vektor, aljabar linier

33
ALJABAR LINIER Vektor Pada Ruang Berdimensi 2 dan Berdimensi 3 Oleh: Reno Yudistira (06121008012) Armadan (06121008014) Rizki Erwiyangkia (06121008029) Putri Indah Sari (06121008030) Sartini Nuha Afifah (06121008033) Prodi : Pendidikan Matematika Mata Kuliah : Aljabar Linier FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS SRIWIJAYA

Upload: sartininuha

Post on 11-Jul-2015

3.424 views

Category:

Education


35 download

TRANSCRIPT

Page 1: Vektor, Aljabar Linier

ALJABAR LINIER Vektor Pada Ruang Berdimensi 2 dan Berdimensi 3

Oleh:

Reno Yudistira (06121008012)

Armadan (06121008014)

Rizki Erwiyangkia (06121008029)

Putri Indah Sari (06121008030)

Sartini Nuha Afifah (06121008033)

Prodi : Pendidikan Matematika

Mata Kuliah : Aljabar Linier

FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN

UNIVERSITAS SRIWIJAYA

Page 2: Vektor, Aljabar Linier

1. PENGANTAR VEKTOR (GEOMETRIK)

Vektor adalah segmen garis yang mempunyai arah dan panjang. Secara geometris vektor

digambarkan dengan anak panah yang mempunyai pangkal dan ujung.

. Gambar 1.1

Vektor-vektor yang mempunyai arah dan panjang yang sama dikatakan ekivalen.

Gambar 1.2

Definisi : Jika v dan w adalah dua vektor sebarang maka v + w, disebut jumlah vektor v

dan w, diperoleh sebagai berikut : letakkan vektor w sehingga titik awal w berimpit

dengan titik akhir dari v, maka vektor v + w dinyatakan oleh panah dari titik awal v ke

titik ujung w.

Gambar 1.3

Vektor yang panjangnya nol dinamakan vektor nol dan dinyatakan dengan 0.

Penjumlahan dengan vektor nol didefinisikan

0 + v = v + 0 = v

Jika v sebarang vektor tak nol, maka −v (negatif v) adalah vektor yang mempunyai

besaran sama seperti v tetapi arahnya berlawanan dengan v.

Page 3: Vektor, Aljabar Linier

Pengurangan dua vektor didefinisikan sebagai penjumlahan dengan negatif vektor.

v − w = v + (− w)

Gambar 1.4

Definisi : Perkalian vektor tak nol v dengan skalar (bilangan real tak nol) k didefinisikan

sebagai vektor yang panjangnya |𝑘| kali panjang v dan arahnya sama dengan arah v jika k

> 0, dan berlawanan arah dengan arah v jika k < 0.

Gambar 1.5

Vektor pada Bidang (𝑹𝟐)

Misalkan v suatu vektor pada bidang, titik awal v diletakkan pada pusat sistem koordinat,

dan titik ujung v terletak pada koordinat (𝑣1, 𝑣2), maka (𝑣1, 𝑣2) dinamakan komponen

dari v. Dalam hal ini ditulis v = (𝑣1, 𝑣2).

Secara geometri 𝑣1 menyatakan komponen pada sumbu x dan 𝑣2 menyatakan komponen

pada sumbu y.

Jika v = (𝑣1, 𝑣2) dan w = (𝑤1,𝑤2) adalah vektor-vektor pada bidang (𝑅2), maka v

ekivalen dengan w jika dan hanya jika 𝑣1 = 𝑤1 dan 𝑣2 = 𝑤2 .

Jika v = (𝑣1, 𝑣2) dan w = (𝑤1,𝑤2), maka berlaku

1. v + w = (𝑣1 + 𝑤1, 𝑣2 + 𝑤2)

2. k v = (𝑘𝑣1,𝑘𝑣2) dengan k suatu skalar

Contoh : Misalkan v = (−2, 1) dan w = (1, 3), maka

v + w = (−2, 1) + (1, 3) = (−2+1, 1+3) = (−1, 4)

Page 4: Vektor, Aljabar Linier

2v = 2(−2, 1) = (2.(−2), 2.1) = (−4, 2)

v − w = (−2, 1) − (1, 3) = (−2−1, 1−3) = (−3, −2)

w − v = (1, 3) − (−2, 1) = (1−(−2), 3−1) = (3, 2)

Gambar 1.6

Kadang-kadang vektor diletakkan sedemikian sehingga titik awalnya tidak terletak pada

pusat koordinat. Misalkan titik awalnya adalah 𝑃1(𝑥1,𝑦1) dan titik ujungnya adalah

𝑃2(𝑥2,𝑦2) maka P1���� P2����= (𝑥2 − 𝑥1 , 𝑦2 − 𝑦1). Komponen 𝑃1���� 𝑃2���� didapat dengan

mengurangkan koordinat tititk awal dari koordinat titik ujung. Jika dijelaskan dengan

gambar, didapat pula

𝑃1���� 𝑃2����= 0� 𝑃2���� − 0� 𝑃1����= (𝑥2,𝑦2 ) − (𝑥1, 𝑦1 ) = (𝑥2 − 𝑥1 , 𝑦2 − 𝑦1).

Contoh :

Gambar 1.7

Jika v = (𝑣1, 𝑣2) adalah vektor di R2 maka panjang vektor (disebut norm ) v

didefinisikan sebagai

�|𝑣|� = �𝑣12 + 𝑣22

Page 5: Vektor, Aljabar Linier

Jika 𝑃1(𝑥1,𝑦1) dan 𝑃2(𝑥2,𝑦2) adalah dua titik di R2, maka jarak dua titik tersebut

didefinisikan sebagai norm dari vektor 𝑃1���� 𝑃2���� , yaitu

d=�((𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2)

Vektor pada Ruang (𝑹𝟑)

Misalkan v suatu vektor pada ruang (𝑅3), maka komponen dari v adalah (𝑣1, 𝑣2, 𝑣3) yang

secara geometri 𝑣1 menyatakan komponen pada sumbu x dan 𝑣2 menyatakan komponen

pada sumbu y dan 𝑣3menyatakan komponen pada sumbu z.

Jika

v = (𝑣1, 𝑣2, 𝑣3), dan w = (𝑤1,𝑤2,𝑤3), maka:

1. v ekivalen dengan w jika dan hanya jika 𝑣1 = 𝑤1, 𝑣2 = 𝑤2, 𝑣3 = 𝑤3.

2. v + w = (𝑣1 + 𝑤1,𝑣2 + 𝑤2, 𝑣3 + 𝑤3)

3. k v = (𝑘𝑣1, 𝑘𝑣2, 𝑘𝑣3) dengan k suatu skalar

Jika P1(𝑥1,𝑦1, 𝑧1) dan P2(𝑥2,𝑦2, 𝑧2) adalah titik-titik di 𝑅3, maka

𝑃1���� 𝑃2���� = (𝑥2 − 𝑥1 , 𝑦2 − 𝑦1, 𝑧2 − 𝑧1)

Jika w = (𝑤1,𝑤2,𝑤3) suatu vektor di 𝑅3, maka panjang vektor

(norm) w didefinisikan sebagai

�|𝐖|�=�(w1𝟐 + w22 + w32)

Jika (𝑥1,𝑦1, 𝑧1) dan P2(𝑥2,𝑦2, 𝑧2) adalah dua titik di 𝑅3, maka jarak antara

dua titik tersebut adalah norm dari vektor 𝑃1���� 𝑃2����, yaitu

d=�(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2

Contoh :

Norma vektor v = (3, 4, 0) adalah

|𝐕|=�(3𝟐 + 42 + 02)=5

Jarak di antara titik P1(2, 1, 0) dan P2(4, −3, 1) adalah

d=�((4− 2)2 + (−3 − 1)2 + (1 − 0)2)= d=�(22 + (−4)2 + 12)=√21.

