konstruksi gudang-baja
Embed Size (px)
TRANSCRIPT

1
Penutup Atap
=Kemiringan Atap
-Genteng/
-Sirap Reng
Usuk tiap jarak ± 50 cm
Gording profil baja atau kayu
Overlap
Seng Gelombang
-Asbes Gelombang
-Aluminium GelombangGording
Overlap / tumpang tindih harus cukup
supaya air hujan tidak tampias / bocor
KONSTRUKSI BAJA GUDANG
1. PENUTUP ATAP
Sebagai penutup atap dapat digunakan :
a. Genteng dengan reng dan usuk
b. Sirap dengan reng dan usuk
c. Seng gelombang
d. Akses gelombang
e. Aluminium gelombang
f. Dll.
a. GENTENG
Kemiringan atap : 30° ≤ α ≤ 60°
α ≥ 60° : dipakai genteng khusus, dipaku pada reng
α ≤ 30° : dipakai genteng dengan presisi tinggi, dan diberi lapisan aluminium foil
di bawah reng.
Usuk dan reng harus mampu memikul beban hidup merata q dan terpusat p

2
Salah! Pada puncak
Bisa
Bocor!
Penempatan kaita
Kait
bc
bisa a, b atau c
b. SIRAP
Dilengkapi dengan usuk dan reng yang harus mampu memikul beban hidup merata
q terpusat p
Dapat dipakai pada sudut α besar
Bila α < 30° : tumpukan sirap diperbanyak dan diberi lapisan aluminium foil
b.d, e : Seng Gelombang, Asbes Gelombang dan Aluminium Gelombang
Dipakai pada bangunan industri
kemiringan atap lebih bebas ; 5° ≤ α ≤ 90°
semakin kecil α, overlap semakin besar
overlap : - pada arah mengalir air
- pada // arah mengalir air
perkiraan panjang overlap :
Sudut arah memanjang arah melintang
10-20° 20 cm 2,5 gelombang
20-40° 15 cm 1,5-2,5 gelombang
45° 10 cm 1,5 gelombang
Untuk mengkaitkan seng dengan gording dipasang hook/kait yang dikait pada gording :

3
Contoh: Gording 1Baut
Kuda-kuda
Pelat pengisi
baut
Las
GordingBaut
Kepala diatas mur
dibawah,agar baut tidak
jatuh bila mur kendor/lepas
SikuBaut
bautsiku
dilas
baut pengikat
Nok
atau
Gording atau
Gording atau
Potongan atau
, , ,Gording rangka untuk bentang >
Detail Hubungan Gording dengan kuda-kuda :
Angin yang kuat dapat mengangkat atap, maka gording perlu diikat kuat pada kuda-
kuda
2. PERHITUNGAN GORDING
Beban-beban yang dipikul oleh gording adalah :
a.beban mati
b. beban hidup
c. beban angin / beban sementara
Sedangkan untuk gording dapat dipakai :
1. Beban mati (D) : - berat sendiri penutup atap
- berat sendiri gording
- alat-alat pengikat
2. Beban hidup (L) : sesuai peraturan pembebanan
a. Terbagi rata : q = (40 – 0,8 α) ≤ 20 kg/m2
Beban terbagi rata per m2 bidang datar berasal dari beban air hujan, dimana
adalah sudut kemiringan atap dalam derajat. Beban tersebut tidak perlu ditinjau
bila kemiringan atapnya lebih dari 500.

4
x
x
Q
Q cos
y
Q sin
L3
Contoh :
Kuda - kuda
Nok
Gording
Penggantung
Gording
Catatan : bila L tidak terlalu besar, cukup
dipasang 1 penggantung gording
L
Kuda - kuda
q cos
Kuda 2
P cos
P sin
q sin
L
3L
Kuda 2
b. Terpusat P = 100 kg (beban orang saat pelaksanaan/perawatan)
3. Beban angin (W) : lihat Peraturan Pembebanan
→ besarnya tergantung dari daerah (wilayah) dan sudut α
Beban rencana yang bekerja adalah beban terbesar dari :
U = 1,4 D
U = 1,2 D + 1,6 L + 0,5 (La atau H)
U = 1,2 D + 1,6 (La atau H) + (L . L atau 0,8 W)
U = 1,2 D + 1,3 W + L . L + 0,5 (La atau H)
Keterangan :
L = 0,5 bila L < 5 kPa : L = 1 bila L ≥ 5k Pa
D adalah beban mati yang diakibatkan oleh berat konstruksi permanen
L adalah beban hidup yang ditimbulkan oleh penggunaan gedung, termasuk kejut
tetapi tidak termasuk beban lingkungan seperti angin, hujan, dll.
La adalah beban hidup di atap yang ditimbulkan selama perawatan oleh pekerja,
peralatan, dan material, atau selama penggunaan biasa oleh orang dan benda
bergerak
H adalah beban hujan, tidak termasuk yang diakibatkan genangan air
W adalah beban angin
Terhadap sb x –x profil :
Beban mati : MXD = 8
1 (q cos α) L2
Beban hidup q : MXL = 8
1 (q cos α) L2
P : MXL = 4
1 (P cos α) L2
Terhadap sb y – y profil :
- Beban mati : MYD = 8
1 (q sin α) (3L )
2
- Beban hidup q : MYL = 8
1 (q sin α) (3L )
2
P : MYL = 4
1 (P sin α) (3L )
2

