struktur baja

Download struktur baja

Post on 28-Apr-2015

186 views

Category:

Documents

18 download

Embed Size (px)

DESCRIPTION

copas dari google

TRANSCRIPT

1. PENDAHULUAN1.1. Baja Sebagai Bahan BangunanBaja adalah suatu jenis bahan bangunan yang berdasarkan pertimbangan ekonomi, sifat, dan kekuatannya, cocok untuk pemikul beban. Oleh karena itu baja banyak dipakai sebagai bahan struktur, misalnya untuk rangka utama bangunan bertingkat sebagai kolom dan balok, sistem penyangga atap dengan bentangan panjang seperti gedung olahraga, hanggar, menara antena, jembatan, penahan tanah, fondasi tiang pancang, bangunan pelabuhan, struktur lepas pantai, dinding perkuatan pada reklamasi pantai, tangki-tangki minyak, pipa penyaluran minyak, air, atau gas. Beberapa keunggulan baja sebagai bahan struktur dapat diuraikan sebagai berikut. Batang struktur dari baja mempunyai ukuran tampang yang lebih kecil daripada batang struktur dengan bahan lain, karena kekuatan baja jauh lebih tinggi daripada beton maupun kayu. Kekuatan yang tinggi ini terdistribusi secara merata. The Kozai Club (1983) menyatakan kekuatan baja bervariasi dari 300 Mpa sampai 2000 Mpa. Kekuatan yang tinggi ini mengakibatkan struktur yang terbuat dari baja lebih ringan daripada struktur dengan bahan lain. Dengan demikian kebutuhan fondasi juga lebih kecil. Selain itu baja mempunyai sifat mudah dibentuk. Struktur dari baja dapat dibongkar untuk kemudian dipasang kembali, sehingga elemen struktur baja dapat dipakai berulang-ulang dalam berbagai bentuk. Fabrikasi struktur baja dapat dilakukan di bengkel-bengkel maupun pabrik dengan mesin-mesin yang cukup terkendali memakai komputer, sehingga akurasi dan kecepatan produksi yang baik dapat dicapai. Pengangkutan elemen-elemen struktur baja dari bengkel ke lokasi pembangunan mudah dilakukan. Sangat jarang dijumpai kerusakan elemen struktur baja sebagai akibat pengangkutan. Dua hal ini memberi keuntungan waktu pelaksanaan bangunan menjadi singkat. Waktu pelaksanaan yang singkat ini secara teknis sangat diperlukan dalam pembangunan struktur lepas pantai serta pelabuhan, sedang pada bangunan gedung yang komersial dari sudut pandang ekonomi cukup menguntungkan, karena bangunan yang dibuat dapat segera menghasilkan uang. Penyambungan elemen struktur baja dapat dilakukan secara permanen memakai las, .tanpa lubang-lubang perlemahan, sehinggga kekuatan sambungan tidak banyak berubah dari kekuatan batang aslinya. Sekalipun kalau ditinjau dari tegangan residu, sebagai akibat pendinginan yang tidak bersamaan serta pengerjaan secara dingin, sebenarnya pada baja tersebut timbul tegangan residu. Pekerjaan las yang kurang baik dapat mengakibatkan tegangan residu yang cukup besar yaitu sekitar 45% dari tegangan leleh baja. Hal ini berarti bahwa sebelum dibebani, elemen struktur sudah mempunyai tegangan, sehingga kemampuan untuk memikul beban menjadi berkurang. Baja sebagai bahan struktur juga mempunyai beberapa kelemahan. Salah satu kelemahan baja adalah kemungkinan terjadinya korosi, yang memperlemah struktur, mengurangi keindahan bangunan, dan memerlukan beaya perawatan cukup besar secara periodik. Matsushima dan Tamada (1989) menyatakan bahwa pemeliharaan jembatan dengan pengecatan setiap 5 tahun akan memakan biaya 10 persen dari harga bangunan. Hal ini berarti bahwa biaya 50 tahun pemeliharaan akan sama dengan biaya pembuatan jembatan baru. Kekuatan baja sangat dipengaruhi oleh temperatur. Pada temperatur tinggi kekuatan baja sangat rendah, sehingga pada saat terjadi kebakaran bangunan dapat runtuh sekalipun tegangan yang terjadi hanya rendah. Kendala berikutnya, karena kekuatan baja sangat tinggi maka banyak dijumpai batang-batang struktur yang langsing. Oleh karena itu bahaya tekuk (buckling) mudah terjadi.