Page 6: Vektor, Aljabar Linier

2. NORMA SUATU VEKTOR; ARITMATIKA VEKTOR

1. NORMA VEKTOR

Panjang sebuah vektor sering dinamakan dengan norma vektor. Misalkan ada vektor v,

maka norma vektor v dinyatakan dengan ||v|| . jika v merupakan vektor di ruang-2

dengan komponen v=(v1, v2) maka nor ma vektor v

�|𝑣|� = �(𝑣12 + 𝑣22)

rumus tersebut didapat dari teorema phytagoras . perhatikan gambar dibawah ini

Gambar 2.1

Dengan menggunakan cara di atas kita dapat dengan mudah mendapat kan rumus

norma vektor untuk ruang-3. Misal u adalah vektor di ruang-3 maka norma vektor u

adalah

�|𝑢|� = �(𝑢12 + 𝑢22+𝑢32)

0

Y

X

(v1,v2)

𝑣1

𝑣2 ||v||

Page 7: Vektor, Aljabar Linier

2. ILMU HITUNG VEKTOR

PEMBUKTIAN TEOREMA

a. u + v = v + u

Pembuktian analitik

Jika vektor u=(𝑢1,𝑢2,𝑢3), dan vektor v=(𝑣1, 𝑣2, 𝑣3) maka

𝑢 + 𝑣 = (𝑢1,𝑢2,𝑢3) + (𝑣1, 𝑣2, 𝑣3)

= (𝑢1 + 𝑣1), (𝑢2 + 𝑣2), (𝑢3 + 𝑣3)

= (𝑣1 + 𝑢1), (𝑣2 + 𝑢2), (𝑣3 + 𝑢3)

= (𝑣1, 𝑣2, 𝑣3) + (𝑢1,𝑢2,𝑢3)

= 𝑣 + 𝑢

Pembuktian geometri

Gambar 2.2

Jumlah vektor v dan w adalah v + w, yaitu diagonal jajargenjang yang terbentuk.

Note: karena (𝑢1,𝑢2,𝑢3), (𝑣1, 𝑣2, 𝑣3)dan(𝑤1,𝑤2,𝑤3) ∈ R maka berlaku sifat sifat operasi bilangan real, maka: (𝑢 + 𝑣) = (𝑣 + 𝑢) sifat komutatif penjumlahan bilangan real

Teorema 1.

Jika u, v dan w adalah vektor-vektor di ruang 2 atau ruang 3 dan k serta l adalah

skalar, maka hubungan berikut akan berlaku.

a. u + v = v + u e. k(lu) = (kl)u

b. (u + v) + w = u + (v + w) f. k(u + v) = ku + kv

c. u + 0 = 0 + u = u g. (k + l)u = ku + lu

d. u + (-u) = 0 h. 1u = u

Page 8: Vektor, Aljabar Linier

b. (u + v) + w = u + (v + w)

Pembuktian Analitik

Jika u = (𝑢1,𝑢2,𝑢3), v = (𝑣1, 𝑣2, 𝑣3), dan w = (𝑤1,𝑤2,𝑤3), maka

(𝑢 + 𝑣) + 𝑤 = [(𝑢1,𝑢2,𝑢3) + (𝑣1, 𝑣2, 𝑣3)] + (𝑤1,𝑤2,𝑤3)

= (𝑢1 + 𝑣1,𝑢2 + 𝑣2,𝑢3 + 𝑣3) + (𝑤1,𝑤2,𝑤3)

= ([𝑢1 + 𝑣1] + 𝑤1, [𝑢2 + 𝑣2] + 𝑤2, [𝑢3 + 𝑣3] + 𝑤3

= (𝑢1 + [𝑣1 + 𝑤1],𝑢2 + [𝑣2 + 𝑤2],𝑢3 + [𝑣3 + 𝑤3])

= (𝑢1,𝑢2,𝑢3) + (𝑣1 + 𝑤1, 𝑣2 + 𝑤2, 𝑣3 + 𝑤3)

= 𝑢 + (𝑣 + 𝑤)

Pembuktian geometri

Gambar 2.3

Misalkan u, v, dam w dinyatakan oleh 𝑃𝑄�����⃗ ,𝑄𝑅�����⃗ , dan 𝑅𝑆�����⃗ , maka

𝑣 + 𝑤 = 𝑄𝑆�����⃗ dan 𝑢 + (𝑣 + 𝑤) = 𝑃𝑆����⃗ Juga,

𝑢 + 𝑣 = 𝑃𝑅�����⃗ dan (𝑢 + 𝑣) + 𝑤 = 𝑃𝑆����⃗

Maka, (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤)

Note: karena (𝑢1,𝑢2, 𝑢3), (𝑣1, 𝑣2, 𝑣3)dan(𝑤1,𝑤2,𝑤3) ∈ R maka berlaku sifat sifat operasi bilangan real, maka: (𝑢 + 𝑣) + 𝑤 = 𝑢 + (𝑣 + 𝑤) sifat asosiatif penjumlahan bilangan real

Page 9: Vektor, Aljabar Linier

c. u + 0 = 0 + u = u

Pembuktian analitik

Jika vektor u=(𝑢1,𝑢2,𝑢3), maka

𝑢 + 0 = (𝑢1,𝑢2, 𝑢3) + 0

= (𝑢1 + 0), (𝑢2 + 0), (𝑢3 + 0)

= (0 + 𝑢1), (0 + 𝑢2), (0 + 𝑢3)

= 0 + (𝑢1,𝑢2,𝑢3)

= 0 + 𝑢

= 𝑢

Pembuktian geometri

jika vektor u=(𝑢1,𝑢2,𝑢3) dan v=(0,0,0)

Gambar 2.4

d. u + (-u) = 0

Jika u=(𝑢1,𝑢2,𝑢3) maka -u=(−𝑢1−,𝑢2,− 𝑢3)

𝑢 + (−𝑢) = (𝑢1,𝑢2,𝑢3) + (−𝑢1−,𝑢2,− 𝑢3)

= (𝑢1 + (−𝑢1)), (𝑢2 + (−𝑢2)), (𝑢3 + (−𝑢3))

= (0,0,0)

Note: karena (𝑢1,𝑢2, 𝑢3)𝑑𝑎𝑛 0 ∈ R maka berlaku sifat sifat operasi bilangan real, maka: 𝑢 + 0 = 0 + 𝑢 sifat komutatif penjumlahan bilangan real 𝑢 + 0 = 0 + 𝑢= 0 Identitas penjumlahan dengan 0

Note: karena (𝑢1,𝑢2, 𝑢3)𝑑𝑎𝑛(−𝑢1−,𝑢2,− 𝑢3) ∈ R maka berlaku sifat sifat operasi bilangan real maka

Page 10: Vektor, Aljabar Linier

= 0

Pembuktian Geometri

e. k(lu) = (kl)u

Jika u = (𝑢1,𝑢2,𝑢3) dan k serta l adalah skalar, maka

𝑘(𝑙𝑢) = 𝑘[𝑙(𝑢1,𝑢2,𝑢3)]

= 𝑘(𝑙𝑢1, 𝑙𝑢2, 𝑙𝑢3)

= (𝑘𝑙)𝑢1, (𝑘𝑙)𝑢2, (𝑘𝑙)𝑢3

= (𝑘𝑙)(𝑢1,𝑢2,𝑢3)

= (𝑘𝑙)𝑢

Pembuktian Geometri

Gambar 2.5

f. k(u + v) = ku + kv

Jika u = (𝑢1,𝑢2,𝑢3), v = (𝑣1, 𝑣2, 𝑣3), dan k adalah skalar, maka

𝑘(𝑢 + 𝑣) = 𝑘[(𝑢1,𝑢2,𝑢3) + (𝑣1, 𝑣2, 𝑣3)]

= 𝑘[(𝑢1 + 𝑣1,𝑢2 + 𝑣2,𝑢3 + 𝑣3)]

= 𝑘(𝑢1 + 𝑣1),𝑘(𝑢2 + 𝑣2),𝑘(𝑢3 + 𝑣3)

= 𝑘𝑢1 + 𝑘𝑣1,𝑘𝑢2 + 𝑘𝑣2,𝑘𝑢3 + 𝑘𝑣3

= (𝑘𝑢1,𝑘𝑢2,𝑘𝑢3) + (𝑘𝑣1,𝑘𝑣2, 𝑘𝑣3)

-v

Page 11: Vektor, Aljabar Linier

= 𝑘𝑢 + 𝑘𝑣

Pembuktian Geometri

Gambar 2.6

g. (k + l)u = ku + lu

Jika u = (𝑢1,𝑢2,𝑢3) dan k serta l adalah skalar, maka

(𝑘 + 𝑙)𝑢 = (𝑘 + 𝑙)(𝑢1,𝑢2, 𝑢3)

= (𝑘 + 𝑙)𝑢1, (𝑘 + 𝑙)𝑢2, (𝑘 + 𝑙)𝑢3

= 𝑘𝑢1 + 𝑙𝑢1,𝑘𝑢2 + 𝑙𝑢2, 𝑘𝑢3 + 𝑙𝑢3

= 𝑘𝑢1,𝑘𝑢2,𝑘𝑢3 + 𝑙𝑢1, 𝑙𝑢2, 𝑙𝑢3

= 𝑘(𝑢1,𝑢2,𝑢3) + 𝑙(𝑢1,𝑢2,𝑢3)