5
Wx
L
kg/m' b
Wx
b
b
Wx= C x b x tekanan angin kg/m2
- Momen-momen akibat beban hidup merata q, dan terpusat P diambil yang
berpengaruh terbesar. (akibat q atau akibat P)
Beban angin : lihat Peraturan Pembebanan
Wx = c . b . tekanan angin kg/m2
Wy = 0
Dimana : c adalah koefisien angin
Momen yang diakibatkan oleh beban angin adalah :
0
8
1 2
yw
xxw
M
LWM
Beban angin yang harus diperhitungkan pada kombinasi pembebanan adalah beban
angin tekan. Sedangkan beban angin hisap digunakan untuk perhitungan kekuatan kait.
Mu yang bekerja :
Mux = 1,4 MxD
= 1,2 MxD + 1,6 MxL + 0,5 (MxLa atau MxH )
= 1,2 MxD + 1,6 (MxLa atau MxH ) + (L . MxL atau 0,8 Mxw)
= 1,2 MxD + 1,6 MxL + L . MxL + 0,5 (MxLa atau MxH )
Muy = sama seperti Mux

6
bftf
Px
Py
x
y
x
P
Py
= +
= +P
P
H=
P
d
dP.e
e
1) Kontrol Kekuatan Gording
ny
uy
nx
ux
M
M
M
M
≤ 1
= 0,9
Mnx = Momen nominal profil terhadap sb x - x
Mny = Momen nominal profil terhadap sb y - y
Mny = diambil momen nominal sayap atas profil
Penyederhanaan penyelesaian (Structural Steel Design Galambos hal 196)
a.
dipikul oleh dipikul hanya
profil penuh sayap atas
Zy = ¼ tf . bf2
2
profilZy
b.
2) Kontrol Lendutan
Lendutan terjadi f =
180
22 Lffyfx gording
Rumus lendutan : f = IE
Lq
.
..
384
5 4
F = IE
LP
.
..
48
1 3
x
y
y
x
P
Lfy
f
fx
fg=5
384q.LE.I
4
fg=1
48P.LE.I
3

7
L=6,6 m3
Contoh : Perhitungan Gording
Kuda - kuda
Nok
L
Kuda - kuda
165
=20°
165 cm
165
cos 20°=175,6 cm
seng gelombang
=2,2 m
165 165
Berat atap seng efektif = 8 kg/m2, mutu baja Bj 37
Dicoba profil WF 125 x 60 x 6 x 8 : A = 16,48 cm2
q = 13,2 kg/m1
Zx = 74 cm3
Zy = 15 cm3
Ix = 412 cm4
Iy = 29,2 cm4
a) Kontrol Kekuatan Profil
- Beban mati (D)
Berat seng = 1,756 x 8 = 14,05 kg/m1
Beban profil = 13,2 kg/m1
27,25 kg/m1
Alat pengikat dan lain-lain ± 10% = 2,72 kg/m1
q = 29,97 kg/m1 30 kg/m
1
MxD = 8
1 (q cos ) L
2 =
8
1 (30 cos 20°) 6,6
2 = 153,5 kg-m
MyD = 8
1 (q sin )
2
3
L =
8
1 (30 sin 20°) (2,2)
2 = 6,21 kg-m
- Beban hidup (L)
a) Beban hidup terbagi rata :
q = (40 – 0,8 ) = 24 kg/m2 ≤ 20 kg/m
2
Menurut peraturan pembebanan, dipakai 20 kg/m2
q = 1,65 x 20 = 33 kg/m1
MxL = 8
1 (q cos ) L
2 =
8
1 (33 cos 20°) 6,6
2 = 168,85 kg-m
MyL = 8
1 (q sin )
2
3
L =
8
1 (33 sin 20°) (2,2)
2 = 6,83 kg-m
+
+

