m3

    Surface = 81.21 m2

    RH = 70.00

    concrete stress at the centre of gravity of prestressing tendons due to prestressing force at transfer and the self weight ofthe member at the section of maximum positive moment

    "days" is the number of days between the end of moist curing and the application of prestress.In a structures

    that are not moist cured, Ksh is typiclly based on when the concrete was cast

    page 6 / 15

  • 8/19/2019 Desain Pci Girder

    30/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    e. Creep ( CR )

    CR = Kcr*(Es/Ec)*(fcir-fcds) (ACI 318-95, Chapt. 18.6)

    CR = 94.83 N/mm2

    percent actual CR losses = CR/fpu 5.10%

    Where :

    Kcr = 1.60 (for postensioned member)fcir = stress at center point prestress force, initial condition

    fcir = 15.639 N/mm2

    Msd = Moment due to all superimposed permanent dead loads applied after prestressing

    Msd = 653.20 kN.m

    fcds = Stress in a concrete at the cgs of the tendon due to all superimposed dead load

    fcds 1 = Msdl.e/I = 3.58 N/mm2

    component of fcd due to load on the plain beam

    fcds 2 = Madl.e/Ic = 0.39 N/mm2

    component of fcd due to load on the composite beam

    fcds = fcds 1 + fcds 2 = 3.97 N/mm2

    f. Steel Relaxation ( RE )

    The equation for prestress loss due to relaxation of tendons is :

    RE = [ Kre - J*(SH+CR+ES) ] *C (ACI 318-95, Chapt. 18.6)

    RE = 18.26 N/mm2

    percent actual RE losses = RE/fpu 0.98%

    Where :

    Kre = 5000.00 (for 270 grade, low relaxation strand)

    J = 0.04 (for 270 grade, low relaxation strand)

     

    Relaxation is defined as a gradual decrease of stress in a material under constant strain. In the case of steel, relaxation is

    the result of permanent alteration of the grain structure. The rate of relaxation at any point in time depends on the

    stress level in the tendon at that time. Because of other prestress losses, there is a continual reduction of tendon strss;

    this causes a reduction in the relaxation rate.

    Over time, the compresive stress induced by postensioning causes a shortening of the concrete member. The increase in

    strain due to a sustained stress is refered to as creep. Loss of prestress due to a creep is nominally propotional to the net

    permanent compresive stressin the concrete. the net permanent compressive stress is the initial compressive stress in the

    concrete due to the prestressing minus the tensile stress due to self weight and superimposed deadload moments

      = . or p pu = .

    RESUME DUE TO SHORT & LONG TERM LOSSES

    Losses

    Section

    x (m)

    0.00 75.00% 64.02% 61.64% 13.36% 60.00% 54.91% 53.92% 21.08%

    0.00 75.00% 64.02% 61.64% 13.36% 60.00% 54.91% 53.92% 21.08%

    0.00 75.00% 64.02% 61.64% 13.36% 60.00% 54.91% 53.92% 21.08%

    0.00 75.00% 64.02% 61.64% 13.36% 60.00% 54.91% 53.92% 21.08%10.25 70.82% 68.20% 65.82% 5.00% 64.19% 59.09% 58.11% 12.71%

    14.88 69.85% 69.85% 67.46% 2.39% 65.83% 60.73% 59.75% 10.10%

    16.01 69.61% 69.61% 67.22% 2.39% 65.59% 60.50% 59.51% 10.10%

    17.49 69.30% 69.30% 66.92% 2.39% 65.29% 60.19% 59.21% 10.10%

    20.50 68.67% 68.67% 66.29% 2.39% 64.66% 59.56% 58.58% 10.10%

    friction Losses equotion :

    0 > x > 10.25

    75.00% -+ 0.41% x

    10.3 > x > 20.50 

    70.82% + 0.05% x x - 10.25

    Long term Losses equotion :

    0 > x > 10.25

    53.92% + 0.41% x

    10.25 > x > 14.88

    58.11% + 0.35% x x - 10.25

    14.88 > x > 16.01

    59.75% -+ 0.21% x x - 14.8798744

    16.01 > x > 17.49 

    59.51% -+ 0.21% x x - 16.0124668

    17.49 > x > 20.50 

    59.21% -+ 0.21% x x - 17.4863251

    II. Long Term Losses 

    FrictionShrinkage

    (SH)

    Elastic

    Shortening

    Steel

    RelaxationAnchor set

    I. Short Ter m Losses 

    Creep (CR)Total

    Losses (%)

