subgrup normal dan grup faktor

8
1 STRUKTUR ALJABAR SUBGRUP NORMAL DAN GRUP FAKTOR TEOREMA CAUCHY DISUSUN OLEH : SHOLIHA NURWULAN : 15.1.12.4.108 SEMESTER/KELAS : VD DOSEN PEMBIMBING : SYAHARUDDIN, M.pd JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS ILMU TARBIYAH DAN KEGURUAN INSTITUT AGAMA ISLAM NEGERI MATARAM 2014

Upload: sholiha-nurwulan

Post on 12-Jul-2015

2.793 views

Category:

Data & Analytics


13 download

TRANSCRIPT

Page 1: Subgrup normal dan grup faktor

1

STRUKTUR ALJABAR

SUBGRUP NORMAL DAN GRUP FAKTOR

TEOREMA CAUCHY

DISUSUN OLEH :

SHOLIHA NURWULAN : 15.1.12.4.108

SEMESTER/KELAS : VD

DOSEN PEMBIMBING :

SYAHARUDDIN, M.pd

JURUSAN PENDIDIKAN MATEMATIKA

FAKULTAS ILMU TARBIYAH DAN KEGURUAN

INSTITUT AGAMA ISLAM NEGERI

MATARAM

2014

Page 2: Subgrup normal dan grup faktor

2

A. Subgrup Normal

Pada Bab ini akan dibahas mengenai himpunan faktor yang merupakan suatu grup dengan perkailan yang didefinisikan dalam G. Misalkan G adalah merupakan suatu grup dengan H adalah

merupakan subgrup dari G dan relasi ab mod Hadalah sustu relasi ekivalensi pada G. Akan kita tunjukkan himpunan faktor yang merupakan suatu grup dengan perkalian yang didefinisikan dalam G berlaku bila dan hanya bila koset kiri dari H dalam G, aH = {ah, h ∈ H } sama dengan koset

kanan Ha = {ha, h ∈ H }.

1. Definisi-definisi Definisi I:

Misalkan H adalah suatu Subgrup dari Grup G, Subgrup H dikatakan Subgrup Normal dari G bila g-1hg ∈ H untuk setiap g ∈ G dan h ∈H.

Definisi 2: Misalkan H adalah suatu Subgrup Normal dari Grup G, maka setiap koset kiri dari H dalam G

juga merupakan koset kanannya (aH = Ha) Dari definisi di atas dapat dikatakan untuk menentukan bahwa suatu Subgrup H adalah

Subgrup Normal dari Grup G, maka harus dibuktikan bahwa koset-koset kiri dari H dalam G sama dengan koset- koset kanan dari H dalam G (aH = Ha).

2. Teorema-teorema

Teorema 1:

Apabila H subgrup dari G, maka H Δ G jika dan hanya jika untuk setiap g ∈ G dan untuk setiap h ∈ H, gng-1 ∈ H.

Bukti: Misalkan H Δ G maka gH=Hg, untuk setiap g ∈ G, sehingga gHg -1 = H. Apabila n ∈ N,

maka ghg-1 ∈ gHg-1, sehingga ghg - 1 ∈ H, untuk setiap g ∈ G. Sebaliknya, apabila

untuk setiap g ∈ G dan untuk setiap h ∈ H, ghg- 1 ∈ H, maka ghg - 1 (g) ∈ H, yaitu gh ∈

Hg. Karena gh ∈ gH, maka gH ⊂ Hg. Dari ghg- 1 ∈ H, untuk setiap g ∈ G, karena g-1 ∈

G, maka g-1hg ∈ H, sehingga g(g -1hg) ∈ gH, yaitu hg ∈ gH. Tetapi, karena hg ∈ Hg, maka Hg ⊂ gH. Jadi gH=Hg.

Teorema 2:

Apabila H subgrup dari G, maka H Δ G jika dan hanya jika hasil kali setiap dua koset kanan (kiri) dari H dalam G merupakan koset kanan (kiri) dari H dalam G juga. Bukti:

Misalkan H Δ G, maka Ha=aH dan Hb = Bh, untuk setiap a,b ∈ G

(Ha)(Hb) = H(aH)b = HHab = (HH)ab

= Hab, karena Hsubgrup dari G Karena a,b ∈ G, maka ab ∈ G. Sehingga Hab ∈ G/H, yaitu Hab suatu koset kanan dari

H dalam G. Sebaliknya ambil sembarang (h1a) (h2b) ∈ (Ha) (Hb) dengan h1, h2 ∈ H

dan (h1a) (h2b) = (h1a h2a-1) ab =h3ab, maka a h2a-1 ∈ H untuk a ∈ G, ini berarti H subgrup normal dari G.