8
b) Beban hidup berpusat P = 100 kg
MxL = 4
1 (p cos ) L =
4
1 (100 cos 20°) 6,6 = 155,1 kg-m
MyL = 4
1 (p sin )
3
L=
4
1 (100 cos 20°) 2,2 = 18,81 kg-m
- Beban angin (W)
Tekanan angin W = 30 kg/m2
Koefisien angin c = 0,02 . 20 – 0,4
c = 0
Angin tekan = c x W
= 0 x 30 = 0
Angin hisap = 0,4 x 30 = 12 kg/m2
Bila dibandingkan dengan beban (bb. Mati + bb. hidup) = 30 + 20 = 50 kg/m’, angin
hisap ini tidak bisa melawan beban (D + L), maka angin hisap ini tidak menentukan
tidak perlu diperhitungkan.
Besarnya momen berfaktor Mu
Mu = 1,2 MD + 1,6 (MLa atau MH) + (L . ML atau 0,8 MW)
Untuk beban mati, beban hidup terbagi rata, dan beban angin
Mux = 1,2 x 153,2 + 1,6 x 168,85 + 0 = 454,0 kg-m
Muy = 1,2 x 6,21 + 1,6 x 6,83 + 0 = 18,38 kg-m
Untuk beban mati, beban hidup terpusat, dan beban angin
Mux = 1,2 x 153,2 + 1,6 x 155,1 + 0 = 432,0 kg-m
Muy = 1,2 x 6,21 + 1,6 x 18,81 + 0 = 37,55 kg-m

9
misal =
68 cm
- Kontrol tekuk lokal
Penampang profil (tabel 7.5-1 SNI)
kompakPenampang
ptw
h
p
tw
h
ptf
bf
fyp
xtf
bf
180240
1680
2,156,0
1,9
20,11
240
170170
75,38,02
6
2
Maka Mnx = Mpx
- Kontrol lateral buckling :
Misal Lb = 68 cm jarak penahan lateral (jarak kait atap ke gording)
Atau (lihat brosur seng) = jarak 2 pengikat seng
Lp = 1,76 ry fy
E
= 1,76 x 1,32 2400
100,2 6x = 68,72 cm
Ternyata Lb < Lp maka Mnx = Mpx
Momen Nominal
Dari kontrol tekuk lokal dan tekuk lateral didapatkan :
Mnx = Mpx = Zx . fy = 74,0 x 2.400 = 177.600,0 kg-cm = 1.776,0 kg-m
Mny = Zy (1 feans) x fy = (4
1 tf . bf
2) x fy
= (4
1x 0,8 x 6
2) x 2.400 = 17.280 kg-cm
= 172,8 kg-m
Persamaan Interaksi:
Pers. Interaksi : nyb
uy
nxb
ux
M
M
M
M
.. ≤ 1
b = Faktor reduksi, untuk lentur = 0,90
Mnx = Kekuatan nominal lentur terhadap sb x - x

10
Mny = Kekuatan nominal lentur terhadap sb y – y
Untuk beban mati dan beban hidup hidup merata :
(OK)
Untuk beban mati dan beban hidup hidup terpusat :
(OK)
Dari kedua persamaan interaksi tersebut terlihat bahwa pemilihan profil masih
belum efisien karena masih terlalu jauh dari nilai 1.
a) Kontrol Lendutan :
Lendutan ijin = L/180 (untuk gording)
Dicari fx = lendutan thd. Sb x-x profil
fy = lendutan thd. Sb. y-y profil
)( 22 fyfxf ≤ f
Dimana : x
xEI
Lqf
4
1
)cos(
384
5 Lendutan akibat bb. Merata
x
xEI
LPf
3
2
)cos(
48
1 Lendutan akibat bb. Terpusat
y
yEI
Lq
f
4
1
3)sin(
384
5
Lendutan akibat bb. Merata
y
yEI
Lq
f
3
1
3)sin(
48
1
Lendutan akibat bb. Terpusat
= 1,78 cm
= 0,68 cm
= 0,11 cm
= 0,13 cm
= 2,47 cm
fijin = L/180 = 660/180 = 3,67 cm
ftot = 2,47 cm < fijin = 3,67 cm (ok)
tw=
0,6
bf=6 cm
tf=0,8
h d=12,5 cm