    Total Losses

    (%)

    75.00%

    70.82%69.85%   69.61%   69.30%

    68.67%

    64.02%

    68.20%

    69.85% 69.30%68.67%

    61.64%

    65.82%

    67.46%   67.22%   66.92%

    66.29%

    60.00%

    64.19%65.83%   65.59%   65.29% 64.66%

    54.91%

    59.09%

    60.73%   60.50%   60.19% 59.56%

    53.92%

    58.11%59.75%   59.51%   59.21% 58.58%

    50.00%

    65.00%

    80.00%

    0.00 10.25 14.88 16.01 17.49 20.50

    Friction

     Anchorset

    ElasticShortening(ES)

    Shrinkage(SH)

    Creep(CR)

    Steel Relaxation(SR)

    LOSSES OF  PRESTRESS DIAGRAM 

    Prestress tendon section

    UTS

    page 7 / 15

  • 8/19/2019 Desain Pci Girder

    31/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    7.3 Effective Stress Force

    Resume Prestressed Force at middle

    Cable

    stress

    [N/mm2] [mm

    2] [kN]

    9.2% 65.8% 1224 2765.84 3385.99

    16.9% 58.1% 1081 2765.84 2989.32

    VIII. STRESS AND DEFFLECTION ANALYSIS

    Beam Segment 1 2 3 4 5 6 7 8

    Length (m)   6.600 7.000 6.600 0.00 0.00 0.00 0.00 0.00

    Additional length at the end of the beam = 0.30 m Total Length = 20.80 m

    8.1 Stress at initial

    Description Middle SEC 1-1 SEC 2-2 SEC 3-3 SEC 4-4 SEC 5-5 SEC 6-6

    x - [m] Span 0.00 6.60 13.60 20.20 20.20 10.10

    Moment DL [kN.m] 396.06 0.00 348.50 348.50 0.00 0.00 396.06

    Jacking Force [kN] 3858.35 3858.35 3858.35 3858.35 3858.35 3858.35 3858.35

    Losses due to friction % 4% 0% 3% 4% 4% 4% 4%

    Pi [kN] 3646.30 3858.35 3719.78 3651.01 3666.50 3666.50 3646.30

    e (eccentricity) [m] 0.348 0.015 0.308 0.308 0.015 0.015 0.348

    Pi.e [kN.m] -1269 -58 -1145 -1124 -55 -55 -1269

    Moment Net. [kN.m] -872 -58 -797 -776 -55 -55 -872

    Pi / A [N/mm2] 11.51 12.18 11.74 11.53 11.58 11.58 11.51

    M / Wa [N/mm2

    ] -11.60 -0.77 -10.59 -10.31 -0.73 -0.73 -11.60 Allow.

    M / Wb [N/mm2] 8.24 0.55 7.53 7.33 0.52 0.52 8.24 stress

    Initial Stresses top ( T ) -0.09 11.41 1.15 1.21 10.84 10.84 -0.09 -1.6

    bot ( B ) 19.75 12.73 19.27 18.86 12.09 12.09 19.75 24.0

    8.2 Stress at service

     

    [N/mm2]

    PCondition

    Asp%UTS

    effective

    prestress

    % Losses of

    prestress

    long term

    short term

      oa o precas , s a , ap ragm an pres ress y eam =

    > Live load and asphalt by composite ( = M2 )

    Description Middle SEC 1-1 SEC 2-2 SEC 3-3 SEC 4-4 SEC 5-5 SEC 6-6

    x - [m] Span 0.00 6.60 13.60 20.20 20.20 10.10

    Moment DL [kN.m] 961.23 0.00 845.80 845.80 0.00 0.00 961.23

    Losses due to friction % 17% 21% 18% 16% 16% 16% 17%

    effective prestress P [kN] 2986.17 2774.12 2912.68 3050.49 3016.60 3016.60 2986.17

    P . e [m] -1038.85 -41.59 -896.85 -939.28 -45.23 -45.23 -1038.85

    Moment --- M1 [kN.m] -77.62 -41.59 -51.05 -93.48 -45.23 -45.23 -77.62

    Moment --- M2 [kN.m] 1376.79 0.00 1211.45 1211.45 0.00 0.00 1376.79

    P / A [N/mm2] 9.44 9.44 9.44 9.44 9.44 9.44 9.44

    M 1 / Wa [N/mm2] -1.03 -0.55 -0.68 -1.24 -0.60 -0.60 -1.03

    M 1 / Wb [N/mm2] 0.73 0.39 0.48 0.88 0.43 0.43 0.73

    M 2 / Wa' [N/mm2] 2.76 0.00 2.42 2.42 0.00 0.00 2.76 Allow.