= 𝑘𝑢 + 𝑙𝑢

Pembuktian Geometri

Note: karena (𝑢1,𝑢2, 𝑢3), (𝑣1, 𝑣2, 𝑣3)𝑑𝑎𝑛 𝑘 ∈ R maka berlaku sifat sifat operasi bilangan real, maka:

k(u + v) = ku + kv sifat distributif penjumlahan bilangan real

Note: karena (𝑢1,𝑢2, 𝑢3), 𝑙,𝑑𝑎𝑛 𝑘 ∈ R maka berlaku sifat sifat operasi bilangan real ,maka

(k+l)u = ku + kv sifat distributif penjumlahan bilangan real

Page 12: Vektor, Aljabar Linier

Gambar 2.7

h. 1u = u

Jika u = (𝑢1,𝑢2,𝑢3), maka

1𝑢 = 1(𝑢1,𝑢2,𝑢3)

= 1𝑢1, 1𝑢2, 1𝑢3

= 𝑢1, 𝑢2,𝑢3

= 𝑢

Pembuktian Geometri

Gambar 2.8

Note: karena (𝑢1,𝑢2, 𝑢3)𝑑𝑎𝑛 1 ∈ R maka berlaku sifat sifat operasi bilangan real, maka: 1u = u sifat identitas perkalian bilangan real

Page 13: Vektor, Aljabar Linier

3. HASILKALI TITIK; PROYEKSI

Hasil Kali dari Vektor-vektor

Misalkan u dan v adalah dua vektor taknol pada ruang berdimensi 2 atau berdimensi

3, dan asumsikan vektor-vektor ini ditempatkan sedemikian rupa sehingga titik awalnya

berhimpitan. Mengenai sudut antara u dan v (angle between u and v), yang kita

maksudkan adalah sudut θ ditentukan oleh u dan v di mana 𝜃 ≤ 𝜋 (Gambar 3.1).

Gambar 3.1 Sudut θ antara u dan v yang memenuhi 𝜃 ≤ 𝜋

Bentuk Komponen dari Hasil Kali Titik

Untuk lebih memudahkan perhitungan, akan lebih baik jika kita memiliki suatu

rumus yang menyatakan hasilkali titik dengan vektor dalam bentuk komponen-

komponen dari vektor tersebut. Berikut akan kami turunkan rumus yang digunakan untuk

vektor pada ruang berdimensi 3; penurunan untuk vektor pada ruang berdimensi dua

adalah sama.

Gambar 3.2

𝐮 ∙ 𝐯 = ��|𝐮|� �|𝐯|� cos θ0

� Jika 𝐮 ≠ 𝟎 dan 𝐯 ≠ 𝟎Jika 𝐮 = 𝟎 atau 𝐯 = 𝟎

Definisi Jika u dan v adalah vektor-vektor pada ruang berdimensi 2 atau berdimensi 3, dan θ adalah sudut antara u dan v, maka hasilkali titik (dot product)atau hasilkali dalam Euclidean (Euclidean inner product) u . v didefinisikan oleh

...................(1)

Page 14: Vektor, Aljabar Linier

Misalkan u = (𝑢1,𝑢2,𝑢3) dan v = (𝑣1, 𝑣2, 𝑣3) adalah dua vektor taknol. Jika θ adalah

sudut antara u dan v sebagaimana yang ditunjukkan oleh Gambar 3.2, maka hukum

cosinus menghasilkan:

��𝑃𝑄�����⃗ ��2

= �|u|�2

+ �|v|�2− 2�|u|��|v|� cos θ .....................................(2)

Karena 𝑃𝑄�����⃗ = v – u, kita dapat menulis kembali (2) sebagai

�|u|��|v|� cos θ =12��|u|�

2+ �|v|�

2− �|v − u|�

2�

atau

u ∙ v =12��|u|�

2+ �|v|�

2− �|v − u|�

2�

dengan mensubtitusi

�|u|�2

= 𝑢12 + 𝑢22 + 𝑢32 , �|v|�2

= 𝑣12 + 𝑣22 + 𝑣32

dan

�|u − v|�2

= (𝑣1 − 𝑢1)2 + (𝑣2 − 𝑢2)2 + (𝑣3 − 𝑢3)2

Maka

u ∙ v = 12��|u|�

2+ �|v|�

2− �|v− u|�

2�

u ∙ v = 12�(𝑢12 + 𝑢22 + 𝑢32) + (𝑣12 + 𝑣22 + 𝑣32) − ((𝑣1 − 𝑢1)2 + (𝑣2 − 𝑢2)2 +

(𝑣3 − 𝑢3)2)�

u ∙ v = 12

(𝑢12 + 𝑢22 + 𝑢32 + 𝑣12 + 𝑣22 + 𝑣32 − ((𝑣12 − 2𝑢1𝑣1 + 𝑢12) + (𝑣22 −

2𝑢2𝑣2 + 𝑢22) + (𝑣32 − 2𝑢3𝑣3 + 𝑢32)))

u ∙ v = 12

(𝑢12 + 𝑢22 + 𝑢32 + 𝑣12 + 𝑣22 + 𝑣32 − (𝑣12 − 2𝑢1𝑣1 + 𝑢12 + 𝑣22 − 2𝑢2𝑣2 +

𝑢22 + 𝑣32 − 2𝑢3𝑣3 + 𝑢32))

u ∙ v = 12

(𝑢12 + 𝑢22 + 𝑢32 + 𝑣12 + 𝑣22 + 𝑣32 − 𝑣12 + 2𝑢1𝑣1 − 𝑢12 − 𝑣22 + 2𝑢2𝑣2 −

𝑢22 − 𝑣32 + 2𝑢3𝑣3 − 𝑢32)

u ∙ v = 12

(2𝑢1𝑣1 + 2𝑢2𝑣2 + 2𝑢3𝑣3)

u ∙ v = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3 .....................................(3)

Rumus diatas juga berlaku jika u=0 atau v=0

Bukti:

Jika u=0 atau v=0, maka komponen-komponen vektor u dan v adalah u=(0, 0, 0) dan

v=(0, 0, 0).

Page 15: Vektor, Aljabar Linier

𝐮 ∙ 𝐯 = 0 ....(definisi vektor)

- Misalkan u=0 dan v adalah vektor taknol, maka:

Gambar 3.3

Karena komponen u = (𝑢1,𝑢2, 𝑢3) = (0,0,0) dan komponen v = (𝑣1,𝑣2, 𝑣3),

subtitusikan rumus pada (3) diatas, sehingga:

u ∙ v = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3

u ∙ v = (0)𝑣1 + (0)𝑣2 + (0)𝑣3

u ∙ v = 0 + 0 + 0

u ∙ v = 0 ....(definisi

vektor)

- Misalkan u adalah vektor taknol dan v=0, maka:

Karena komponen u = (𝑢1,𝑢2, 𝑢3) dan komponen v = (𝑣1, 𝑣2, 𝑣3) = (0,0,0),

subtitusikan rumus pada (3) diatas, sehingga:

u ∙ v = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3

u ∙ v = 𝑢1(0) + 𝑢2(0) + 𝑢3(0)

u ∙ v = 0 + 0 + 0

u ∙ v = 0 ....(definisi vektor)

Menentukan Sudut Antara Vektor-Vektor

Berdasarkan Definisi 𝐮 ∙ 𝐯 = �|u|��|v|� cos θ , jika u dan v adalah vektor-vektor

taknol, maka Rumus (1) dapat ditulis sebagai berikut:

Page 16: Vektor, Aljabar Linier

cos θ =u ∙ v

�|u|��|v|�

Contoh 3.1:

Tentukan sudut antara diagonal kubus dengan salah satu sisinya.

Penyelesaian.

Misalkan k adalah suatu sisi pada sistem koordinat sebagaimana yang terlihat pada

gambar. Jika kita misalkan 𝐮𝟏 = (𝑘, 0, 0), 𝐮𝟐 = (0,𝑘, 0), dan 𝐮𝟑 = (0, 0,𝑘).