11
3. PELAT SIMPUL
Untuk mempersatukan dan menyambung batang-batang yang bertemu di titik simpul,
diperlukan pelat simpul.
Sebagai pelat penyambung, pelat simpul harus memenuhi syarat-syarat sebagai berikut :
1. Cukup lebar, sehingga paku keling/baut dapat dipasang menurut peraturan yang
ditentukan.
2. Tidak terjadi kerja takikan, seperti dijumpai pada pelat simpul yang mempunyai sudut
ke dalam. Pelat akan gampang sobek.
3. Cukup kuat menerima beban dari batang-batang yang diteruskan pelat simpul, maka
simpul perlu diperiksa kekuatannya, dengan cara mengadakan beberapa potongan
untuk diperiksa kekuatannya pada potongan tersebut.
Namun sebelum dilanjutkan mengenai pemeriksaan pelat simpul, sekilas di ulang kembali
dulu tentang perhitungan banyaknya baut/paku keling yang diperlukan.
- Banyaknya baut yang diperlukan
a. Batang pinggir menerus
e = letak garis berat profil = garis kerja gaya
w = letak lubang baut
e dan w = dapat dilihat pada tabel profil
Contoh :
Tarikan
sebaiknya
Pelat simpul
Contoh :
Pelat simpul
tebal t1
Vn Dn
n1
n2
Hn1 Hn2
n3 e wBatang menerus
a) Batang pinggir menerus
Batang Pinggir

12
- Kekuatan baut tipe tumpu :
Kuat geser rencana tumpu baut : Rn = Øf . r1 . fub . Ab
Dimana : Øf = 0,75 adalah faktor reduksi kekuatan untuk fraktur
r1 = 0,5 untuk baut tanpa ulir pada bidang geser
r1 = 0,4 untuk baut dengan ulir pada bidang geser
fub adalah tegangan tarik putus baut
Ab adalah luas bruto penampang baut pada daerah tak
berulir
Kuat geser rencana tumpu pelat : Rn = Øf . 2,4 . db . tp . fu
Dimana : Øf = 0,75 adalah faktor reduksi kekuatan untuk fraktur
fu adalah tegangan tarik putus yang terendah dari baut atau
pelat
db adalah diameter baut nominal pada daerah tak berulir
tp adalah tebal pelat (harga terkecil dari t1 atau 2t2 )
Rn = harga terkecil dari kuat geser tumpu baut atau tumpu pelat
- Banyaknya baut :
n1 ≥ `n
n
R
D
n2 ≥ `n
n
R
V
n3 ≥ n
uu
R
HH
)( 12 (batang menerus)
n min = 2
b) Batang pinggir terputus
Untuk batang terputus, maka dihitung masing-masing
n1 ≥ `n
n
R
D
n2 ≥ `n
n
R
V
n3 ≥ n
u
R
H
1
n4 ≥ n
n
R
H
2
n min = 2, jarak baut sesuai SKSNI (tata cara)
Pelat simpul
tebal t1
Vn Dn
n1
n2
Hn1 Hn2
n3Batang terputus/tidak menerus
n4

13
- Cara menggambar pelat simpul
Setelah jumlah baut atau paku keling dihitung :
1) Digambar garis-garis sistem (= garis berat penampang profil) bertemu pada
satu titik
2) Gambarlah batang-batang utuhnya (sisi batang sejarak e dari garis sistem)
3) Tempatkan baut-batu / paku keling sesuai peraturan (letak baut/paku keling =
w dari sisi batang)
4) Tarik garis batas akhir baut/paku keling pada setiap batang (misal = 2d)
lihat tabel 13.4 – 1
5) Tarik garis-garis batas tepi pelat ------ lihat contoh
Pelat simpul
e w
ew
2d
2d
5
1
2 4 3jarak
= 0,3d=15 tp d=diameter baut
atau 200 mm
jarak jarak3
tp=elemen tertipis

14
- Pemeriksaan Kekuatan Pelat Simpul
Disini diambil contoh pada pelat penyambung batang pinggir :
a. Batang pinggirnya menerus
b. Batang pinggirnya terputus
a) Batang pinggir tepi menerus
Diketahui Hu1 > Hu2
Untuk salah satu potongan, misal potongan (a) – (a)
Maka pada potongan (a) – (a) bekerja gaya ;
Selisih gaya Hu1 dan Hu2 di terima oleh 5 baut, maka pada potongan (a) – (a) menerima
gaya sebesar 5
2 (Hu1 – Hu2) (diterima 2 baut dari 5 baut)
Gaya yang bekerja :
Gaya normal (tarik) Nut = 5
2 (Hu1 – Hu2) + Du1 cos
Gaya lintang / geser Vu = Du1 sin
Momen Mu = 5
2 (Hu1 – Hu2) S1 + Du1 . S2
Pelat simpul tebal t
Vu Du2Du1
a
a
S1
S2
Hu1 Hu2
Contoh :
Batang menerus
Du1 a
a
S1
S2 Du1 sin
Du1 cos
25
(Hu1-Hu2)
h
t
g.n.pelat
lobang

