maquinas termicas

16
1.1 INTRODUCCION Energía y sociedad 2 La termodinámica se define como el estudio de la energía, sus formas y transformaciones, así como sus interacciones con la materia. 3 Dada su generalidad, la termodinámica es la ciencia básica que sirve de punto de Partida para el estudio de muchos otros temas de ingeniería; el más obvio es la transferencia de calor, el cual se refiere a cómo la energía pasa de un material o de un lugar a cierta temperatura, a otro material o a otro lugar a una temperatura diferente; la mecánica de fluidos se refiere los fluidos en movimiento bajo la acción de fuerzas externas y a las transformaciones de la energía entre las otras formas mecánica y térmica durante dicho movimiento. Otra forma de observar el alcance de la termodinámica, consiste en examinar sus muchos y diversos campos de acción. Entre éstos se incluyen las plantas de potencia (combustibles fósiles, fisión nuclear, fusión nuclear, solar, geotermia, etc.); las máquinas (de vapor, de gasolina, diesel, turbinas de gas estacionarios y de propulsión, cohetes, etc.); acondicionamiento de aire y sistemas de refrigeración de todos tipos; hornos, calentador equipos de procesos químicos; el diseño de equipo electrónico; el diseño de equipo mecánico; y en los procesos de manufactura. Resulta relativamente fácil demostrar que la termodinámica, en su más amplio sentido, es la ciencia que sirve de base a muchos campos de la ingeniería.

Upload: eduardo

Post on 09-Jul-2016

4 views

Category:

Documents


1 download

DESCRIPTION

Composicion y funcion de las maquinas termicas

TRANSCRIPT

Page 1: maquinas termicas

1.1 INTRODUCCION

Energía y sociedad

2

La termodinámica se define como el estudio de la energía, sus formas y transformaciones, así como sus interacciones con la materia.

3

Dada su generalidad, la termodinámica es la ciencia básica que sirve de punto de Partida para el estudio de muchos otros temas de ingeniería; el más obvio es la transferencia de calor, el cual se refiere a cómo la energía pasa de un material o de un lugar a cierta temperatura, a otro material o a otro lugar a una temperatura diferente; la mecánica de fluidos se refiere los fluidos en movimiento bajo la acción de fuerzas externas y a las transformaciones de la energía entre las otras formas mecánica y térmica durante dicho movimiento.

Otra forma de observar el alcance de la termodinámica, consiste en examinar sus muchos y diversos campos de acción. Entre éstos se incluyen las plantas de potencia (combustibles fósiles, fisión nuclear, fusión nuclear, solar, geotermia, etc.); las máquinas (de vapor, de gasolina, diesel, turbinas de gas estacionarios y de propulsión, cohetes, etc.); acondicionamiento de aire y sistemas de refrigeración de todos tipos; hornos, calentador equipos de procesos químicos; el diseño de equipo electrónico; el diseño de equipo mecánico; y en los procesos de manufactura.

Resulta relativamente fácil demostrar que la termodinámica, en su más amplio sentido, es la ciencia que sirve de base a muchos campos de la ingeniería.

Los principios de la termodinámica tienen una importancia fundamental para todas las ramas de la ciencia y la ingeniería.

4

La primera ley de la termodinámica da una definición precisa del calor, otro concepto de uso corriente.

Page 2: maquinas termicas

Entonces esta ley expresa que, cuando un sistema es sometido a un ciclo termodinámico, el calor cedido por el sistema será igual al trabajo recibido por el mismo, y viceversa.

Es decir Q = W, en que Q es el calor suministrado por el sistema al medio ambiente y W el trabajo realizado por el medio ambiente al sistema durante el ciclo.

En cualquier máquina, hace falta cierta cantidad de energía para producir trabajo; es imposible que una máquina realice trabajo sin necesidad de energía.