Gambar 3.3

Maka, vektor

𝐝 = (𝑘,𝑘,𝑘) = 𝐮𝟏 + 𝐮𝟐 + 𝐮𝟑

adalah diagonal dari kubus. Sudut θ antara d dan sisi 𝐮𝟏 memenuhi

cos𝜃 =𝐮𝟏 ∙ 𝐝

�|𝐮𝟏|��|𝐝|�=

𝑘2

(𝑘)�√3𝑘2�=

1√3

Jadi, 𝜃 = cos−1 � 1√3� = 54,74𝑜

Bukti:

a. Karena sudut θ antara v dan v adalah nol, maka

Teorema 3.1

Jika u dan v adalah vektor-vektor pada ruang berdimensi 2 atau berdimensi 3, maka:

a. v ∙ v = �|v|�2

,𝑦𝑎𝑖𝑡𝑢 �|v|� = (v ∙ v)12

b. Jika u dan v adalah vektor-vektor taknol, dan θ adalah sudut di antaranya, maka:

θ adalah lancip jika dan hanya jika u ∙ v > 0

θ adalah tumpul jika dan hanya jika u ∙ v < 0

θ adalah 𝜋2 jika dan hanya jika u ∙ v = 0

Page 17: Vektor, Aljabar Linier

v ∙ v = �|v|��|v|�cosθ = �|v|�2

cos0 = �|v|�2

b. Karena θ memenuhi 0 ≤ 𝜃 ≤ 𝜋, maka

• θ adalah lancip jika dan hanya jika cosθ > 0

• θ adalah tumpul jika dan hanya jika cosθ < 0

• θ adalah 𝜋2 jika dan hanya jika cosθ = 0

Tetapi cosθ memiliki tanda yang sama dengan u ∙ v karena u ∙ v = �|u|��|v|� cos θ,

�|u|� > 0,𝑑𝑎𝑛 �|v|� > 0. Jadi, hasil tersebut diperoleh.

Vektor-vektor Ortogonal

Vektor-vektor yang saling tegak lurus juga disebut vektor-vektor ortogonal. Sesuai

teorema 3.1.b, dua vektor taknol adalah vektor ortogonal jika dan hanya jika hasilkali

titiknya adalah nol. Jika kita setuju menganggap u dan v saling tegak lurus ketika salah

satu atau keduanya adalah 0, maka kita dapat menyatakan tanpa pengecualian bahwa dua

vektor u dan v ortogonal (tegak lurus) jika dan hanya jika u ∙ v = 0. Untuk menyatakan

bahwa u dan v adalah vektor-vektor ortogonal, kita menulis u ⊥ v.

Contoh 3.2:

Tunjukkan bahwa pada ruang berdimensi 2, vektor taknol n = (a,b) adalah tegak lurus

terhadap garis 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

Penyelesaian

Misalkan 𝑃(𝑥1,𝑦1) dan 𝑃(𝑥2,𝑦2) adalah dua titik yang berbeda pada garis tersebut

sehingga:

𝑎𝑥1 + 𝑏𝑦1 + 𝑐 = 0

𝑎𝑥2 + 𝑏𝑦2 + 𝑐 = 0

Gambar 3.4

Karena vektor 𝑃1𝑃2��������⃗ = (𝑥2 − 𝑥1,𝑦2 − 𝑦1) terletak pada garis, kita hanya perlu

menunjukkan bahwa n dan 𝑃1𝑃2��������⃗ saling tegak lurus. Tetapi, dengan menggunakan

persamaan-persamaan diatas, kita memperoleh:

Page 18: Vektor, Aljabar Linier

....(perkalian vektor)

𝑎(𝑥2 − 𝑥1) + 𝑏(𝑦2 − 𝑦1) + 𝑐 = 0

Yang dapat dinyatakan dalam bentuk

(𝑎, 𝑏) ∙ (𝑥2 − 𝑥1,𝑦2 − 𝑦1) = 0

𝐧 ∙ 𝑃1𝑃2��������⃗ = 0

Jadi, n dan 𝑃1𝑃2��������⃗ saling tegak lurus.

Bukti:

a. Misalkan u = (𝑢1,𝑢2,𝑢3) dan v = (𝑣1, 𝑣2, 𝑣3) , maka:

u ∙ v = 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3

karena 𝑢1,𝑢2,𝑢3, 𝑣1, 𝑣2, 𝑑𝑎𝑛 𝑣3 ∈ 𝑅, maka berlaku 𝑢1𝑣1 = 𝑣1𝑢1, 𝑢2𝑣2 = 𝑣2𝑢2, dan

𝑢3𝑣3 = 𝑣3𝑢3 (sifat komutatif perkalian bilangan). Sehingga:

u ∙ v = 𝑣1𝑢1 + 𝑣2𝑢2 + 𝑣3𝑢3

u ∙ v = v ∙ u

b. Misalkan u = (𝑢1,𝑢2,𝑢3), v = (𝑣1, 𝑣2, 𝑣3), dan w = (𝑤1,𝑤2,𝑤3) maka:

u ∙ (v + w) = (𝑢1,𝑢2,𝑢3) ∙ ((𝑣1,𝑣2, 𝑣3) + (𝑤1,𝑤2,𝑤3))

u ∙ (v + w) = (𝑢1,𝑢2,𝑢3) ∙ �(𝑣1 + 𝑤1), (𝑣2 + 𝑤2), ( 𝑣3 + 𝑤3)�

u ∙ (v + w) = (𝑢1(𝑣1 + 𝑤1),𝑢2(𝑣2 + 𝑤2),𝑢3(𝑣3 + 𝑤3))

karena 𝑢1,𝑢2,𝑢3, 𝑣1, 𝑣2, 𝑣3,𝑤1,𝑤2, 𝑑𝑎𝑛 𝑤3 ∈ 𝑅, maka berlaku:

𝑢1(𝑣1 + 𝑤1) = 𝑢1𝑣1 + 𝑢1𝑤1

𝑢2(𝑣2 + 𝑤2) = 𝑢2𝑣2 + 𝑢2𝑤2

𝑢3(𝑣3 + 𝑤3) = 𝑢3𝑣3 + 𝑢3𝑤3 .......(Sifat distributif perkalian bilangan)

Sehingga:

u ∙ (v + w) = �(𝑢1𝑣1 + 𝑢1𝑤1), ( 𝑢2𝑣2 + 𝑢2𝑤2), (𝑢3𝑣3 + 𝑢3𝑤3)�

u ∙ (v + w) = �(𝑢1𝑣1,𝑢2𝑣2, 𝑢3𝑣3) + (𝑢1𝑤1,𝑢2𝑤2,𝑢3𝑤3)� ....(penjumlahan vektor)

Teorema 3.2 Sifat-sifat Hasilkali Titik Jika u v, dan w adalah vektor-vektor pada ruang berdimensi 2 atau berdimensi 3, dan k adalah skalar, maka: a. u ∙ v = v ∙ u b. u ∙ (v + w) = u ∙ v + u ∙ w c. 𝑘(u ∙ v) = (𝑘u) ∙ v = u ∙ (𝑘v) d. v ∙ v > 0 𝑗𝑖𝑘𝑎 𝑣 ≠ 0,𝑑𝑎𝑛 v ∙ v = 0 jika v = 0

Page 19: Vektor, Aljabar Linier

u ∙ (v + w) = u ∙ v + u ∙ w

c. Misalkan u = (𝑢1,𝑢2,𝑢3) dan v = (𝑣1, 𝑣2, 𝑣3) , maka:

𝑘(u ∙ v) = 𝑘(𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3)

karena 𝑘,𝑢1, 𝑢2,𝑢3, 𝑣1, 𝑣2, 𝑑𝑎𝑛 𝑣3 ∈ 𝑅, maka berlaku:

𝑘(𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3) = 𝑘𝑢1𝑣1 + 𝑘𝑢2𝑣2 + 𝑘𝑢3𝑣3 (Sifat distributif perkalian bilangan)

𝑘𝑢1𝑣1 + 𝑘𝑢2𝑣2 + 𝑘𝑢3𝑣3 = (𝑘𝑢1)𝑣1 + (𝑘𝑢2)𝑣2 + (𝑘𝑢3)𝑣3 (Sifat asosiatif perkalian bil)

Sehingga:

𝑘(u ∙ v) = (𝑘𝑢1)𝑣1 + (𝑘𝑢2)𝑣2 + (𝑘𝑢3)𝑣3

𝑘(u ∙ v) = (𝑘𝑢1,𝑘𝑢2,𝑘𝑢3) ∙ (𝑣1, 𝑣2, 𝑣3) ....(perkalian vektor)

𝑘(u ∙ v) = (𝑘(𝑢1,𝑢2,𝑢3)) ∙ (𝑣1, 𝑣2, 𝑣3) ....(Sifat distributif perkalian)