15
Kontrol kekuatan pelat :
22
.
nv
u
nb
n
ntt
ut
V
V
M
M
N
N
≤ 1
Dimana : t . Nnt = harga terkecil dari 0,9 . fy . Ag (leleh) dan 0,75 . fu . An (fraktur)
b . Mn = 0,9 . Z . fy
v . Vn = 0,75 (0,6 An x fu)
Ag = t . h
An = t . h - A lubang
fy = tegangan leleh / yield pelat
fu = tegangan patah pelat
Z 4
1 t . h
2 – A lubang x jarak
b) Batang pinggir tepi terputus
Contoh
Diketahui Hu1 > Hu2
Batang Hu1 dan Hu2 terputus, namun pada bagian tepi bawah dihubungkan dengan
pelat penyambung. Pelat penyambung dianggap memindahkan gaya
2
2uH (diketahui Hu2 < Hu1)
Maka pada potongan (a) – (a) bekerja gaya :
Pelat simpul tebal t
Vu Du2Du1
a
a
S1
S2
Hu1 Hu21 2
Hu22
Pelat penyambung dianggap meneruskan
Hu2 (siku sama kaki)2Diketahui Hu1>Hu2
Du1 a
a
S1
S2 Du1 sin
Du1 cos
2(Hu1-Hu2)
h
t
g.n.pelat
lobang
1
1
1

16
- Baut pada batang Hu1 di pelat simpul menerima gaya (Hu1 - 2
2uH)
Gaya yang bekerja :
Gaya normal (tarik) Nut = (Hu1 - 2
2uH) + Du1 cos 1
Gaya lintang / geser Vu = Du1 sin 1
Momen Mu = (Hu1 - 2
2uH) x S1 + Du1 x S2
- Kontrol kekuatan pelat :
22
...
nv
u
nb
u
ntt
ut
V
V
M
M
N
N
1
Dimana : t . Nnt dan seterusnya, sama seperti pada contoh a
- Pembentukan Pelat Simpul
Didalam pembentukan pelat simpul perlu diperhatikan syarat-syarat :
Cukup tempat untuk penempatan baut/paku keeling
Tidak terjadi takikan
Cukup kuat
Tidak terlalu banyak pekerjaan
Tidak terlalu banyak sisa pelat akibat bentuk dari pelat simpul
Contoh:
6 x potongan pelat lebih baik / praktis 4 x potongan pelat
lebih baik / praktis
lebih baik / praktis
dll.

17
4. BENTUK-BENTUK KONSTRUKSI RANGKA GUDANG
Banyak bentuk-bentuk konstruksi untuk gudang yang bisa digunakan. Hal-hal yang
mempengaruhi antara lain :
- Pemakaian gudang tersebut
- Keadaan suasana gudang akan dibangun :
Keadaan tanah
Besar dan kecilnya beban angin
Bentuk yang dipilih tentunya akan menentukan cara penyelesaian struktur dan biayanya.
a. Konstruksi kap rangka sendi – rol
Konstruksi kuda-kuda dengan tumpuan A sendi, B rol merupakan konstruksi statis
tertentu, maka penyelesaian statikanya dengan statis tertentu. Namun sering didalam
praktek dibuat A sendi, B sendi, dengan demikian konstruksi menjadi statis tak tentu.
Tetapi sering diselesaikan dengan cara pendekatan dengan menganggap perletakan A =
B didalam menerima beban H.
RAH = RBH = 2
H
Untuk mencari gaya-gaya batangannya dapat digunakan cara :
Cremona
Keseimbangan titik
Ritter
Dan lain-lain
Kemudian untuk mendukung kuda-kuda diperlukan kolom. Apabila dipakai kolom
dengan perletakan bawah sendi, maka struktur menjadi tidak stabil bila ada beban H
(angin/gempa).
Asendi B rol
sendi
A B
H
H/2 H/2=RBH

18
Karena itu untuk mendukung kuda-kuda ini, harus dipakai kolom dengan perletakan
bawah jepit.
Bila gaya H bekerja maka struktur/konstruksi ini akan stabil/kokoh. Pada perletakan
bawah kolom terjadi gaya V, H dan M. Besarnya M = hH
.2
adalah cukup besar. Maka
bila struktur ini yang dipilih pada tanah yang jelek, pondasinya akan mahal.
Dicari penyelesaian suatu bentuk struktur agar pondasi tidak terlalu mahal.
b. Kuda-kuda dihubungkan dengan pengaku pada kolom
1. Kuda-kuda dengan pengaku dan perletakan bawah kolom jepitan.
Struktur dengan sistem ini cukup kaku dan memberikan momen M lebih kecil dari
pada struktur sebelumnya.
S S
H
akan roboh
sendi sendi
H
jepit
H2
H2
H2
VM
h
jepitH2
VM= H
2= h
H
jepitMjepitM
e
c
a
a
h1
A B
S1H/2
H/2S2
H/2
H/2
f
d
S1 S2= titik balik