1.3 MAQUINAS TÉRMICAS

El desarrollo de la termodinámica comenzó en la época de la revolución industrial. Fue entonces cuando la invención de la maquina de vapor inicio un cambio monumental en nuestra civilización. Las primeras maquinas de vapor eran dispositivos primitivos que operaban con poca eficiencia, así que los científicos de la época fueron convocados para examinar las leyes físicas que regían a estas maquinas. Este llamado fue lo que impulso las primeras actividades en el campo de la termodinámica y los resultados de estas investigaciones tuvieron consecuencias perdurables que aun influyen en las ciencias físicas y biológicas.

Una maquina de vapor es un ejemplo de una máquina térmica definida como cualquier dispositivo que convierte la energía térmica en energía mecánica. La maquina de vapor se ajusta a esta descripción, lo mismo que el motor de gasolina, que emplea la energía térmica generada por la combustión de la gasolina. Otras maquinas más exóticas, que emplean el calor del sol o de reactores nucleares también son maquinas de calor.

Las maquina térmicas funcionan en ciclos. En otras palabras la conclusión de un ciclo es el principio de otro, por lo que la sustancia de trabajo se encuentra en el mismo estado al final de un ciclo y al principio de otro.

Page 3: maquinas termicas

Eficiencia

Desde un punto de vista practico una característica importante de una maquina es su eficiencia. Una maquina que convierte la mayor parte del calor que entra en trabajo es eficiente. A la inversa, una maquina que descarga la mayor parte de la energía que entra y efectúa relativamente poco trabajo no es eficiente. La eficiencia de una maquina térmica se define como la razón del trabajo efectuado por la maquina, y al calor de entrada. Si el calor que entra se convirtiera por completo en trabajo, entonces la maquina tendría una efiencia absoluta.

1.4 MOTOR DE COMBUSTIÓN INTERNA

Motor de combustión interna

Cualquier tipo de máquina que obtiene energía mecánica directamente de la energía química producida por un combustible que arde dentro de una cámara de combustión, la parte principal de un motor. Se utilizan motores de combustión interna de cuatro tipos: el motor cíclico Otto, el motor diesel, el motor rotatorio y la turbina de combustión.

El motor cíclico Otto, cuyo nombre proviene del técnico alemán que lo inventó, Nikolaus August Otto, es el motor convencional de gasolina que se emplea en automoción y aeronáutica. El motor diesel, llamado así en honor del ingeniero alemán Rudolf Diesel, funciona con un principio diferente y suele consumir gasóleo. Se emplea en instalaciones generadoras de electricidad, en sistemas de propulsión naval, en camiones, autobuses y algunos automóviles. Tanto los motores Otto como los diesel se fabrican en modelos de dos y cuatro tiempos.

Partes del motor

Los motores Otto y los diesel tienen los mismos elementos principales. La cámara de combustión es un cilindro, por lo general fijo, cerrado en un extremo y dentro del cual se desliza un pistón muy ajustado al interior. La posición hacia dentro y hacia fuera del pistón modifica el volumen que existe entre la cara interior del pistón y las paredes de la cámara. La cara exterior del pistón está unida por un eje al cigüeñal, que convierte en movimiento rotatorio el movimiento lineal del pistón. En los motores de varios cilindros el cigüeñal tiene una posición de partida, llamada espiga

Page 4: maquinas termicas

de cigüeñal y conectada a cada eje, con lo que la energía producida por cada cilindro se aplica al cigüeñal en un punto determinado de la rotación. Los cigüeñales cuentan con pesados volantes y contrapesos cuya inercia reduce la irregularidad del movimiento del eje. Un motor puede tener de 1 a 28 cilindros.

El sistema de bombeo de combustible de un motor de combustión interna consta de un depósito, una bomba de combustible y un dispositivo que vaporiza o atomiza el combustible líquido. Se llama carburador al dispositivo utilizado con este fin en los motores Otto. En los motores de varios cilindros el combustible vaporizado se conduce a los cilindros a través de un tubo ramificado llamado colector de admisión. Muchos motores cuentan con un colector de escape o de expulsión, que transporta los gases producidos en la combustión. Cada cilindro toma el combustible y expulsa los gases a través de válvulas de cabezal o válvulas deslizantes. Un muelle mantiene cerradas las válvulas hasta que se abren en el momento adecuado, al actuar las levas de un árbol de levas rotatorio movido por el cigüeñal. En la década de 1980, este sistema de alimentación de una mezcla de aire y combustible se ha visto desplazado por otros sistemas más elaborados ya utilizados en los motores diesel. Estos sistemas, controlados por computadora, aumentan el ahorro de combustible y reducen la emisión de gases tóxicos.