𝑘(u ∙ v) = (𝑘u) ∙ v

Demikian juga,

Misalkan u = (𝑢1,𝑢2,𝑢3) dan v = (𝑣1, 𝑣2, 𝑣3) , maka:

𝑘(u ∙ v) = 𝑘(𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3)

karena 𝑘,𝑢1, 𝑢2,𝑢3, 𝑣1, 𝑣2, 𝑑𝑎𝑛 𝑣3 ∈ 𝑅, maka berlaku:

𝑘(𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3) = 𝑘𝑢1𝑣1 + 𝑘𝑢2𝑣2 + 𝑘𝑢3𝑣3 (Sifat distributif perkalian bilangan)

𝑘𝑢1𝑣1 + 𝑘𝑢2𝑣2 + 𝑘𝑢3𝑣3 = 𝑢1𝑘𝑣1 + 𝑢2𝑘𝑣2 + 𝑢3𝑘𝑣3 (Sifat komutatif perkalian bilangan)

𝑘𝑢1𝑣1 + 𝑘𝑢2𝑣2 + 𝑘𝑢3𝑣3 = 𝑢1(𝑘𝑣1) + 𝑢2(𝑘𝑣2) + 𝑢3(𝑘𝑣3) (Sifat asosiatif perkalian bil)

Sehingga:

𝑘(u ∙ v) = 𝑢1(𝑘𝑣1) + 𝑢2(𝑘𝑣2) + 𝑢3(𝑘𝑣3)

𝑘(u ∙ v) = (𝑢1,𝑢2,𝑢3) ∙ (𝑘𝑣1, 𝑘𝑣2,𝑘𝑣3) ....(perkalian vektor)

𝑘(u ∙ v) = (𝑢1,𝑢2,𝑢3) ∙ (𝑘(𝑣1, 𝑣2, 𝑣3)) ....(Sifat distributif perkalian)

𝑘(u ∙ v) = u ∙ (𝑘v)

d. Misalkan v = (𝑣1, 𝑣2, 𝑣3) , maka:

Untuk 𝐯. 𝐯 > 0 𝑗𝑖𝑘𝑎 𝑣 ≠ 0

𝐯 ∙ 𝐯 = (𝑣1, 𝑣2, 𝑣3)(𝑣1, 𝑣2, 𝑣3)

𝐯 ∙ 𝐯 = (𝑣1𝑣1 + 𝑣2𝑣2 + 𝑣3𝑣3) ....(perkalian vektor)

𝐯 ∙ 𝐯 = (𝑣12 + 𝑣22 + 𝑣32)

Karena 𝑣1, 𝑣2, 𝑣3 ∈ 𝑅, maka meskipun salah satu atau dua atau semua nilai 𝑣1, 𝑣2, 𝑣3

bernilai negatif, hasil dari 𝑣12 + 𝑣22 + 𝑣32 akan memberikan hasil yang positif

(𝑣12 + 𝑣22 + 𝑣32 > 0). Sehingga:

𝐯 ∙ 𝐯 > 0

Page 20: Vektor, Aljabar Linier

Untuk 𝐯. 𝐯 = 0 𝑗𝑖𝑘𝑎 𝐯 = 0

𝐯 ∙ 𝐯 = (𝑣1, 𝑣2, 𝑣3)(𝑣1, 𝑣2, 𝑣3)

𝐯 ∙ 𝐯 = (𝑣1𝑣1 + 𝑣2𝑣2 + 𝑣3𝑣3) ....(perkalian vektor)

𝐯 ∙ 𝐯 = (𝑣12 + 𝑣22 + 𝑣32)

𝐯 ∙ 𝐯 = (0 + 0 + 0)

𝐯 ∙ 𝐯 = 0

Proyeksi ortogonal

Jika kita menguraikan vektor 𝐮 kedalam jumlah dua suku, yang satu sejajar dengan

vektor a taknol sedangkan yang lain tegak lurus terhadap a. Jika u dan a ditempatkan

sedemikian rupa maka titik awalnya akan menempati titik Q, kita dapat menguraikan

vektor u sebagai berikut : turunkanlah garis tegak lurus dari atas u ke garis yang

melalui a, dan bentuklah vektor w1 dari Q ke alas garis yang tegk lurus tersebut.

Sehingga bentuk selanjutnya adalah :

w2 = u – w1

Sebagaimana yang di tunjukkan oleh gambar di atas, vektor w1 sejajar dengan a,

vektor w2 tegak lurus dengan a, dan w1 + w2 = w1 + (u – w1) = u

Vektor w1 disebut proyeksi ortogonal u pada a (komponen vektor u sepanjang a) =

proyau

Vektor w2 disebut komponen vektor u yang ortogonal terhadap a. Karena w2 = u –

w1 dan w1 = proyau sehingga w2 = u - proyau.

Page 21: Vektor, Aljabar Linier

Pembuktian :

Misalkan : w1= 𝑝𝑟𝑜𝑦𝒂𝐮 dan w2= 𝐮 − 𝑝𝑟𝑜𝑦𝒂𝐮

Karena w1 sejajar dengan a maka w1 = ka. Sehingga u = w1 + w2 = ka + w2

Berdasarkan teorema 2(a), maka

u.a = (ka + w2) . a

𝐮.𝒂 = 𝑘‖𝒂‖𝟐 + 𝒘𝟐 .𝒂

𝐮.𝒂 = 𝑘‖𝒂‖𝟐

𝑘 = 𝐮.𝒂‖𝒂‖𝟐

𝑘.𝒂 = 𝐮 .𝒂‖𝒂‖𝟐

.𝒂

𝒘𝟏 = 𝐮 .𝒂‖𝒂‖𝟐

.𝒂

𝑝𝑟𝑜𝑦𝑎𝐮 = 𝐮 .𝒂‖𝒂‖𝟐

.𝒂

Karena w2= 𝐮 − 𝑝𝑟𝑜𝑦𝒂𝐮 dan 𝑝𝑟𝑜𝑦𝑎𝐮 = 𝐮 .𝒂‖𝒂‖𝟐

.𝒂 maka,

w2= 𝐮 − 𝑝𝑟𝑜𝑦𝒂𝐮

𝐮 − 𝑝𝑟𝑜𝑦𝒂𝐮 = 𝐮 − 𝐮 .𝒂‖𝒂‖𝟐

.𝒂

Contoh :

Misalkan u = ( 2, -1, 3 ) dan a = ( 4, -1, 2 ). Carilah komponen vektor u sepanjang a

komponen vektor u yang ortogonal ke a.

Penyelesaian :

𝑝𝑟𝑜𝑦𝑎𝐮 =𝐮 .𝒂‖𝒂‖𝟐

.𝒂 =8 + 1 + 6

�√21�2 (4,−1, 2) =

1521

(4,−1, 2) =207

,−57

,107

Untuk mencari panjang komponen vektor u sepanjang a dapat kita peroleh dengan cara

sebagai berikut :

‖𝑝𝑟𝑜𝑦𝑎𝐮‖ = �𝐮 .𝒂‖𝒂‖𝟐

.𝒂�

Teorema4. Jika 𝐮 𝑑𝑎𝑛 𝒂 adalah vektor-vektor ruang dua atau ruang tiga dan jika 𝑎 ≠ 0, maka 𝑝𝑟𝑜𝑦𝒂𝐮 = 𝐮.𝒂

‖𝒂‖𝟐𝒂 (komponen vektor u sepanjang a)

𝐮 − 𝑝𝑟𝑜𝑦𝒂𝐮 = 𝐮 − 𝐮.𝒂‖𝒂‖𝟐

𝒂 (komponen vektor u yang ortogonal terhadap a)

Page 22: Vektor, Aljabar Linier

‖𝑝𝑟𝑜𝑦𝑎𝐮‖ = � 𝐮 .𝒂‖𝒂‖𝟐

� ‖𝒂‖ �𝑘𝑎𝑟𝑒𝑛𝑎 𝐮 .𝒂‖𝒂‖𝟐

𝑎𝑑𝑎𝑙𝑎ℎ 𝑠𝑒𝑏𝑢𝑎ℎ 𝑠𝑘𝑎𝑙𝑎𝑟�

‖𝑝𝑟𝑜𝑦𝑎𝐮‖ =|𝐮 .𝒂|‖𝒂‖𝟐

‖𝒂‖

‖𝑝𝑟𝑜𝑦𝑎𝐮‖ = |𝐮 .𝒂|‖𝒂‖

Jika 𝜃 : sudut diantara u dan a, maka

u . a = ‖𝐮‖‖𝒂‖𝒄𝒐𝒔 𝜽

‖𝑝𝑟𝑜𝑦𝑎𝐮‖ =‖𝒖‖‖𝒂‖𝒄𝒐𝒔 𝜽

‖𝒂‖

‖𝑝𝑟𝑜𝑦𝑎𝒖‖ = ‖𝒖‖|𝒄𝒐𝒔 𝜽|

Contoh :

Carilah rumus untuk jarak D diantara titik P0(x0,y0) dan garis 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0.