    M 2 / Wb' [N/mm2] -7.50 0.00 -6.60 -6.60 0.00 0.00 -7.50 stress

    Stress at Service slab ( S ) 4.97 0.00 4.37 4.37 0.00 0.00 4.97 12.6

    top ( T ) 11.16 8.88 11.18 10.62 8.84 8.84 11.16 22.5

      bot ( B ) 2.67 9.83 3.32 3.72 9.86 9.86 2.67 -3.5

    Note :  Moment due to dead load ( Chapter V - Moment Analysis )

    Moment due to uniform load in balance condition ( Chapter 7.4 - Effective Stress Force )

    ( Moment DL + Moment Bal )

    Pi = Initial Prestress ( at transfer condition - chapt. 7.4. Effective Stress Force )

    P = Prestress at service condition….. ( Chapter 7.4 -effective Stress Force )

    M = Moment Net.

     A = Total Area of Precast Beam ( Chapter 3.1 - Precast Beam)

    Wa = Modulus Section for Top section of Precast condition

    Wb = Modulus Section for Bottom section of Precast condition

    Wa' = Modulus Section for Top section of composite Condition……. ( Chapter 3.3 - Resume )

    Wb' = Modulus section for bottom section of composite condition ……. ( Chapter 3.3 - Resume )

    Moment Bal =

    Moment DL =

    Moment Net =

    [N/mm2]

    page 8 / 15

  • 8/19/2019 Desain Pci Girder

    32/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    8.3 Stress diagram at center span :

    8. 3. 1. STRESS DIAGRAM AT INIT IAL

    a. Stress at beam end section when Prestress is applied :

    Pi/A = 12.18 MPa M/Wa = -0.26 MPa  top  = 11.92 MPa

    + =

    Pi/A = 12.18 MPa M/Wb = 0.18 MPa  bottom  = 12.36 MPa

    effective prestress = 75% UTS M = Mdl - Pi.e = -19.41 kN-m

    Pi = 3858.35 kN  allow comp  at initial = 24.00 MPa

    eccentricity (ei) = 5.03 mm  allow tension  initial = -1.58 MPa

    Mdl = Mbeam = 0 kN-m control allow stress = meet requirement

    b. Stress at beam middle section when Prestress is applied :

    Pi/A = 11.50 MPa M/Wa = -11.58 MPa  top  = -0.08 MPa

    + =

    Pi/A = 11.50 MPa M/Wb = 8.23 MPa  bottom  = 19.73 MPa

    effective prestress = 71% UTS M = Mdl - Pi.e = -871.4 kN-m

    Pi = 3643.15 kN  allow comp  at initial = 24.00 MPa

    eccentricity (ei) = 347.89 mm  allow tension  initial = -1.58 MPa

    Mdl = Mbeam = 396.06 kN-m control allow stress = meet requirement

    8. 3. 2. STRESS DIAGRAM AT CONSTRUCTION 

    a. Stress at beam middle section when diaphragm, RC deck is install and finish fresh concreting composite slab

    Pi/A = 10.69 MPa M/Wa = -2.88 MPa  top  = 7.81 MPa

    + =

    Pi/A = 10.69 MPa M/Wb = 2.05 MPa  bottom  = 12.74 MPa

    effective prestress = 66% UTS M = Mdl - Pi.e = -216.71 kN-m

    Pi = 3385.99 kN  allow comp  at initial = 24.00 MPa

    eccentricity (ei) = 347.89 mm   allow tension  initial = -1.58 MPa

    Mdl = Mbeam + Madl = 961.23 kN-m control allow stress = meet requirement

    b. Stress at composite beam middle section due to asphaltic layer:

      slab  = 0.32 MPa

    P/A = 10.69 MPa M1/Wa = -2.88 MPa M2/Wa'= 0.18 MPa  top  = 7.98 MPa

    + + =

    P/A = 10.69 MPa M1/Wb = 2.05 MPa M2/Wb'= -0.48 MPa  bottom  = 12.26 MPa

    effective prestress = 66% UTS M1 = Mdl + Pi.e = -216.71 kN-m

    Pi = 3385.99 kN M2 = Masphalt = 88.03 kN-m

    eccentricity (ei) = 347.89 mm   allow comp  at initial = 24.00 MPa

    Mdl = Mbeam + Madl = 961.23 kN-m  allow tension  initial = -1.58 MPa

    control allow stress = meet requirement

    page 9 / 15

  • 8/19/2019 Desain Pci Girder

    33/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    8. 3.3 . STRESS DIAGRAM AT SERVICE (at cent er of sp an) 