Todos los motores tienen que disponer de una forma de iniciar la ignición del combustible dentro del cilindro. Por ejemplo, el sistema de ignición de los motores Otto, llamado bobina de encendido, es una fuente de corriente eléctrica continua de bajo voltaje conectada al primario de un transformador. La corriente se corta muchas veces por segundo con un temporizador. Las fluctuaciones de la corriente del primario inducen en el secundario una corriente de alto voltaje, que se conduce a cada cilindro a través de un interruptor rotatorio llamado distribuidor. El dispositivo que produce la ignición es la bujía, un conductor fijado a la pared superior de cada cilindro. La bujía contiene dos hilos separados entre los que la corriente de alto voltaje produce un arco eléctrico que genera la chispa que enciende el combustible dentro del cilindro.

Dado que la combustión produce calor, todos los motores deben disponer de algún tipo de sistema de refrigeración. Algunos motores estacionarios de automóviles y de aviones y los motores fueraborda se refrigeran con aire. Los cilindros de los motores que utilizan este sistema cuentan en el exterior con un conjunto de láminas de metal que emiten el calor producido dentro del cilindro.

En otros motores se utiliza refrigeración por agua, lo que implica que los cilindros se encuentran dentro de una carcasa llena de agua que en los automóviles se hace circular mediante una bomba.

Page 5: maquinas termicas

El agua se refrigera al pasar por las láminas de un radiador. En los motores navales se utiliza agua del mar para la refrigeración.

Al contrario que los motores y las turbinas de vapor, los motores de combustión interna no producen un par de fuerzas cuando arrancan, lo que implica que debe provocarse el movimiento del cigüeñal para que se pueda iniciar el ciclo. Los motores de automoción utilizan un motor eléctrico (el motor de arranque) conectado al cigüeñal por un embrague o clutch automático que se desacopla en cuanto arranca el motor. Por otro lado, algunos motores pequeños se arrancan a mano girando el cigüeñal con una cadena o tirando de una cuerda que se enrolla alrededor del volante del cigüeñal.

Otros sistemas de encendido de motores son los iniciadores de inercia, que aceleran el volante manualmente o con un motor eléctrico hasta que tiene la velocidad suficiente como para mover el cigüeñal, y los iniciadores explosivos, que utilizan la explosión de un cartucho para mover una turbina acoplada al motor.

Motores cíclicos Otto

El motor convencional del tipo Otto es de cuatro tiempos, es decir, que el ciclo completo del pistón tiene cuatro fases, dos hacia el cabezal cerrado del cilindro y dos hacia atrás. Durante la primera fase del ciclo el pistón se mueve hacia atrás mientras se abre la válvula de admisión. El movimiento del pistón durante esta fase aspira hacia dentro de la cámara la cantidad necesaria de la mezcla de combustible y aire. Durante la siguiente fase, el pistón se mueve hacia la cabeza del cilindro y comprime la mezcla de combustible contenida en la cámara. Cuando el pistón llega hasta el final de esta fase y el volumen de la cámara de combustión es mínimo, la bujía se activa y la mezcla arde, expandiéndose y creando dentro del cilindro la presión que hace que el pistón se aleje; ésta es la tercera fase. En la fase final, se abre la válvula de escape y el pistón se mueve hacia la cabeza del cilindro para expulsar los gases, quedando preparado para empezar un nuevo ciclo.