1

1.2. Sifat Mekanis Baja StrukturalAgar perancangan struktur dapat optimal, sehingga hasil rancangan cukup aman tetapi tidak boross, maka sifat-sifat mekanis bahan perlu dipahami dengan baik. Jika sifat-sifat bahan tersebut tidak dipahami dengan baik, hasil rancangan mungkin saja boros, atau berbahaya. Berikut ini akan dibicarakan berbagai sifat mekanis baja struktural. 1.2.1. Hubungan Antara Tegangan dan Regangan Untuk memahami sifat-sifat baja struktural,kiranya perlu dipahami diagram teganganregangan. Diagram ini menyajikan beberapa informasi penting tentang baja struktural dalam berbagai tegangan. Cara perancangan struktur baja yang memuaskan baru dapat dikembangkan setelah hubungan antara tegangan dan regangan dipahami dengan baik. Untuk pembuatan diagram tegangan-regangan perlu diadakan pengujian spesimen bahan. Agar ada persamaan persepsi dikalangan perencana bangunan, maka bentuk spesimen, ukuran, serta prosedur pengujian harus didasarkan pada suatu peraturan/standar, misalnya PUBI, ASTM, British Standard, ISO, Euro Standard, JIS, dan sebagainya. Pengujian kuat tarik spesimen baja dapat dilakukan dengan universal testing machine (UTM). Adapun bentuk spesimen untuk uji tarik dapat dilihat pada Gambar 1.1. Dengan mesin itu spesimen ditarik dengan gaya yang berubah-ubah,dari nol diperbesar sedikit demi sedikit sampai spesimen putus. Pada saat spesimen ditarik, besar gaya atau tegangan dan perubahan panjang spesimen atau regangan dimonitor terus-menerus. Untuk mesin yang mutakhir, biasanya mesin itu diperlengkapi dengan komputer yang dapat mencatat hasil monitoring dengan baik. Data yang terkumpul selanjutnya dapat ditampilkan dalam bentuk diagram yang dapat dilihat pada monitor. Diagram ini dapat diatur formatnya sesuai kebutuhan, untuk dicetak pada kertas pakai printer atau plotter, dan datanya dapat disimpan di dalam disk.