    Stress at composite beam middle section due to Live Load

      slab  = 4.97 MPa

    P/A = 9.44 MPa M1/Wa = -1.05 MPa M2/Wa'= 2.76 MPa  top  = 11.15 MPa

    + + =

    P/A = 9.44 MPa M1/Wb = 0.74 MPa M2/Wb'= -7.50 MPa  bottom  = 2.68 MPa

    effective prestress = 58% UTS M1 = Mdl + Pi.e = -78.72 kN-m

    Pi = 2989.32 kN M2 = Masphalt + LL = 1376.79 kN-m

    eccentricity (ei) = 347.89 mm   allow comp  at service = 22.50 MPa

    Mdl = Mbeam + Madl = 961.23 kN-m  allow tension  at service = -3.54 MPa

    control allow stress = meet requirement

    8.4 Deflection

    8.4.1 Chamber due to Prestress Load

    Deflection on middle section :

    pi=

    -26.87 mmwhere : P = Prestress force

    Eci = Modulus Elasticity of Concrete

    Ixi = Section Inertia

    l = length of anchor to anchor

    ee =

    [ee+(5/6)(ec-ee)] x (P. l2/8 Ec Ix)pi=

    Distance between c.g of strand and

    c.g of concrete at end

    P

    l

    l/2 l/2

    Pec

    ee

    ec =

    8.4.2 Deflection at initial, erection and service condition (based : PCI handbook 4.6.5 Long-Time Chamber Deflection)

    Deflection () on simple span structure : where : q = Uniform Load

    q= (5/384)*q*L4/Ec Ix) P = Point Load

    p= P.l3/48 Ec Ix l = Beam Span

    Deflection calculation table : Estimating long-time cambers and deflections

    q (kN/m) P (kN) Release (1)

    multipliers Erection (2)

    multipliers Service (3)

    1. Due to Prestress force -26.87 1.80 x (1) -48.37 2.20 x (1) -59.12

    2. Due to beam weight (DL) 7.77 9.01 1.85 x (1) 16.67 2.40 x (1) 21.62

    -17.86 -31.71 -37.50

    3. Due to ADL 3.22 3.34 3.00 x (2) 10.03

    -28.36 -27.47

    4. Due to Composite Overtoping 7.86 8.16 2.30 x (2) 18.76

    -20.21 -8.71

    5. due to asphaltic (SDL) 1.73 0.59

    -8.12

    6. due to Live Load = UDL + KEL 14.40 109.76 7.85

    -0.28

    Resume of deflection :

    1. Deflection at service = -8.12 mm

    2. Deflection due to Live Load = 7.85 mm < allow. deflection L/800 = 25.25 mm OK

    3. Total deflection with LL = -0.28 mm, chamber upward

    WORKING LOAD

    Loading

    Distance between c.g of strand and

    c.g of concrete at centre

    Long time cambers and deflection

    page 10 / 15

  • 8/19/2019 Desain Pci Girder

    34/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    IX. FLEXURAL STRENGTH AND DUCTILITY

    9.1 Steel Index Requirement (SNI Beton 03-2847-2002 pasal 20.8)

    Effectif slab width, is minimum length from :

    1. Girder web thickness + 16 Slab thickness =3370 mm for slab with fc' = 28.00 MPa

    2. Beam Ctc =1600 mm …. Control    Value = 0.85

    3. Span length / 4 =5050 mm

    Thus, Effectif slab width is : =1600 mm

    Partial Rebar:

    fy = 400 MPa

    Use 0 Dia.13 mm at tension area

    As = 0.00 mm2 b web = 170 mm

    d = 1190.5 mm

    Partial tension rebar ratio : Rebar in compresion area is neglected due calculation

    t = As / (bweb x d )   t = 0.00000   c =  

    t =   t . fy / fc   t = 0.000   c =  

    Low Relaxation strand :

    fpu = 1860 MPa

    Strand stress ratio fpu / fpy = 0.9 value p = 0.28

    dp = 1348.6 mm Aps = 2765.84 mm2

    beff  = 1600 mm

    Prestress ratio :

    p = Aps / (beff  x dp )   p = 0.00128184

    fps = fpu {1 - p /  (p.fpu/fc + d/dp (t-c))) fps = 1807.8 MPa

    p =   p fps/fc   p = 0.083

    Resume of Steel Index Requirement (SNI Beton 03-2847-2002 pasal 20.8)p + d/dp (t-c) < 0.36