La eficiencia de los motores Otto modernos se ve limitada por varios factores, entre otros la pérdida de energía por la fricción y la refrigeración. En general, la eficiencia de un motor de este tipo depende del grado de compresión, la proporción entre los volúmenes máximo y mínimo de la cámara de combustión. Esta proporción suele ser de 8 a 1 o 10 a 1 en la mayoría de los motores Otto modernos. Se pueden utilizar proporciones mayores, como de 12 a 1, aumentando así la eficiencia del motor, pero este diseño requiere la utilización de combustibles de alto índice de

Page 6: maquinas termicas

octano. La eficiencia media de un buen motor Otto es de un 20 a un 25% (o sea, que sólo la cuarta parte de la energía calorífica se transforma en energía mecánica).

Motores de dos tiempos

Con un diseño adecuado puede conseguirse que un motor Otto o diesel funcione a dos tiempos, con un tiempo de potencia cada dos fases en lugar de cada cuatro fases.

La eficiencia de este tipo de motores es menor que la de los motores de cuatro tiempos, lo que implica que la potencia que producen es menor que la mitad de la que produce un motor de cuatro tiempos de tamaño similar.

El principio general del motor de dos tiempos es la reducción de la duración de los periodos de absorción de combustible y de expulsión de gases a una parte mínima de uno de los tiempos, en lugar de que cada operación requiera un tiempo completo.

El diseño más simple de motor de dos tiempos utiliza, en lugar de válvulas de cabezal, las válvulas deslizantes u orificios (que quedan expuestos al desplazarse el pistón hacia atrás).

En los motores de dos tiempos la mezcla de combustible y aire entra en el cilindro a través del orificio de aspiración cuando el pistón está en la posición más alejada del cabezal del cilindro.

La primera fase es la compresión, en la que se enciende la carga de mezcla cuando el pistón llega al final de la fase. A continuación, el pistón se desplaza hacia atrás en la fase de explosión, abriendo el orificio de expulsión y permitiendo que los gases salgan de la cámara.

Motor rotatorio

En la década de 1950, el ingeniero alemán Félix Wankel desarrolló un motor de combustión interna con un diseño revolucionario, que utilizaba un rotor triangular que gira dentro de una

Page 7: maquinas termicas

cámara ovalada, en lugar de un pistón y un cilindro. La mezcla de combustible y aire es absorbida a través de un orificio de aspiración y queda atrapada entre una de las caras del rotor y la pared de la cámara. La rotación del rotor comprime la mezcla, que se enciende con una bujía. Los gases se expulsan a través de un orificio de expulsión con el movimiento del rotor.

El ciclo tiene lugar una vez en cada una de las caras del rotor, produciendo tres fases de potencia en cada giro.

El motor de Wankel es compacto y ligero en comparación con los motores de pistones, por lo que ganó importancia durante la crisis del petróleo en las décadas de 1970 y 1980. Además, funciona casi sin vibraciones y su sencillez mecánica permite una fabricación barata.

No requiere mucha refrigeración, y su centro de gravedad bajo aumenta la seguridad en la conducción.

EL AUTOMÓVIL

Automóvil

Cualquier vehículo mecánico autopropulsado diseñado para su uso en carreteras. El término se utiliza en un sentido más restringido para referirse a un vehículo de ese tipo con cuatro ruedas y pensado para transportar menos de ocho personas. Los vehículos para un mayor número de pasajeros se denominan autobuses o autocares, y los dedicados al transporte de mercancías se conocen como camiones.

El término vehículo automotor engloba todos los anteriores, así como ciertos vehículos especializados de uso industrial y militar.

El automóvil y el motor de combustión interna

Page 8: maquinas termicas

El motor proporciona energía mecánica para mover el automóvil. La mayoría de los automóviles utiliza motores de explosión de pistones, aunque a principios de la década de 1970 fueron muy frecuentes los motores rotativos o rotatorios. Los motores de explosión de pistones pueden ser de gasolina o diesel.