Penyelesaian. Misalkan Q(x1, y1) adalah sembarang titik pada garis tersebut dan

letakkan vektor n = ( a, b ) sedemikian rupa sehingga titik awalnya berhimpit dengan

Q.

Berdasarkan contoh 3.2 Vektor n tegak lurus terhadap garis tersebut (lihat gambar 3.4)

Berdasarkan gambar tersebut, jarak D sebanding dengan panjang dari proyeksi

ortogonal 𝑄𝑃0�������⃗ pada n, sehingga

𝐷 = �𝑝𝑟𝑜𝑦𝒂𝑄𝑃0�������⃗ � = �𝑄𝑃0��������⃗ .𝒏�‖𝒏‖

𝑄𝑃0�������⃗ = (𝑥0 − 𝑥1, 𝑦𝑜 − 𝑦1)

𝑄𝑃0�������⃗ .𝐧 = a(𝑥0 − 𝑥1) + b( 𝑦𝑜 − 𝑦1)

‖𝒏‖ = �𝑎2 + 𝑏2

Sehingga dengan demikian

𝐷 = �𝑝𝑟𝑜𝑦𝒂𝑄𝑃0�������⃗ � =�𝑄𝑃0�������⃗ .𝒏�‖𝒏‖

𝐷 = �𝑝𝑟𝑜𝑦𝒂𝑄𝑃0�������⃗ � =a(𝑥0 − 𝑥1) + b( 𝑦𝑜 − 𝑦1)

√𝑎2 + 𝑏2

Page 23: Vektor, Aljabar Linier

Karena titik 𝑄(𝑥1, 𝑦1) terletak pada garis tersebut, maka koordinatnya akan memenuhi

persamaan garis, sehingga

𝑎𝑥1 + b𝑦1 + c = 0

𝑐 = −𝑎𝑥1 − b𝑦1

𝐷 =|𝑎(𝑥0 − 𝑥1) + b( 𝑦𝑜 − 𝑦1)|

√𝑎2 + 𝑏2

𝐷 =|𝑎𝑥0 − 𝑎𝑥1 + 𝑏𝑦0 − 𝑏𝑦1|

√𝑎2 + 𝑏2

𝐷 =|𝑎𝑥0 + 𝑏𝑦0 − 𝑎𝑥1 − 𝑏𝑦1|

√𝑎2 + 𝑏2

𝐷 =|𝑎𝑥0 + 𝑏𝑦0 + 𝑐|

√𝑎2 + 𝑏2

Contoh 3.3 :

Tentukan jarak D dari titik (1, -2) ke garis 3𝑥 + 4𝑦 − 6 = 0.

Penyelesaian :

𝐷 =|𝑎𝑥0 + 𝑏𝑦0 + 𝑐|

√𝑎2 + 𝑏2=

|(3)(1) + (4)(−2) − 6|√32 + 42

=|−11|

5=

115

Page 24: Vektor, Aljabar Linier

4. HASILKALI SILANG

Walaupun hasil kali titik dari dua vector adalah scalar, namun hasil kali silang dari

dua vector adalah vector lainnya. Teorema berikut memberikan hubungan yang penting

diantara hasil kali titik dan hasil kali silang serta juga memperlihatkan bahwa u x v

orthogonal baik untuk u maupun v.

Bukti : misalkan u =( 𝑢1,𝑢2,𝑢3) 𝑑𝑎𝑛 (𝑣1, 𝑣2, 𝑣3)

a. u . (u x v) = (𝑢1,𝑢2,𝑢3). (𝑢2𝑣3 − 𝑣3𝑢2,𝑢3𝑣1 − 𝑢1𝑣3,𝑢1𝑣2 − 𝑢2𝑣1)

= 𝑢1(𝑢2𝑣3 − 𝑣3𝑢2) + 𝑢2(𝑢3𝑣1 − 𝑢1𝑣3) + 𝑢3( 𝑢1𝑣2 − 𝑢2𝑣1)

= 0

b. v . (u x v) = (𝑣1, 𝑣2, 𝑣3). (𝑢2𝑣3 − 𝑣3𝑢2,𝑢3𝑣1 − 𝑢1𝑣3,𝑢1𝑣2 − 𝑢2𝑣1)

= 𝑣1(𝑢2𝑣3 − 𝑣3𝑢2) + 𝑣2(𝑢3𝑣1 − 𝑢1𝑣3) + 𝑣3( 𝑢1𝑣2 − 𝑢2𝑣1)

= 0

c. karena

‖𝑢 𝑥 𝑣‖2 = (𝑢2𝑣3 − 𝑣3𝑢2)2 + (𝑢3𝑣1 − 𝑢1𝑣3)2 + ( 𝑢1𝑣2 − 𝑢2𝑣1)2

dan

Definisi. Jika u = (u1, u2, u3) dan v = (v1, v2, v3) adalah vector diruang 3, maka hasil kali silang u x v adalah vector yang didefinisikan oleh

u x v = ( u2v3 – u3v2, u3v1 – u1v3, u1v2 – u2v1 )

atau dalam notasi determinan

𝑢 𝑥 𝑣 = ��𝑢2 𝑢3𝑣2 𝑣3� ,− �

𝑢1 𝑢3𝑣1 𝑣3� , �

𝑢1 𝑢2𝑣1 𝑣2��

Teorema 5. Jika u dan v adalah vector di ruang 3, maka :

a. u . (u x v ) = 0 ( u x v orthogonal ke u) b. v . ( u x v) = 0 ( u x v orthogonal ke v) c. ‖ 𝑢 𝑥 𝑣‖2 = ‖𝑢‖2‖𝑣‖2 − (𝑢. 𝑣)2 ( identitas lagrange )

Page 25: Vektor, Aljabar Linier

‖𝑢‖2‖𝑣‖2(𝑢. 𝑣)2 = (𝑢12 + 𝑢22 + 𝑢33)(𝑣1

2 + 𝑣22 + 𝑣32) − ( 𝑢1𝑣1 + 𝑢2𝑣2 + 𝑢3𝑣3)2

Sifat hitung utama dari hasil kali silang di daftarkan pada teorema berikutnya :

Pembuktian teorema :

a. Misalkan u = (𝑢1,𝑢2,𝑢3), dan v = (𝑣1, 𝑣2, 𝑣3) maka:

u × v = (𝑢2𝑣3 − 𝑢3𝑣2,𝑢3𝑣1 − 𝑢1𝑣3,𝑢1𝑣2 − 𝑢2𝑣1)

karena 𝑢1,𝑢2,𝑢3, 𝑣1, 𝑣2, 𝑑𝑎𝑛 𝑣3 ∈ 𝑅, maka berlaku:

- 𝑢2𝑣3 − 𝑢3𝑣2 = 𝑣3𝑢2 − 𝑣2𝑢3 ...............(sifat komutatif perkalian bilangan)

= −𝑣2𝑢3 + 𝑣3𝑢2 ..........(sifat komutatif penjumlahan bilangan)

- 𝑢3𝑣1 − 𝑢1𝑣3 = 𝑣1𝑢3 − 𝑣3𝑢1 ...............(sifat komutatif perkalian bilangan)

= −𝑣3𝑢1 + 𝑣1𝑢3 ..........(sifat komutatif penjumlahan bilangan)

- 𝑢1𝑣2 − 𝑢2𝑣1 = 𝑣2𝑢1 − 𝑣1𝑢2 ...............(sifat komutatif perkalian bilangan)

= −𝑣1𝑢2 + 𝑣2𝑢1 ..........(sifat komutatif penjumlahan bilangan)