19
Struktur semacam ini adalah statis tak tentu, maka statistikanya diselesaikan
dengan cara statis tak tentu.
Namun sering didalam prkateknya diselesaikan dengan cara pendekatan/sederhana
yaitu :
- Bila beban vertikal (gravitasi) yang bekerja, struktur dianggap statis tertentu,
yang bekerja pada kolom gaya V saja. Selanjutnya gaya-gaya batang KRB
dicari dengan : Cremona, Kesetimbangan Titik, Ritter, dan sebagainya.
- Bila beban H bekerja, dianggap terjadi titik balik (= inflection point) terjadi
ditengah-tengah yaitu S1 dan S2.
M pada titik balik = 0 (seperti sendi)
Gaya geser pada S1 dan S2 adalah = 2
H
M pada kolom bawah = axH
2
V dapat dicari dengan MS2 = 0, dari seluruh struktur S1 C E F D S2.
Dengan meninjau kolom S1 . CE :
1. ME = 0
2
Hx (h1 + a) – (a) cos α 2 x h1 = 0 (a) didapat
2. KV = 0
-V + (a) sin α 2 – (c) sin α 2 = 0 (c) didapat
3. MS1 = 0
2
H x (h1 + a) – (b) x (h1 + a) – (c) cos α 1 (h1 + a)
+ (a) cos α 2 x a = 0 (b) didapat
Setelah didapatkan gaya, (a), (b), dan (c), maka gaya batang yang lain dari kuda-
kuda dapat dicari dengan Cremona, Kesetimbangan titik, Ritter, dan sebagainya.
a
h1
c
b
a
e
c
H/2
jepit
a
H2
H2
S1Titik balik
a
h1
c
b
a
E
c
H2
S1
H2
y
1
2
V dapat dicari dengan MS2=0dari seluruh struktur S1 C E F D S2

20
c
S1
b
a
anginw
w
w
h
h1
sendi sendi
c
b
a
h
h1
sendi sendi
c
b
a
ALTERNATIF
sendi sendi
S
RAH
RAV
ARBH
RBV
2. Kuda-kuda dengan pengaku dan perletakan bawah kolom sendi.
Struktur ini sama seperti pada perletakan bawah kolom jepit. Gaya batang (a), (b) dan
(c) dapat dihitung seperti sebelumnya, hanya mengganti jarak a dengan h.
Keuntungan kolom dengan perletakan sendi ini adalah :
- Momen pada perletakan bawah/sendi = 0
- Momen pada pondasi menjadi kecil, pondasinya menjadi murah
- Namun momen pada kolomnya menjadi besar 2 kali dari pada kolom perletakan
jepit (h = 2a)
c. Konstruksi 3 Sendi
Konstruksi ini adalah statis tertentu.
Dicari reaksi diperletakan dengan
persamaan :
0
0
0
0
SMdan
M
V
H
Didapat reaksi perletakan RAH, RAV, RBH
Dan RBV.
Kemudian gaya-gaya batangnya dicari dengan : Cremona, Kesetimbangan Titik, Ritter,
dan sebagainya.

21
sendi
jepit
Sambungan
kaku
sendi
jepit
BA
d. Konstruksi Portal Kaku (Gable Frame)
Konstruksi ini adalah statis tak tentu.
Diselesaikan dengan cara cross,
clapeyron, slope deflection, tabel, dan
sebagainya.
Gaya yang bekerja pada batang-
batangnya N, D dan M.
Batang menerima Nu dan Mu
perhitungan sebagai beam column.
STABILITAS STRUKTUR / KONSTRUKSI
Yang telah dibicarakan adalah konstruksi/struktur yang seolah-olah pada suatu bidang.
Konstruksi dalam bidang ini memang stabil, karena sudah diperhitungkan terhadap
gaya-gaya yang bekerja pada bidang tersebut.
Dalam kenyataannya konstruksi adalah berbentuk ruang, sehingga secara keseluruhan
konstruksi belum stabil, maka perlu diatur lagi dalam arah yang lain.
Contoh
Pada bidang kuda-kuda, konstruksi ini stabil, sebab sudah diperhitungkan terhadap
beban yang bekerja yaitu P dan H (angin / gempa)
Pada bidang yang bidang kuda-kuda, bila ada beban H bekerja dalam arah ini,
konstruksi akan roboh/terguling, jadi masih labil. Maka perlu distabilkan dalam arah
ini.
Konstruksi untuk memberikan stabilitas dalam arah ini dinamakan :
Ikatan angin
Ikatan pemasangan (montage)
Yang dipasang pada bidang atap dan pada bidang dinding.
H P
P
P
P
Kolom
Kuda-kuda
Ikatan Angin
Gording
Kolom
Kolom
Kuda-kuda
Kuda-kuda