Motor de gasolina

Los motores de gasolina pueden ser de dos o cuatro tiempos. Los primeros se utilizan sobre todo en motocicletas ligeras, y apenas se han usado en automóviles. En el motor de cuatro tiempos, en cada ciclo se producen cuatro movimientos de pistón, llamados de admisión, de compresión, de explosión o fuerza y de escape o expulsión. En el tiempo de admisión, el pistón absorbe la mezcla de gasolina y aire que entra por la válvula de admisión. En la compresión, las válvulas están cerradas y el pistón se mueve hacia arriba comprimiendo la mezcla. En el tiempo de explosión, la bujía inflama los gases, cuya rápida combustión impulsa el pistón hacia abajo. En el tiempo de escape, el pistón se desplaza hacia arriba evacuando los gases de la combustión a través de la válvula de escape abierta.

El movimiento alternativo de los pistones se convierte en giratorio mediante las bielas y el cigüeñal, que a su vez transmite el movimiento al volante del motor, un disco pesado cuya inercia arrastra al pistón en todos los tiempos, salvo en el de explosión, en el que sucede lo contrario.

En los motores de cuatro cilindros, en todo momento hay un cilindro que suministra potencia al hallarse en el tiempo de explosión, lo que proporciona una mayor suavidad y permite utilizar un volante más ligero.

El cigüeñal está conectado mediante engranajes u otros sistemas al llamado árbol de levas, que abre y cierra las válvulas de cada cilindro en el momento oportuno.

En los automóviles actuales se usan cada vez más sistemas de encendido electrónico. Hasta hace poco, sin embargo, el sistema de encendido más utilizado era el de batería y bobina, en el que la corriente de la batería fluye a través de un enrollado primario (de baja tensión) de la bobina y magnetiza el núcleo de hierro de la misma. Cuando una pieza llamada ruptor o platinos abre dicho circuito, se produce una corriente transitoria de alta frecuencia en el enrollado primario, lo que a su vez induce una corriente transitoria en el secundario con una tensión más elevada, ya que el

Page 9: maquinas termicas

número de espiras de éste es mayor que el del primario. Esta alta tensión secundaria es necesaria para que salte la chispa entre los electrodos de la bujía.

El distribuidor, que conecta el enrollado secundario con las bujías de los cilindros en la secuencia de encendido adecuada, dirige en cada momento la tensión al cilindro correspondiente.

El ruptor y el distribuidor están movidos por un mismo eje conectado al árbol de levas, lo que garantiza la sincronización de las chispas.

Motor diesel

Los motores diesel siguen el mismo ciclo de cuatro tiempos explicado en el motor de gasolina, aunque presentan notables diferencias con respecto a éste. En el tiempo de admisión, el motor diesel aspira aire puro, sin mezcla de combustible. En el tiempo de compresión, el aire se comprime mucho más que en el motor de gasolina, con lo que alcanza una temperatura extraordinariamente alta. En el tiempo de explosión no se hace saltar ninguna chispa —los motores diesel carecen de bujías de encendido—, sino que se inyecta el gasoil o gasóleo en el cilindro, donde se inflama instantáneamente al contacto con el aire caliente. Los motores de gasoil no tienen carburador; el acelerador regula la cantidad de gasoil que la bomba de inyección envía a los cilindros.

Los motores diesel son más eficientes y consumen menos combustible que los de gasolina. No obstante, en un principio se utilizaban sólo en camiones debido a su gran peso y a su elevado costo. Además, su capacidad de aceleración era relativamente pequeña. Los avances realizados en los últimos años, en particular la introducción de la turbo alimentación, han hecho que se usen cada vez más en automóviles; sin embargo, subsiste cierta polémica por el supuesto efecto cancerígeno de los gases de escape; aunque, por otra parte, la emisión de monóxido de carbono es menor en este tipo de motores.

Lubricación y refrigeración

Page 10: maquinas termicas

Los motores necesitan ser lubricados para disminuir el rozamiento o desgaste entre las piezas móviles. El aceite, situado en el cárter, o tapa inferior del motor, salpica directamente las piezas o es impulsado por una bomba a los diferentes puntos.