Teorema 3: Jika G suatu grup berhingga dan H subgrup dari G, maka ◦(G/H)= ◦G/◦H Bukti :

18

Page 3: Subgrup normal dan grup faktor

3

◦(G/H) = iG(H), yaitu banyaknya koset kanan dari H dalam G. Menurut teorema langrange, karena G grup berhingga dan H subgrup dari G, maka ◦(H) | ◦(G), maka

◦(G/H)=◦(G)/◦(H).

Contoh: Misalkan (G,+) = Z6 = {0, 1, 2, 3, 4, 5} adalah suatu Grup dan H = {0, 2, 4} adalah merupakan Subgrup dari G. Tunjukan apakah H termasuk subgrup normal

dari G atau bukan ? Jawab :

(G,+) = Z6 = {0, 1, 2, 3, 4, 5}, generatornya 0, 1, 2, 3, 4 dan 5

Koset kiri : 0 + H = 0 + {0, 2, 4} = {0, 2, 4} 1 + H = 1 + {0, 2, 4} = {1, 3, 5}

2 + H = 2 + {0, 2, 4} = {2, 4, 0} 3 + H = 3 + {0, 2, 4} = {3, 5, 1} 4 + H = 4 + {0, 2, 4} = {4, 0, 2}

5 + H = 5 + {0, 2, 4} = {5, 1, 3} Koset kanan:

H + 0 = {0, 2, 4} + 0 = {0, 2, 4} H + 1 = {0, 2, 4} + 1 = {1, 3, 5} H + 2 = {0, 2, 4} + 2 = {2, 4, 0}

H + 3 = {0, 2, 4} + 3 = {3, 5, 1} H + 4 = {0, 2, 4} + 4 = {4, 0, 2} H + 5 = {0, 2, 4} + 5 = {5, 1, 3}

Sehingga : 0 + H = H + 0 = {0, 2, 4} 1 + H = H + 1 = {1, 3, 5}

2 + H = H + 2 = {2, 4, 0} 3 + H = H + 3 = {3, 5, 1} H + 4 = H + 4 = {4, 0, 2}

H + 5 = H + 5 = {5, 1, 3}

Maka : koset kiri = koset kanan sehingga : Subgrup dari H = {0,2,4} merupakan Subgrup Normal

B. Grup Faktor Jika H adalah merupakan Subgrup Normal dari Grup (G,*) dan G/N adalah himpunan semua

koset-koset kiri atau koset-koset kanan dari N dalam G, yang didefinisikan : (gH)*(nH) = (g*n)H.

Dari penjelasan tersebut, maka adapun definisi dari Grup Faktor .

Definisi :

Bila H adalah Subgrup Normal dari dari Grup (G,*), himpunan dari koset- koset G/H = {H*g | g ∈ G}

membentuk Grup (H/G,*) yang didefinisikan oleh H(g1) * H(g2) = H(g1 * g2), disebut Grup Faktor G oleh H.

Orde dari Grup Faktor (G/H,*) adalah banyaknya koset-koset dari H dalam G, sehingga :

Ind|G/H| = Ind|G : H| = H

G.

Contoh : Dari soal pada contoh diatas diketahui bahwa koset kanan sama dengan koset kiri yaitu :

Page 4: Subgrup normal dan grup faktor

4

RANGKUMAN

1. Bila G adalah suatu grup berhingga, dan H adalah merupakan subgrup dari G,

maka banyaknya koset yang berbeda dari H dalam G (disebut indeks dari H dalam

G), yaitu :

0 + H = H + 0 = {0, 2, 4} 1 + H = H + 1 = {1, 3, 5}

2 + H = H + 2 = {2, 4, 0} 3 + H = H + 3 = {3, 5, 1}

4 + H = H + 4 = {4, 0, 2} 5 + H = H + 5 = {5, 1, 3} Sekarang Tentukan Grup Faktor dari G oleh H, yaitu (G/H) ? Jawab :

Karena Subgrup dari H = {0,2,4} merupakan Subgrup Normal Jadi

Ind|G/H| = Ind|G : H| = H

G=

3

6 = 2, Unsur-unsur dari Grup Faktor tersebut adalah 2.