    0.083 < 0.306 Under Reinf, Meet With Steel Index Requirement

    9.2 Momen Capacity

    b. eff 

    Tps = Aps . Fps

    Tps = 5000162.13 N

    strength reduction factor

    = 0.8

    Location of Depth of Concrete Compression Block (a) :

    Zone hi wi Aci=hi.wi Comp (i) Compresion

    (mm) (mm) (mm2) Point (mm) Point (mm)

    4 131.31 1600 210090.85 28.00 CIP Slab 66

    3 0.00 335 0 28.00 CIP Slab 131

    2 0.00 350 0 50.00 Beam 131

    1 0.00 170 0 50.00 Beam 131

    a = Tps / ( 0.85 x fc'' slab x beff ) a= 131.31 mm

    Mn = Mn = 6414.80 kN.m

    Mn = 5131.8386 kN.m

    Bridge life time design for 50 year,so Transient act factor = 1

    Mult = 1x 3,689kN-m   Mn / Mult = 1.391 >1, Moment capacity meet with requirement

    9.3 Cracking Capacity

    Stress at bottom girder section due to service load (bot at service) = 2.67 MPa

    Concrete flexural tension strength fr = 4.9 MPa

    Crack Moment, Mcr =  (bot at service + fr ) Wb.comp + Momen (DL+ADL+LL+I)

    Mcr = 3737.99 kN.m

    Mn / Mcr = 1.373 > 1.2 ---- Cracking Capacity requirement is achieve

    0

    (Tps (dp - comp. point) + As.fy (d-comp. point)

    Conc. Strength fc'i Cci=0.85 fc'i.Aci

    N

    0

    5000162

    Depth of Concrete Compression Block is located at zone 4

    065.65

    MPa

    Zone 3

    dp d

    Cc3

    Cc2

    Cc1

    Tps=Aps.fps

    T = As.fy

    c

    COMPOSITE BEAM

    a

    Zone 2

    one

    Zone 1

    i

    Zone 3

    page 11 / 15

  • 8/19/2019 Desain Pci Girder

    35/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    X. SHEAR ANALYSIS

    10.1 Shear calculation based on SNI 03-2847-2002

    40% Ultimate Tensile Strength = 744 MPa

    Effective Prestress = 1081 MPa Effective Prestress > 40% fpu

    Section Properties :

    Ix = 5.496E+10 mm4 Ixcomp = 1.679E+11 mm4

    Yb = 519.31728 mm Ybcomp = 914.1 mmAg = 316750 mm2

    Load :

    Effective prestress Pe = 2989.32 kN

    Factored Load : Unfactored Load :

    qult DL + ADL = 26.85 kN/m q DL + ADL = 18.85 kN/m

    qult LL = 25.92 kN/m q sdl = 1.73 kN/m

    Pult LL = 197.57 kN q DL + ADL = 20.57 kN/m

    Concrete Shear resistance contribution (Vc)

    Nominal shear strength provide by concrete

    Vc = {0.05sqrt(fc') + 5 (Vu.dp/Mu)}bw.d

    but nominal strength (Vc) should taken between : (1/6).sqrt(fc').bw.d < Vc < 0.4sqrt(fc').bw.d

    and Vu.dp/Mu ≤ 1

    where :

    Mu = Maximum factored moment at section

    Vu = Maximum factored shear force at section

    d = distance from extreme compresion fiber to centroid of prestress tendon.

    But d need not to take n less than 0.8 hcomposite

    bw = width of shear section

    Alternatif solution to calculated shear on prestress element is use for structure element which have effective prestress above 40%

    of ultimate tensile stress

    Vn = Vc + Vs where : Vn = Nominal Shear force Vu = Ultimate Shear force

    Vn = Vu / Vc = Concrete shear contribution    = Shear reduction factor

    Vs = Shear steel contribution    = 0.75

    Zonafication for shear steel stirup calculation

    Zone 1 Vn < 0.5 Vc No need to use stirup

    Zone 2 Vn < Vc+[0.35 or (75/1200) sqrt(fc')] bw d Required stirup spacing with minimum spacing :