Sehingga:

u × v = ((−𝑣2𝑢3 + 𝑣3𝑢2), (−𝑣3𝑢1 + 𝑣1𝑢3), (−𝑣1𝑢2 + 𝑣2𝑢1))

u × v = (−(𝑣2𝑢3 − 𝑣3𝑢2, 𝑣3𝑢1 − 𝑣1𝑢3,𝑢2 − 𝑣2𝑢1))

u × v = −v × u

b. u x (v + w) = u x �𝑣1+𝑤1 𝑣2 + 𝑤2𝑣3 + 𝑤3 𝑣4 + 𝑤4

= (𝑢2𝑣3 − 𝑢3𝑣2, 𝑢3𝑣1 − 𝑢1𝑣3, 𝑢1𝑣2 − 𝑢2𝑣1) +

(𝑢2𝑤3 − 𝑢3𝑤2,𝑢3𝑤1 − 𝑢1𝑤3,𝑢1𝑤2 − 𝑢2𝑤1)

= (u x v) + (u x w)

c. Misalkan u = (𝑢1,𝑢2,𝑢3), v = (𝑣1, 𝑣2, 𝑣3), dan w = (𝑤1,𝑤2,𝑤3) maka:

Teorema 6. Jika u, v, dan w adalah sebarang vector di ruang 3 dan k adalah sebarang scalar, maka :

a. u x v = - (v x u) b. u x (v + w) = (u x v) + (u x w) c. (u + v) x w = (u x w) + (v x w) d. k(u x v) = (ku) x v = u x (kv) e. u x 0 = 0 x u = 0 f. u x u = 0

Page 26: Vektor, Aljabar Linier

(u + v) x w = (u x w) + (v x w)

= �(𝑢1,𝑢2, 𝑢3) + (𝑣1, 𝑣2, 𝑣3)� × (𝑤1,𝑤2,𝑤3)

= (𝑢1 + 𝑣1,𝑢2 + 𝑣2,𝑢3 + 𝑣3) × (𝑤1,𝑤2,𝑤3)

= ��(𝑢2 + 𝑣2)𝑤3� − �(𝑢3 + 𝑣3)𝑤2�, �(𝑢3 + 𝑣3)𝑤1� − �(𝑢1 +

𝑣1)𝑤3�, �(𝑢1 + 𝑣1)𝑤2� − �(𝑢2 + 𝑣2)𝑤1� �

karena 𝑢1,𝑢2,𝑢3, 𝑣1, 𝑣2, 𝑣3,𝑤1,𝑤2, 𝑑𝑎𝑛 𝑤3 ∈ 𝑅, maka berlaku:

- �(𝑢2 + 𝑣2)𝑤3� − �(𝑢3 + 𝑣3)𝑤2� = (𝑢2𝑤3 + 𝑣2𝑤3) − (𝑢3𝑤2 + 𝑣3𝑤2)

..........(sifat distributif operasi bilangan) = 𝑢2𝑤3 + 𝑣2𝑤3 − 𝑢3𝑤2 − 𝑣3𝑤2

..........(sifat distributif operasi bilangan) = 𝑢2𝑤3 − 𝑢3𝑤2 + 𝑣2𝑤3 − 𝑣3𝑤2

- �(𝑢3 + 𝑣3)𝑤1� − �(𝑢1 + 𝑣1)𝑤3� = (𝑢3𝑤1 + 𝑣3𝑤1) − (𝑢1𝑤3 + 𝑣1𝑤3) ..........(sifat distributif operasi bilangan)

= 𝑢3𝑤1 + 𝑣3𝑤1 − 𝑢1𝑤3 − 𝑣1𝑤3 ..........(sifat distributif operasi bilangan)

= 𝑢3𝑤1 − 𝑢1𝑤3 + 𝑣3𝑤1 − 𝑣1𝑤3

- �(𝑢1 + 𝑣1)𝑤2� − �(𝑢2 + 𝑣2)𝑤1� = (𝑢1𝑤2 + 𝑣1𝑤2) − (𝑢2𝑤1 + 𝑣2𝑤1)

..........(sifat distributif operasi bilangan) = 𝑢1𝑤2 + 𝑣1𝑤2 − 𝑣2𝑤1 − 𝑢2𝑤1

..........(sifat distributif operasi bilangan)

= 𝑢1𝑤2 − 𝑢2𝑤1 + 𝑣1𝑤2 − 𝑣2𝑤1

Sehingga:

(u + v) x w = ((𝑢2𝑤3 − 𝑢3𝑤2 + 𝑣2𝑤3 − 𝑣3𝑤2), (𝑢3𝑤1 − 𝑢1𝑤3 + 𝑣3𝑤1 −

𝑣1𝑤3), (𝑢1𝑤2 − 𝑢2𝑤1 + 𝑣1𝑤2 − 𝑣2𝑤1))

(u + v) x w = ((𝑢2𝑤3 − 𝑢3𝑤2,𝑢3𝑤1 − 𝑢1𝑤3,𝑢1𝑤2 − 𝑢2𝑤1) + (𝑣2𝑤3 −

𝑣3𝑤2, 𝑣3𝑤1 − 𝑣1𝑤3, 𝑣1𝑤2 − 𝑣2𝑤1))

(u + v) x w = (u x w) + (v x w)

d. k(u x v) = (ku) x v = u x (kv)

k (u x v) = k . (𝑢2𝑣3 − 𝑢3𝑣2,𝑢3𝑣1 − 𝑢1𝑣3, 𝑢1𝑣2 − 𝑢2𝑣1)

= k (𝑢2𝑣3 − 𝑢3𝑣2) , k (𝑢3𝑣1 − 𝑢1𝑣3) , k (𝑢1𝑣2 − 𝑢2𝑣1)

Page 27: Vektor, Aljabar Linier

(ku) x v = {k . (𝑢1,𝑢2,𝑢3)} x v

= (𝑘𝑢1, 𝑘𝑢2, 𝑘𝑢3) x v

= (𝑘𝑢2𝑣3 − 𝑘𝑢3𝑣2) , (𝑘𝑢3𝑣1 − 𝑘𝑢1𝑣3) , (𝑘𝑢1𝑣2 − 𝑘𝑢2𝑣1)

= k (𝑢2𝑣3 − 𝑢3𝑣2) , k (𝑢3𝑣1 − 𝑢1𝑣3) , k (𝑢1𝑣2 − 𝑢2𝑣1)

u x (kv) = u x (𝑘𝑣1, 𝑘𝑣2, 𝑘𝑣3)

= (𝑢2𝑘𝑣3 − 𝑢3𝑘𝑣2) , (𝑢3𝑘𝑣1 − 𝑢1𝑘𝑣3) , (𝑢1𝑘𝑣2 − 𝑢2𝑘𝑣1)

= k (𝑢2𝑣3 − 𝑢3𝑣2) , k (𝑢3𝑣1 − 𝑢1𝑣3) , k (𝑢1𝑣2 − 𝑢2𝑣1)

e. Misalkan u = (𝑢1,𝑢2,𝑢3), dan komponen vektornol = (0,0,0) maka: u × 0 = 0 × u

(𝑢1,𝑢2,𝑢3) × (0,0,0) = (0,0,0) × (𝑢1,𝑢2,𝑢3)

�𝑢2(0) − 𝑢3(0),𝑢3(0) − 𝑢1(0),𝑢1(0) − 𝑢2(0)� = �(0)𝑢3 − (0)𝑢2, (0)𝑢1 − (0)𝑢3, (0)𝑢2 − (0)𝑢1�

karena 𝑢1,𝑢2,𝑑𝑎𝑛 𝑢3 ∈ 𝑅, maka berlaku 𝑢1(0) = 0, 𝑑𝑠𝑡. Maka:

�𝑢2(0) − 𝑢3(0),𝑢3(0) − 𝑢1(0),𝑢1(0) − 𝑢2(0)� = �(0)𝑢3 − (0)𝑢2, (0)𝑢1 − (0)𝑢3, (0)𝑢2 − (0)𝑢1�

0 = 0

f. u x u = (𝑢2𝑢3 − 𝑢3𝑢2, 𝑢3𝑢1 − 𝑢1𝑢3,𝑢1𝑢2 − 𝑢2𝑢1)

= 0

Contoh 4.1 : tinjaulah vector – vector

i =(1, 0, 0) j = (0, 1, 0) k = (0, 0, 1)

Masing – masing vector ini mempunyai panjang 1 dan terletak sepanjang sumbu koordinat