Misalkan kita ambil koset kiri : 0 + H = {0, 2, 4} 1 + H = {1, 3, 5}

2 + H = {2, 4, 0} 3 + H = {3, 5, 1} H + 4 = {4, 0, 2}

H + 5 = {5, 1, 3} Maka :

0 + H = 2 + H = 4 + H = {0, 2, 4} 1 + H = 3 + H = 5 + H = {1, 3, 5}

Unsur-unsur dari Grup Faktor tersebut adalah 2 :

0 + H = {0, 2, 4} = H 1 + H = {1, 3, 5}

Sehingga G / H = { H, 1+H }

Tabel Grup Faktor G = Z6 oleh H = {0, 2, 4}

+ H 1+H

H H 1+H

1+H 1+H H

Key Words: Subgrup Normal Koset kiri = Koset Kanan (aH=Ha)

Grup Faktor Ind|G/H|= Ind|G:H| =H

Gdan G/H

Page 5: Subgrup normal dan grup faktor

5

Latihan

1. Jika H subgrup dari grup berhingga G, buktikan bahwa :

H

GHiG

2. Misalkan S3 = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}, yaitu grup simetri tingkat 3 dan H = {(1),

(1 2)} subgrup dari grup S3, tuliskan semua elemen dari H

S3 dan berapa indeks dari H dalam S3

3. Misalkan (G,x) = { e, a1, a2, a3, a4, a5 } adalah Suatu Grup dan H = { e, a2, a4 } adalah merupakan subgrup dari G. Tunjukkan : a. Apakah H merupakan subgrup normal ?

b. Grup faktor dari G oleh H, yaitu ( G/H ) ? 4. Diketahui G = {1,2,3,4}, dengan perkalian modulo 5, dan H = {1,4}, dimana H < G. Tentukan:

a. iG(H)

b. Koset-koset kiri c. Koset-koset kanan d. G/H

5. Diberikan S = {1,2,3}, dengan fungsi komposisi:

321

321 ,

312

321 ,

123

321 , dan ,,H

231

321 ,

132

321

213

321

Tentukan: a. iG(H). b. Koset-koset Kiri H.

c. Koset-koset kanan H d. G/H.

TEOREMA CAUCHY

Page 6: Subgrup normal dan grup faktor

6

Dalam grup simetri kita telah mempelajari orbit dari suatu elemen yang dipermutasikan

misalkan S suatu himpunan yang tidak kosong dan A(S) adalah himpunan semua pemetaan bijektif dari S kedirinya sendiri. Jika a, b ∈ S didefinisikan relasi a ~ b jika dan hanya jika fn (a) = b, dengan suatu

bilangan bulat dan f ∈ A(S), maka telah menunjukkan bahwa relasi-relasi adalah suatu relasi

ekuivalensi Sehingga mengakibatkan terbentknya partisi pada S dan terdapat kelas -kelas ekuivalensi dalam S.

A. Pengertian Orbit Orbit dari a oleh f adalah kelas [a] ={ x∈ S| x =fn a, n∈ B}. Apabila fka=a, untuk suatu bilanan

bulat k, maka fkt(a)=a,untuk semua bilangan bulat t. Definisi:

Misalkan G suatu grup dan himpunan tak kosong X. Suatu tindakan dari G pada X adalah suatu representasi permutasi: G ! Sx. Umumnya ditulis gx untuk (g)(x). Fakta bahwa _ ad alah suatu homomorpisma berarti bahwa g(hx) = (gh)x untuk semua g; h 2 G dan x 2 X sedangkan ex = x

dengan e 2 G adalah elemen identitas. Berkenaan dengan sebarang x 2 X ada Gx _ X dan suatu subgrup G(x) dari G yang didifinisikan

sebagai berikut:

a. Gx = fgx j g 2 Gg dinamakan orbit dari dari x. b. G(x) = fg 2 Gj gx = xg dinamakan stabiliser dari x.