Además, los motores también necesitan refrigeración. En el momento de la explosión, la temperatura del cilindro es mucho mayor que el punto de fusión del hierro. Si no se refrigeraran, se calentarían tanto que los pistones se bloquearían. Por este motivo los cilindros están dotados de camisas por las que se hace circular agua mediante una bomba impulsada por el cigüeñal. En invierno, el agua suele mezclarse con un anticongelante adecuado, como etanol, metanol o etilenglicol. Para que el agua no hierva, el sistema de refrigeración está dotado de un radiador que tiene diversas formas, pero siempre cumple la misma función: permitir que el agua pase por una gran superficie de tubos que son refrigerados por el aire de la atmósfera con ayuda de un ventilador.

Equipo eléctrico

El equipo eléctrico del automóvil comprende —además del sistema de encendido en el caso de los motores de gasolina— la batería, el alternador, el motor de arranque, el sistema de luces y otros sistemas auxiliares como limpiaparabrisas o aire acondicionado, además del cableado o arnés correspondiente. La batería almacena energía para alimentar los diferentes sistemas eléctricos.

Cuando el motor está en marcha, el alternador, movido por el cigüeñal, mantiene el nivel de carga de la batería.

A diferencia de un motor de vapor, un motor de gasolina o diesel debe empezar a girar antes de que pueda producirse la explosión.

En los primeros automóviles había que arrancar el motor haciéndolo girar manualmente con una manivela. En la actualidad se usa un motor de arranque eléctrico que recibe corriente de la batería: cuando se activa la llave de contacto (switch), el motor de arranque genera una potencia muy elevada durante periodos de tiempo muy cortos.

CONCLUSIONES

Page 11: maquinas termicas

Como se vio en el desarrollo del trabajo, la termodinámica es una ramificación de la Física muy importante ya que sirve como fundamento para explicar muchas de las cosas que ocurren a nuestro alrededor, así como para comprender la forma en como trabajan muchas de las maquinas que el hombre ha creado a lo largo de la historia de la humanidad con el principal objetivo de facilitar la realización de sus actividades.

Con el paso del tiempo estas máquinas son cada vez más capaces y veloces, así como mucho más complejas.

En nuestro tema de exposición seleccionamos el motor de combustión interna por ser una de las maquinas que mejor representa la aplicación de la termodinámica en la vida real, como se trato en el desarrollo, la energía generada por la combustión de gasolina, se transforma en trabajo, que a su vez provoca un movimiento.

Además se presentaron también diferentes tipos de motores de combustión interna, con lo se demuestra la aplicación de los fundamentos termodinámicos en un campo más extenso.

Por otra parte se trataron algunos de los componentes que en conjunto hacen funcionar a un automóvil, sin embargo solo se mencionaron los que mas relación tenían con los procesos termodinámicos del motor.

Es así como se ilustra la aplicación de la física en un caso particular como lo es el motor de combustión de un automóvil, hay muchos casos donde se puede demostrar la presencia de la física, inclusive en un automóvil, la aplicación de fundamentos físicos es excesivamente grande y tratarla en un solo trabajo resulta casi imposible.

Por ultimo nos gustaría invitar al lector a indagar en otros temas como se relacionan los conceptos y fundamentos físicos con la vida cotidiana, o su aplicación en procesos comunes de la realidad.

1.7 BIBLIOGRAFIA

Page 12: maquinas termicas

Bueche, Frederick. Fundamentos de Física, Ed. Mc Graw Hill, Tomo 1

Bueche, Frederick, Física para estudiantes de ciencias e ingeniería, Ed. Mc Graw Hill.

Bueche, Jerde, Fundamentos de Física, Ed. Mc Graw Hill, Tomo 1

Benson, Harris, Física universitarea, Ed, CECSA, Volumen 1

Cutnell, John, Física, Ed. Limusa, Primera edición.

Gettys, Edward, Física clásica y moderna, Ed. Mc Graw Hill.

Piña Garza, Eduardo, Termodinámica, Ed. Limusa, Primera edición.

Physical Science Study Committee, Física, Ed. Reverte, Tomos 1 y 2