Gambar 1.1. Spesimen baja uji tarik

f

F D B A C E

O Gambar 1.2. Diagram tegangan-regangan baja

2

Diagram tegangan-regangan normal tipikal yang disajikan pada Gambar 1.2. memperlihatkan hubungan antara tegangan dan regangan pada OA linier. Pada fase tersebut peningkatan tegangan proporssional dengan peningkatan regangan, sedang di atas A diagram sudah tidak lagi linier yang berarti bahwa peningkatan tegangan sudah tidak proporsional dengan peningkatan regangan. Oleh karena itu tegangan pada titik A disebut sebagai tegangan batas proporsional. (proporsional limit) atau batas sebanding, dan biasa diberi notasi fp. Pada daerah proporsional (OA) berlaku hukum Hooke yang dinyatakan dengan Persamaan (1.1). f=E dengan : E = modulus elastisitas f = tegangan = regangan Sedikit di atas titik A terdapat titik B dengan tegangan fe yang merupakan tegangan batas elastis bahan. Suatu spesimen yang dibebani tarikan sedemikian sehingga tegangannya belum melampaui fe, sekalipun mengalami perubahan panjang, tetapi panjang spesimen itu akan kembali seperti semula apabila beban dilepaskan. Apabila pembebanan telah dilakukan sehingga tegangan yang terjadi melampaui fe, maka pada saat beban dilepaskan panjang spesimen tidak dapat kembali sepenuhnya seperti panjang semula. Pada umumnya tegangan fp dan fe relatif cukup dekat, sehingga seringkali kedua tegangan tersebut dianggap sama. Regangan () pada saat spesimen baja putus dapat dikaitkan dengan sifat liat/ulet baja. Semakin tinggi regangan yang dicapai pada saat spesimen putus, maka keuletan baja itu juga semakin tinggi. Pada umunya regangan baja pada saat spesimen putus berkisar sekitar 150200 kali regangan elastis e. Setelah titik B tegangan melampaui fe, dan baja mulai leleh. Tegangan yang terjadi pada titik B disebut sebagai tegangan leleh baja l. Pada saat leleh ini baja masih mempunyai tegangan, berarti baja masih mampu memberikan reaksi atau perlawanan terhadap gaya tarik yang bekerja. Seperti terlihat pada Gambar 1.2. kurva bagian leleh ini mula-mula mendekati datar, berarti tidak ada tambahan tegangan sekalipun regangan bertambah terus. Hal ini menunjukkan bahwa hukum Hooke sudah tidak berlaku lagi setelah fase leleh dicapai. Bagian kurva yang datar ini berakhir pada saat mulai terjadi pengerasan regangan (strain hardening).di titik C, tegangan naik lagi sehingga dicapai kuat tarik (tensile strength) di titik D. Setelah itu kurva turun dan spesimen mengalami retak (fracture) di titik E. Diagram tegangan-regangan seperti terlihat pada Gambar 1.2, dibuat berdasarkan data yang diperoleh dari pengujian spesimen, dengan anggapan luas tampang spesimen tidak mengalami perubahan selama pembebanan. Menurut hukum Hooke, suatu batang yang dibebani tarikan secara uniaksial, luas tampangnya akan mengecil. Sebelum titik C, perubahan luas tampang itu kurang signifikan, sehingga pengaruhnya dapat diabaikan, tetapi setelah sampai pada fase pengerasan regangan, tampang mengalami penyempitan yang cukup berarti. Kalau penyempitan itu diperhitungkan, akan diperoleh kurva dengan garis putus-putus (Gambar 1.2). Tinggi tegangan pada titik-titik A, B, C, D, dan E tersebut di atas dipengaruhi oleh jenis baja. Jika diperhatikan Gambar 1.3, maka terlihat bahwa bagian kurva untuk berbagai kualitas baja pada fase proporsional terletak pada satu garis lurus. Hal ini memperlihatkan bahwa elastisitas baja (E) tidak dipengaruhi oleh tinggi tegangan leleh. Dengan memperhatikan regangan baja sebelum putus dapat diketahui apakah baja mempunyai sifat ulet (daktail) atau sebaliknya. Dari Gambar 1.3 terlihat bahwa baja yang mempunyai kuat tarik tinggi pada umumnya regangan batasnya rendah atau getas, sedang baja yang kuat tariknya rendah mempunyai regangan batas yang tinggi sehingga dapat dinyatakan daktail. Pada umumnya E baja berkisar antara 190 210 Gpa. Tatacara Perencanaan Struktur Baja Untuk Bangunan Gedung di Indonesia diatur dengan Standar Nasional Indonesia (SNI 03-1729-2002), selanjutnya di dalam buku ini .(1.1)

3

standar tersebut dituliskan dengan SNI-2002. Sifat-sifat mekanis baja berdasarkan SNI-2002 pasal 5.1.3 ditentukan sebagai berikut: Modulus elastisitas Modulus Geser Nisbah Poisoson Koefisien pemuaian : E = 200 Gpa : G = 80.000 Mpa : = 0,3 : = 12x10-6/oC

Sebagai bandingan, modulus elastisitas E berdasarkan British Standard 205 Gpa, berdasarkan AISC 200 Gpa, sedang modulus geser G berdasarkan British Standard 81 Gpa, sedang berdasarkan AISC 7