22
1
H1
2
H2
5. BANGUNAN GUDANG DENGAN IKATAN ANGIN DAN IKATAN
MONTAGE (PEMASANGAN)
Untuk menjaga kestabilan struktur rangka kuda-kuda akibat tiupan angin/gempa
diberikan ikatan angin dalam arah memanjang gudang. Ikatan angin bersama-sama
dengan gording dan rangka kuda-kuda membentuk suatu rangka batang.
Karena ikatan angin ini diperlukan untuk menjamin stabilitas dalam arah memanjang
gudang, biasanya ditempatkan pada daerah ujung-ujung gudang saja. Sedangkan bila
gudangnya cukup panjang, maka diantaranya ditempatkan lagi ikatan-ikatan
pemasangan/Montage.
Rencana / Denah Atap
- Seringnya dipasang ikatan angin memanjang, untuk memperkaku bidang atap arah
melintang.
Penggantung gording dipasang pada semua gording
Ikatan angin pada dinding /kolom untuk meneruskan beban angin ke pondasi
Biasanya untuk ikatan angin digunakan batang lemas. Batang ini hanya dapat menahan
gaya tarik, tidak dapat menahan gaya tekan.
Bila ada H1, yang bekerja batang (1) tarik
Bila ada H2, yang bekerja batang (2) tarik
a
Ikatan
angin
dk=±(3-9)m
penggantung
gording Ødk dk dk
Ikatan
montage
Ikatan
angin
angin
Contoh :
Kud
a-k
uda
Kud
a-k
uda

23
Bentuk Dari Ikatan Angin Dan Ikatan Montage (Pemasangan)
1. Pada Gudang Tertutup
2. Pada Gudang Terbuka
1. Ikatan angin pada gudang tertutup
Contoh
Gavel / Portal Akhir / End Frame
- Letak regel vertikal sesuai dengan titik-titik rangka ikatan angin pada atap
- Regel horizontal dipasang sesuai dengan panjang seng untuk dinding
Catatan (anggapan konservatif) :
- Bila dinding dipakai dingin bata ½ bata, dianggap tidak tahan angin, perlu
dipasang ikatan angin pada dinding,
- Bila dinding dipakai dinding bata 1 bata atau lebih dianggap dinding tahan
angin, tidak diperlukan ikatan angin pada dinding.
penggantung gording
pada dinding
Ikatan angin pada atap Kuda-kuda
Regel/Gewel
Pintu
M.Tanah
Ikatan angin pada
dinding/kolom
Pintu
Ikatan angin
gording 2
Kuda-kuda
Kolom/regel vertikal
Regel horizontal

24
2. Ikatan Angin pada Gudang Terbuka (tanpa dinding)
- Bentuk lain ikatan memanjang
- Termasuk tepi/akhir dipasang kuda-kuda
- Pengaku/bracing/ikatan memanjang pada kolom biasanya dipasang sepanjang
bangunan.
- Untuk kuda-kuda dengan bentang yang besar > ± 40 m, pengaku/bracing/ikatan
memanjang dipasang juga pada rangka kuda-kuda.
Kuda-kuda
M.Tanah
Kolom-kolomPengaku/bracing/ikatan memanjang
gording 2
Kuda-kuda
Kuda-kuda
Ikatan angin pada atap
Kuda-kuda
Kolom
Ikatan memanjang
Kolom
Ikatan gigi anjing