Misalkan x1; x2 2 X dikatakan bahwa x1 berelasi dengan x2 yaitu x1 _ x2 bila ada g 2 G yang

memenuhi gx1 = x2. Relasi ini adalah relasi ekivelen. Kelas ekive len dari x1 adalah Gx1. Berikutnya misalkan x1 _ x2 dan x2 _ x3, maka untuk g1; g2 2 G yang sesuai didapat g1x1 = x2

dan g2x2 = x3. Sehingga diperoleh (g2g1)x1 = g2(g1x1) = g2x2 = x3. Jadi x1 _ x3. Selanjutnya kelas dari x1 adalah fgx1 jg 2 Gg = Gx1.

B. Teorema-teorema Teorema 1: Jika f ∈ A(S) dan °(f) = p (prima), maka orbit dari sembarang elemen S oleh f mempunyai 1 atau p

elemen. Bukti:

Misalkan a∈S dan (f)a = a, maka orbit dari a oleh f hanya terdiri dari a sendiri, sehingga hanya

mempunyai satu elemen. Misalkan bahwa f (a) ≠ a, dan elemen-elemen a, f(a), …,fp-1 (a) adalah elemen-elemen yang berbeda satu dengan lainnya dan membentuk orbit dari a oleh f.

sebab jika tidak, maka fi(a) = fj(a) dengan 0≤ i< j≤ p-1, akan memberikan fj-i(a) = a. Jika j-i = m dengan 0<m≤p-I, maka fm(a) = a. karena p prima maka (m, p) =1 sehingga ada bilangan-

bilangan bulat u, v sedemikian hingga mu + pv = 1.

Teorema 2: Misalkan G suatu grup berhingga, p suatu bilangan prima dan p ⃒ ° (G), maka memuat elemen

yang berperiode p. Bukti:

Jika p = 2 maka ° (G) genap, sehingga G memuat elemen yang berperiode 2, sehingga

diasumsikan bahwa p ≠ 2. Misalkan S adalah himpunan semua pasangan terurut p -tupel (a1, a2, …,ap-1, ap) dengan a1,…,

ap ∈ G dan a1, a2 … ap-1 ap = e. Apabila ° (G = n maka S mempunyai np-1 elemen. Perhatikan bahwa jika a1a2 … ap-1 ap = e, maka ap a1a2 … ap-1 = e (sebab jika xy = e maka yx = e).

kita membentuk pemetaan f : S → S yang didefinisikan oleh f (( a1, a2, …, ap)) = (ap a1 a2 … ap-1).

Maka f suatu pemetaan bijektif, sehingga f ∈ A (S). jelas bahwa f ≠ i (pemetaan identitas ) dan fp = I atau ° (f)= p.

Teorema 3:

22

Page 7: Subgrup normal dan grup faktor

7

Misalkan G grup berorder pq dengan p dan q dua bilangan prima yang berbeda dan p>q. jika a∈G

°(a)= p dan H = (a), maka H⊲ G.

Bukti: H = (a), maka H subgroup dari G dan karena °(a) = p, maka °(H) = p.

H adalah satu-satunya subgroup dari G yang berorder p. sebab, jika K subgroup dari G dan °(K) = p, maka HK = {xy⃒x∈H dan y∈K} berorder p2, yaitu HK akan memuat p2 elemen yang

berbeda. Sebab apabila ac=bd dengan a,b ∈H dan c, d ∈K maka b-1a = dc-1 dan b-1a∈H, dc-1

∈K serta b-1a ∈H∩K. karena H ≠ K dan H∩K subgrup dari H dan karena °(H) = p maka H∩K = {e}. Jadi b -1a = e, yaitu a= b. begitu pula c = d.

Teorema 4: Jika G suatu grup, aG dan (a) = m, bG dan (b) = n dan ab = ba serta (m, n) = 1 maka (ab) = mn. Bukti:

Misalkan H = (a) subgroup dari G dan (H) = m. K = (b) adalah subgrup dari G dan (K) = n.

Karena (m, n) = 1, maka H K = {e}, sebab menurut teorema Lagrange (H K) | m dan (H K) | n. Sedemikian hingga (ab)t = e. Karena ab = ba, maka (ab)t = at bt = e atau at = b-t (H

K) = {e}, hal ini dikarenakan at = e dan (a) = m, maka m | t. Karena (b -t)-1 = b t = e, dan (b) = n, maka n | t. Selanjutnya karena (m, n) = 1, m | t dan n | t maka mn | t, sehingga mn t. Karena (ab)mn =

amn bmn = e dan (ab) = t maka t | mn dan t mn. Sehingga t = mn. Jadi, (ab) = mn. Contoh:

Misalkan G suatu grup dan (G) = 15, maka G mempunyai elemen-elemen yang berorder 5 dan 3. Misalnya a, bG dan (a) = 5, (b) = 3. Maka b -1ab = at dengan 0 t < 5. Sehingga

b-2 ab2 = b-1 (b-1ab)b = b-1 at b = (b-1 ab)t = (at)t = a2t

sejalan dengan ini diperoleh b -3 ab3 = 3ta , tetapi karena b3 = e (karena (b) = 3), maka

3ta = a,

sehingga 3ta -1 = e dan karena (a) = 5), maka 5 | t3 -1, yaitu t3 1 (mod 5). Selanjutnya, oleh

teorema Fermat, t4 1 (mod 5), maka diperoleh t 1 (mod 5) dan karena 0 t < 5, maka t =

1. Jadi b-1 ab = at = a yang berarti bahwa ab = ba. Selanjutnya, karena (a) = 5 dan (a) = 3, maka menurut teorema 3, (ab) = 15. Ini berarti G adalah grup siklik dengan generator ab.

Teorema 5: Misalkan G suatu grup yang berorder pq dengan p dan q primab dan p > q. Apabila q tidak habis membagi p – 1, maka G siklik.

Bukti: Karena (G) = pq dengan p dan q prima dan p > q, menurut teorema Cauchy, ada a, b G dengan (a) = p dan (b) = q dan akibatnya b -1ab = at untuk suatu t dengan 0 < t < p. Seperti

argumentasi pada contoh di atas diperoleh bahwa b -r abr = a

rt, untuk setiap bilangan bulat r

0. Demikian pula b -q abq =

a

qt, tetapi karena bq = e (sebab (b) = q), maka a

qt= a atau a

1tq = e dan karena (a) = p,

maka p | tq-1, sehingga tq 1(mod p).

Menurut teorema Fermat, karena p prima dan (t, p) = 1 (sebab 0 < t < p) maka tp-1 1(mod p), karena q tidak habis membagi (p - 1) maka (p -1, q) = 1, sehingga ada m, nB sedemikian hingga m(p – 1) + nq = 1, sehingga

t1 tm(p-1)+nq (mod p) (tp-1)m (tq)n (mod p) t 1 (mod p) dengan 0 < t < p

jadi t = 1

Page 8: Subgrup normal dan grup faktor

8

Maka b-1ab = at = a sehingga ab = ba. Selanjutnya menurut teorema 4 maka (ab) = pq, dank arena (G) = pq, maka G adalah grup siklik.

Contoh : a) Misalkan diketahui s = {1,2}

Mencari : A1 = ( 1 2, 1 2 )

A2 = ( 1 2 , 2 1 ) Orbit a1 = (1) Orbit a2 = (2)

Sehingga s2 = G = {a1, a2} = {(1) , (1 2) } P = 2

o(G) / p = 2/2 = 1

b) Misalkan G suatu Grup dan ° (G) =15. Maka G mempunyai elemen-elemen yang berorder

5 dan 3. Misalnya a,b ∈ G dan ° (a) = 5, ° (b) = 3, maka b -1ab=at, dengan 0 ≤ t ≤ 5

sehingga: b-2ab= b-1(b-1ab)b= b-1atb = (b-1ab)t = (at)t

Sejalan dengan ni diperoleh b -3ab3 = at3 , tetapi karena b3 = e (karena° (b)=3 ), maka at3 = a, sehingga (((at)t)t-1= e dan karena ° (a) = 5, maka 5 |t3-1, yaitu t3 1(mod 5).

Selanjutnya, t4 1(mod 5) mka diperoleh t 1(mod 5) dan karena 0 ≤ t ≤ 5,maka t=1 .

Jadi b-1ab = at = a yang berarti bahwa ab=ba. Selanjutnya , karena ° (a) = 5, ° (b) = 3,

maka manurut teorema B.3 ° (ab) = 15. Ini berarti grup siklik dengan generator ab.

Latihan 7.1

1. Buktikan bahwa grup yang berorder 35 adalah siklik ! 2. Tentukan order dari S3= {1,2,3} dengan S3 =n !

Key Words

Teorema CauchyG berhingga,P

prima, P|G, P G

Rangkuman

Teorema Cauchy merupakan hipunan G yang berhingg dan P merupakan prima dimana P habis membagi order dari G atau cardinal G sehingga G memuat elemen order P