    S ≤ 0.75 H S ≤ (av.fy) / (0.35 bw)

    S ≤ 600mm S ≤ (av.fy/fpu) (80/Aps) d sqrt(bw/d)

    Zone 3 Vn < Vc+0.33 sqrt(fc') bw d Required stirup spacing with spacing :

    S ≤ (av.fy.d) / ((Vu/)-Vc)

    S ≤ 0.75 H

    S ≤ 600mm

    Zone 4 Vn < Vc+0.67 sqrt(fc') bw d Required tight stirup spacing with spacing :

    S ≤ (av.fy.d) / ((Vu/)-Vc)

    S ≤ 0.375 H

    S ≤ 300mm

    Zone 5 Vn > Vc+0.67 sqrt(fc') bw d Section to small, change beam section

    RSNI T-12-2005 : Shear force on beam is hold a part by concrete and the rest of force is hold by shear steel. Concrete contribution

    (vc), is define as shear force when diagonal cracking appear.

    page 12 / 15

  • 8/19/2019 Desain Pci Girder

    36/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    Shear rebar steel

    fy = 400 MPa shear width :

    Use 2 leg Dia.13 mm bw = 170 mm

    Av = 265.46 mm2 bw-e = 650 mm

    Shear steel requirement calculation table :

    dist. ecomp d=dp>0.8H Vu Mu dp(Vu/Mu) Vc Vn Vs Shear Use Space use

    m m m kN kN-m kN kN kN Zonasi mm mm

    0.1 0.416 1.02 724.32 72.70 1.00 930.34 965.76 35.42 2 600 300

    0.3875 0.435 1.04 706.33 277.67 1.00 947.17 941.78 -5.39 2 600 3000.775 0.459 1.06 682.09 544.47 1.00 969.08 909.46 -59.62 2 600 300

    1.7 0.512 1.12 624.23 1137.45 0.61 650.60 832.31 181.71 3 600 300

    2 0.529 1.13 605.47 1316.48 0.52 571.31 807.29 235.98 3 510 300

    3 0.578 1.18 542.91 1866.22 0.34 417.85 723.88 306.03 3 411 300

    4 0.621 1.23 480.36 2343.62 0.25 336.11 640.48 304.37 3 428 300

    5 0.658 1.26 417.81 2748.69 0.19 282.28 557.08 274.80 3 488 300

    6 0.688 1.29 355.25 3081.43 0.15 241.77 473.67 231.90 3 592 300

    7 0.711 1.32 292.70 3341.83 0.12 208.34 390.27 181.92 3 600 300

    8 0.728 1.33 230.15 3529.90 0.09 178.84 306.86 128.02 3 600 300

    9 0.739 1.34 167.59 3645.63 0.06 151.47 223.46 71.99 2 600 300

    10 0.743 1.35 105.04 3689.03 0.04 125.07 140.05 14.99 2 600 300

    10.100 0.743 1.35 98.78 3689.39 0.04 122.44 131.71 9.27 2 600 300

    1400.0

    1600.0

    1800.0

    2000.0

     Zona1

    Shear  

    Steel  

    Requirement  

    PositionkN

    x (m) from range nos shear

    span edge (m) (row)

    Shear spacing S - 75 0 0 0

    Shear spacing S - 100 0 0 0

    Shear spacing S - 125 0 0 0

    Shear spacing S - 150 0 0 0

    Shear spacing S - 200 0 0 0

    Shear spacing S - 250 0 0 0

    Shear spacing S - 300 10.1 10.1 34

    total shear rebar per half span (row) = 34

    total shear rebar per span (row) = 68

    Shear Rebar configuration

    0.0

    200.0

    400.0

    600.0

    800.0

    1000.0

    1200.0  Zona2

     Zona3

     Zona4

    Vn= Vu/f 

    beam section 

     point 

    page 13 / 15

  • 8/19/2019 Desain Pci Girder

    37/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    10.2 Horisontal Shear

    Width of contact surface area bv = 200 mm

    Effective Height d = 1216 mm

      = 0.75

    fy = 400 MPa

    Use 2 leg Dia.13 mm

    Area horisontal Shear Steel Avh = 265.46 mm2

    Horisontal Shear steel Spacing s = 300 mmHorisontal Shear steel ratio   v = 0.442%

    Shear horisontal Nominal

    Vnh = (1.8 Mpa + 0.6 v. fy) . bv .d

    Vnh = 696.00 KN

    Requirement for shear horisontal steel :