25
BEBAN YANG BEKERJA AKIBAT TIUPAN ANGIN
Pada Gudang Tertutup
Pada regel vertikal / kolom(3)
q = (c . w . a) , dimana a adalah jarak regel-regel vertikal
R3 = ½ q . h3
M = 8
1q . h3
2
N = berat atap + dinding + kolom
Maka pada regel/kolom (3) bekerja beban-beban Mu, Nu → perhitungan sebagai
beam – column.
Analog untuk regel (1), (2), dan (4).
Beban yang bekerja pada ikatan angin pada atap adalah :
R1, R2, R3, R4 = gaya yang didapat dari reaksi pada regel (1), (2), (3) dan (4). Akibat
dari beban angin ini, maka dapat dicari yang bekerja pada rangka batang ikatan angin.
- Batang atas kuda-kuda mendapat beban tambahan
- Gording mendapat beban tambahan
Maka batang atas dari kuda-kuda dan gording harus diperhitungkan akibat beban
tambahan ini.
Gording pada rangka batang ikatan
q=
...k
g/m
'
N
R3
h3
a N Kuda-kuda
N
R3
N
a a a a
=±(3-4)m
1 2 3 4 3 2 1
dk
R Batang Atas Kuda-kuda R=(R1+R2+R3+R4)
Gording
R1
2
Ikatan angin
R2 R3 R4 R3 R2 R1

26
Sebagai gording terjadi Mu
Sebagai rangka ikatan angin terjadi Nu → perhitungan gording sebagai beam –
column.
Dengan jarak L bracing, dapat diambil jarak-jarak dari baut pengikat seng
gelombang.
Ikatan angin pada dinding
Koefisien angin C :
Pada gevel c = 0,9
Pada dinding // c = - 0,4
* Angin bertiup pada dinding gevel (garis tidak terputus-putus)
* Angin bertiup pada dinding samping (garis putus-putus)
Didalam memperhitungkan beban ikatan angin pada dinding, kedua arah angin ini harus
ditinjau.
LSeng Gelombang
c = 0,9
0,4
GewelAngin 0,9
0,41
Angin
2
beban Px,Py
NN
qx,qy
Jarak kuda-kuda
sebagai gording
sebagai ikatan angin
y
y
x
x

27
Gaya yang bekerja pada Ikatan Angin Dinding
Contoh
R = (R1 + R2 + R3 + 2
4R)
V = L
fRfRfR
.2
..2.2 443332
Diterima oleh kolom.
Dari beban beban ini, maka dapat dihitung gaya-gaya pada rangka batang ikatan
angin dinding.
- Regel horisontal (2) menerima beban :
Beban mati qy → My = 8
1 qy
2
3
L
Beban angin c = 0,9; 0,4 dan 0,4; 0,9
Beban angin qx → Mx = 8
1 qx . L
2
Beban normal N → angin dari regel (=R)
Regel horisontal (2) menerima Mux, Muy dan N→ perhitungan sebagai beam
column.
- Regel horisontal (1) <bidang tengah> menerima beban :
Beban mati qy → My = 8
1 qy
2
3
L
Beban angin c = 0,9 → qx → Mx = 8
1 qx . L
2
Regel (1) menerima Mux, Muy → perhitungan sebagai balok.
R1
R2
R3
R4
R1
R2
R3
f4
f3
f2
V
V
Kolom
Ikatan angin
pada dindingL
V V
R 1
2
1
1
Kolom
L
L
Kolom
3
L

28
R
KOLOM
PONDASI
Beban angin pada Ikatan Angin Gevel
Contoh
Pada Gudang Terbuka
- Angin bertiup pada bidang atap (= angin 1) ditahan oleh kuda-kuda dan kolom
- Angin bertiup pada // bidang atap atau bidang kuda-kuda (= angin 2) →
menabrak kuda-kuda, ditahan oleh ikatan angin :
Ikatan angin pada atap
Ikatan/bracing/pengaku memanjang pada kolom.
Merupakan struktur statis tak tentu
penyelesaian statikanya kuda-kuda dengan
kolom.
Beban pada akhirnya, harus sampai ke pondasi.
Kolom Kuda2Angin
Luas bidang yang diperhitungkan
ditiup anginIkatan angin gewel
Diterima oleh ikatan angin gewel
Kuda-kuda
Kuda-kuda
Kolom
Kolom
R
R
Angin 1
Angin 2

29
Hal-Hal yang Perlu Diperhatikan untuk Pertimbangan Batang
* Pada Konstruksi rangka batang kuda-kuda
Pada batang tarik → diperhitungkan Anetto
Pada batang tekan → diperhitungkan panjang tekuk Lk
Lkx : Panjang tekuk arah vertikal
Lky : Panjang tekuk arah horizontal
* Konstruksi console / Cantilever
Lkx : Panjang tekuk arah vertikal =
Lky : Panjang tekuk arah horizontal = 4
Jika diberi ikatan khusus seperti tergambar maka Lky → 2
Lk y
Lk x
y
xIkatan angin
y
x
gording
Ikatan khusus
Batang tekan di bawah, tidak
ada gording dan ikatan angin
Kuda-kuda