(gambar 3.25). vector tersebut dinamakan vector satuan baku (standard unit vectors) di

ruang 3. Setiap vector v =(𝑣1, 𝑣2, 𝑣3) di ruang 3 dapat di ungkapkan dengan i, j, dan k

karenanya kita dapat menuliskan

v = (𝑣1, 𝑣2, 𝑣3)= 𝑣1(1, 0, 0) + 𝑣2(0, 1,0) + 𝑣3(0, 0, 1) = 𝑣1I + 𝑣2j + 𝑣3k

Page 28: Vektor, Aljabar Linier

Gambar 4.1

i x j = ��0 01 0� ,− � 1 0

0 0� , �1 00 1�� = (0, 0, 1) = 𝑘

i j

k Gambar 4.2

𝑢 𝑥 𝑣 = �𝑖 𝑗 𝑘𝑢1 𝑢2 𝑢3𝑣1 𝑣2 𝑣3

� = �𝑢2 𝑢3𝑣2 𝑣3� 𝑖 − �

𝑢1 𝑢3𝑣1 𝑣3� 𝑗 + �

𝑢1 𝑢2𝑣1 𝑣2� 𝑘

Jika u dan v adalah vector – vector tak nol di ruang 3, maka norma u x v mempunyai

tafsiran geomatrik yang berguna. Identitas lagrange yang diberikan dalam teorema 5,

menyatakan bahwa

‖ 𝑢 𝑥 𝑣‖2 = ‖𝑢‖2‖𝑣‖2 − (𝑢. 𝑣)2

Jika θ menyatakan sudut anatara u dan v, maka 𝑢 . 𝑣 = ‖𝑢‖‖𝑣‖𝑐𝑜𝑠𝜃, sehingga dapat kita

tuliskan kembali sebagai

‖ 𝑢 𝑥 𝑣‖2 = ‖𝑢‖2‖𝑣‖2 − ‖𝑢‖2‖𝑣‖2𝑐𝑜𝑠2𝜃

= ‖𝑢‖2‖𝑣‖2 − (1 − 𝑐𝑜𝑠2𝜃)

= ‖𝑢‖2‖𝑣‖2𝑠𝑖𝑛2𝜃

Jadi,

i x i = j x j = k x k =0

i x j = k , j x k = i, k x i = j

j x I = -k, k x j = -i, i x k = -j

Page 29: Vektor, Aljabar Linier

‖𝑢 𝑥 𝑣‖ = ‖𝑢‖‖𝑣‖ sin𝜃

‖𝑣‖ sin𝜃 adalah tinggi jajaran genjang yang di tentukan oleh u dan v. jadi, luas A dari

jajaran genjang ini adalah :

A = (alas) (tinggi) = ‖𝑢‖‖𝑣‖ sin𝜃 = ‖𝑢 𝑥 𝑣‖

Gambar 4.3

-‖𝑣‖ sin𝜃 ‖𝑣‖

θ

‖𝑣‖

Page 30: Vektor, Aljabar Linier

5. GARIS DAN BIDANG PADA RUANG DIMENSI TIGA

Bidang dalam ruang dimensi 3 dapat ditentukan jika kemiringan dan salah satu titik yang

terletak pada bidang tersebut diketahui. Bidang dalam ruang dimensi 3 dapat

digambarkan dengan menggunakan suatu vektor normal yang tegak lurus terhadap

bidang.

Gambar 5.1

Misalkan n =(a,b,c) adalah vektor normal dari bidang yang melewati titik P0(x0,y0,z0)

dan P(x,y,z) dimana P0P adalah vektor ortogonal terhadap n.

n . 𝑃0𝑃�������⃗ = 0

( a, b, c ) . ( x-x0, y-y0, z-z0) = 0

a(x-x0) + b(y-y0) + c(z-z0) = 0 ........................(i)

Persamaan (i) tersebut adalah sebagai bentuk NORMAL TITIK dari persamaan suatu

bidang.

Pembuktian

Ambilah (tentukan) 2 titik berlainan 𝑃(𝑥1,𝑦1, 𝑧1) dan 𝑄(𝑥0,𝑦0, 𝑧0) pada bidang 𝑎𝑥 +

𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0.

Teorema :

Jika a, b dan c adalah konstanta tidak nol, maka Grafik dari persamaan :

ax + by + cz + d = 0 adalah suatu bidang yang memiliki vektor n = ( a, b, c) Sebagai

normalnya.

Page 31: Vektor, Aljabar Linier

Karena

𝑃(𝑥1,𝑦1, 𝑧1) pada garis ∙ 𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 + 𝑑 = 0

𝑄(𝑥0,𝑦0, 𝑧0) pada garis ∙ 𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 + 𝑑 = 0 _

𝑎(𝑥1 − 𝑥0) + 𝑏(𝑦1 − 𝑦0) + 𝑐(𝑧1 − 𝑧0) = 0..........................(1)

𝑃𝑄�����⃗ = 𝑝 − 𝑞 = (𝑥1 − 𝑥0,𝑦1 − 𝑦0, 𝑧1 − 𝑧0)

𝒏.𝑷𝑸������⃗ = (𝒂,𝒃, 𝒄)(𝑥1 − 𝑥0,𝑦1 − 𝑦0, 𝑧1 − 𝑧0)

= 𝑎(𝑥1 − 𝑥0) + 𝑏(𝑦1 − 𝑦0) + 𝑐(𝑧1 − 𝑧0) = 0...........(berdasarkan (1))

Karena n .𝑃𝑄�����⃗ = 0 maka terbukti n tegak lurus terhadap bidang 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

Garis pada Ruang Dimensi tiga

Gambar 5.2

Berdasarkan gambar sebelumnya, diketahui bahwa garis l melalui titik P0 dan P serta

sejajar dengan vektor taknol v (a,b,c). Jika terdapat suatu skalar t, maka diperoleh

persamaan berikut :

𝑃0𝑃�������⃗ = t v

(x-x0, y-y0, z-z0) = (ta , tb, tc )

Sehingga

x-x0 = ta → x = x0 + ta ......................…..(i)

y-y0 = tb → y = y0 + tb ….......................(ii)

z-z0 = tc → z= z0 + tc…................(iii)

persamaan (i), (ii), (iii) disebut persamaan parametrik untuk garis l.

Page 32: Vektor, Aljabar Linier

Jika terdapat tak terhingga banyaknya bidang yang melalui garis, maka selalu ada tak

terhingga banyaknya pasangan bidang seperti itu. Untuk mencari dua bidang itu bila a, b,

dan c semuanya berbeda dari nol, maka persamaannya dapat ditulis sebagai berikut.

Persamaan diatas disebiut persamaan Simetrik untuk garis l.

Jarak titik dengan bidang

Pembuktian

Ambil sebarang titik yang terletak pada bidang, misalkan titik 𝑄 = (𝑥1,𝑦1, 𝑧1) dan juga

vektor n(a, b, c) sedemikian sehingga titik awalnya terletak pada titik Q dan vektor n

tegak lurus terhadap bidang. Seperti yang terlihat digambar!

Gambar 5.3

Berdasarkan gambar, dapat dilihat bahwa jarak D sama dengan panjang proyeksi

ortogonal 𝑄𝑃�����⃗ pada n, sehingga dapat di tulis :

Jika D adalah jarak antara titik P0(X0, Y0, Z0 ) dengan bidang ax + by + cz + d = 0,

maka:

222

000

cba

dczbyaxD

++

+++=

Page 33: Vektor, Aljabar Linier

𝐷 = �𝑝𝑟𝑜𝑦𝑛𝑄𝑃�����⃗ � =�𝑄𝑃�����⃗ .𝑛�‖𝑛‖

Dari gambar dapat diketahui juga bahwa :

𝑄𝑃�����⃗ = (𝑥0 − 𝑥1,𝑦0 − 𝑦1, 𝑧0 − 𝑧1)

𝑄𝑃�����⃗ .𝑛 = 𝑎(𝑥0 − 𝑥1) + 𝑏(𝑦0 − 𝑦1) + 𝑐(𝑧0 − 𝑧1)

‖𝑛‖ = √𝑎2 + 𝑏2 + 𝑐2

Sehingga

𝐷 =|𝑎(𝑥0 − 𝑥1) + 𝑏(𝑦0 − 𝑦1) + 𝑐(𝑧0 − 𝑧1)|

√𝑎2 + 𝑏2 + 𝑐2

=|𝑎𝑥0 + 𝑎𝑥1 + 𝑏𝑦0 + 𝑏𝑦1 + 𝑐𝑧0 + 𝑐𝑧1|

√𝑎2 + 𝑏2 + 𝑐2

Karena titik Q terletak pada bidang ax+by+cz+d =0 , maka koordinatnya akan

memenuhi persamaan bidang tersebut sehingga −𝑎𝑥1 − 𝑏𝑦1 − 𝑐𝑧1 = 𝑑 dan

222

000

cba

dczbyaxD

++

+++=