    Vult comp = 46.03 MPa

    ten- Nos Anchor sheath Ult. Point Block End Bearing

    don strand Height hole Load Area Stress

    ( ai ) (Pu) (A) (EBS=Pu/A)

    mm kN mm2 Mpa Mpa

    0 0

    0 0

    0 0

    1 4 165 51 661.43 25182.18 26.27 47.60 EBS < Nominal Compresion

    2 12 215 63 1984.29 43107.75 46.03 47.60 EBS < Nominal Compresion

    3 12 215 63 1984.29 43107.75 46.03 47.60 EBS < Nominal Compresion

    Remark

    Nominal

    comp. fci

    page 14 / 15

  • 8/19/2019 Desain Pci Girder

    38/114

    PCI Monolith H-125cm ; L-20.80m ; CTC-160cm - RSNI (Rev.04)

    2. Stirrup and Spalling Reinforcement

    Load factor = 1.2

    Reduction factor () = 0.85

    fy = 400 MPa

    Bursting Steel

    Diameter closed stirup = 13 mm

    Stirup Area = 132.7 mm2

    ten- Nos Anchor sheath Jacking Bursting End

    don strand Heighthole Force Area Bearing sp

    ( ai ) (Abs) (EBS) fcc' fl   p

    mm kN mm2 Mpa Mpa Mpa (mm)

    0   0

    0   0

    0   0

    1   4 165 51 551.1924 25182.18 21.89 36.79 -0.8 -0.39% -821.2

    2   12 215 63 1653.5772 43107.75 38.36 64.47 6.0 2.98% 82.8

    3   12 215 63 1653.5772 43107.75 38.36 64.47 6.0 2.98% 82.8

    total 28

     Anchor Zone Stirrup

    JF Load = 3858.35 kN    a1 = 595.00 mm

    Ult. JF = 4630.02 kN H = 1250 mm

    T bursting = 0.25  Ult.JF (1-a1/H) d bursting = 0.5(h-2e)

    T bursting = 606.53212 kN d bursting = 630.031571 mm

    Diameter closed stirup = 13 mm Anchor Stirup Rebar = T bursting / 0.5 fy

    No. Leg of stirrup = 4 leg Anchor Stirup Rebar = 3032.7 mm2

    Stirup Area = 530.9 mm2 use no of stirup = 6 pcs

    Spalling Rebar 

    Spalling Force = 2% JF

    Spalling Force = 77.2 kN

    EBS/0.7 (fcc'-fci)/4.1 fl / 0.5 fy

    Diameter closed stirup = 13 mm

    Stirup Area = 132.7 mm2

    use no of stirup = 3 pcs

    page 15 / 15

  • 8/19/2019 Desain Pci Girder

    39/114

    PT  WIJAYA KARYA BETON 

    TECHNICAL CALCULATION 

    PCI  GIRDER MONOLITH  FOR HIGHWAY  BRIDGES

    Project : TOLL SURABAYA ‐ GRESIK 

    Product : PCI Girder  Monolith H‐125cm  ; L‐21.75m  ; CTC ‐160cm  ;  fc'  60MPa

     Job no : 13014 C 

    Rev. No. : 04

    Design Reff. :   -   SNI T ‐12‐2004

    Perencanaan Struktur  Beton Untuk   Jembatan

    -   RSNI T ‐02‐2005

    Standar  Pembebanan Untuk   Jembatan

    -   PCI : Bridge Design Manual 

    Gedung  JW, 1st

    & 2nd

     floor 

     Jl.  Jatiwaringin no. 54, Pondok  Gede ‐ Bekasi 

    Ph: +62‐21‐8497 ‐3363   fax  : +62‐21‐8497 ‐3391

    www.wika‐beton.co.id 

  • 8/19/2019 Desain Pci Girder

    40/114

    PT  

    WIJAYA 

    KARYA 

    BETON 

     Job no. : 13014 C 

    Rev. : 04

    TECHNICAL 

    CALCULATION  

     APPROVAL

    PCI  GIRDER MONOLITH  FOR HIGHWAY  BRIDGES

    PCI Girder  Monolith H‐125cm  ; L‐21.75m  ; CTC ‐160cm  ;  fc'  60MPa

     Approved  by  :

    TOLL SURABAYA ‐ GRESIK 

    Design by  :

    18  Juni  2013

    Suko

    Technical  Staff 

    Ir.  Achmad   Arifin Ignatius Harry  S., S.T.

    Technical  Manager Chief   of  Technical 

    Consultan  /  Owner 

     Approved  by  : Checked   by 

    18  Juni  2013 18  Juni  2013

  • 8/19/2019 Desain Pci Girder

    41/114

    PCI Monolith H-125cm ; L-21.75m ; CTC-160cm - RSNI (Rev.04)

    1. BEAM SPECIFICATION

    Span = 21.15 m (beam length = 21.75 m)

    Beam Height ( H ) = 1250 mm

    Distance ctc of beam ( s ) = 1600 mm

    Slab thickness = 200 mm

    Beam Compressive strength = 60 MPaSlab Compressive strength = 28 MPa

    Bridge life time = 50 years

    Segment Arr angement 

    Beam Segment 1 2 3 4 5 6 7

    Length (m) 7.075 7.000 7.075 0.00 0.00 0.00 0.00

    Additional length at the end of beam = 0.30 m

    Total length of the beam = 21.75 m

    Total beam weight = 18.17 ton

    2. STRESSING

    Nos of PC Strand = 35 strand 12.7 mm (PC Strand 270 grade, low relaxation)

    Strand configurationNo. number H strand bottom (mm)

    Tendon strand edge mid Jacking Force = 75% UTS

    0 0 0 0 UTS of Strand = 1860.00 MPa

    0 0 0 0 Total Losses = 17.89% at middle

    0 0 0 0 fc initial = 80.0% fc'

    RESUME OF PCI GIRDER MONOLITH TECHNICALLY CALCULATION

    1 11 900 300

    2 12 600 200

    3 12 300 100

    total 35 591.43 197.14

    3. LOADING

    1. Dead Loada. Precast Beam = 7.77 kN/m

    b. Slab = 7.86 kN/m Slab thickness = 200 mm

    c. Deck Slab = 2.31 kN/m Deck slab thickness = 70 mm

    d. Asphalt = 1.73 kN/m Asphalt thickness = 50 mm

    e. Diaphragm = 6.92 kN for 1 diaphragm

    No. Diaphragm 4 pcs equivalent load = 0.87 kN/m

    2. Live Load

    Taken from "Pembebanan Untuk Jembatan RSNI T-02-2005"

    Moment force cause by D Loading is bigger than Truck Loading

    a. Dynamic Load Allowance (DLA) = 1.40 for span length

  • 8/19/2019 Desain Pci Girder

    42/114

    PCI Monolith H-125cm ; L-21.75m ; CTC-160cm - RSNI (Rev.04)

    4. BEAM SUPPORT REACTION

    Ultimate total = 1,2*(Beam+Diaphragm+Deck Slab)+1,3*Slab+2*Asphaltic+1,8*(LL+I)

    Beam support react ion : 

    a. Dead Load = 82.12 kN

    b. Additional Dead Load = 135.00 kN

    c. Live Load = 262.04 kN

    Ultimate support reaction = 755.12 kN

    5. CONTROL OF BEAM STRESSES

    Middle span position

    top stress = 0.66 MPa required > -1.73 MPa

    bottom stress = 24.05 MPa required < 28.80 MPa

    Middle span position

    top stress = 13.11 MPa required < 27.00 MPa

    bottom stress = 4.65 MPa required > -3.87 MPa

    6. CONTROL OF BEAM DEFLECTION

    Deflect ion at t he middle of beam span 

    1. Chamber due stressing

    initial = -19.65 mm

    = -

    2. Service Condition

    1. Initial Condition

    .

    2. Deflection at composite DL = -9.15 mm

    3. Deflection due live load = 8.76 mm,required 1) = 1.54

    Cracking Capacit y requir ement : 

    Mcrack = 4360.35 kN.m

    Mn / Mcr = 1.41

    CALCULATION RESUME

  • 8/19/2019 Desain Pci Girder

    43/114

    PCI Monolith H-125cm ; L-21.75m ; CTC-160cm - RSNI (Rev.04)

    21.15 M

    I. DATA

    0.3 L= 21.15 M 0.3

    Beam length = 21.75 m ( edge anchor to edge anchor : 21.45 m)

    Beam spacing (s)=

    1600 mmConcrete Slab thickness (CIP) = 200 mm

    Asphalt thickness = 50 mm

    Deck slab thickness = 70 mm

    Cross Section

    H = 1250 mm tfl-1 = 75 mm

    A = 350 mm tfl-2 = 75 mm

    B = 650 mm tfl-3 = 100 mm

    tweb = 17