shortest path algorithm (djikstra, bellman-ford) · algoritma dijkstra, algoritma bellman ford ......
Embed Size (px)
TRANSCRIPT

SHORTEST PATH ALGORITHM
(Dijkstra, Bellman-Ford)

SHORTEST PATH ALGORITHM
2
Macam – macam shortest Path
Shortest path dapat dibedakan menjadi :
Single Source Shortest Path
Menentukan shortest path dari verteks sumber s Є V ke setiap verteks v Є VAlgoritma Dijkstra , Algoritma Bellman Ford
Single Destination Shortest Path Menentukan shortest path ke suatu tempat t dari tiap verteks v
Single Pair shortest path Menentukan shortest path dari u ke v jika diketahui pasangan u dan v
All pair shortest path
Untuk semua pasangan (u,v) ditentukan kemungkinan shortest pathnya. Floyd-Warshall

Masalah Shortest Path
3
Terdapat sebuah graph berbobot (weighted graph) dan dua vertices u dan v, kita ingin menemukan sebuah path dengan bobot minimum antara u dan v.
panjang path adalah penjumlahan dari bobot sisi-sisinya (edges).
Contoh :Shortest path antara jakarta surabaya Aplikasi
Internet packet routing Flight reservations Driving directions

Pengertian Shortest Path
4
Misalkan sebuah directed graph EVG ,
kvvvp ,....,, 10
adalah
Bobot dari sebuah path
k
i
ii vvwpw1
1 ,
Bobot shotest path dari u ke v adalah

Shortest Path Properties
Jika G tidak memiliki bobot, maka shortest pathnyadiperoleh dari panjang path yang paling minimal (jumlah edge-nya paling sedikit).
Jika G merupakan graph dengan bobot tertentu, maka bobot darip adalah
pvu
vuwpw,
,
5

Shortest Path Properties
6
Property 1:
Sebuah subpath dari sebuah shortest path adalah sebuah shortest
path
Property 2:
Terdapat sebuah tree dari shortest paths dari start vertex ke seluruh
vertex lainnya

Syarat
7
Syarat yang harus dipenuhi oleh sebuah shortest path:
Shortest path tidak memiliki cycle.
Sebuah shortest path memiliki
1V edge.

algoritma single source shortest path
8
Ada 2 macam algoritma yang digunakan dalam memecahkan masalah single source shortest path, yaitu:
Algoritma Bellman Ford ialah algoritma yang digunakan untuk memecahkan masalah single shortest path yang memiliki edge dengan bobot negatif.
Algoritma Djikstra ialah algoritma yang digunakan untuk memecahkan masalah single shortest path yang memiliki edge dengan bobot positif.

DJIKSTRA
9
Edsger Wybe Dijkstra lahir di Rotterdam 11 May 1930. ibunya seorang ahli metematika dan ayahnya seorang ahli kimia .
th 1956 Dijkstra lulus dari Universitas Leiden dalam bidang mathematika dan teori fisika
Th 1959 Dijkstra menerima PhD Universitas Amsterdam untuk thesisnya yg berjudul „Communication with an Automatic Computer‟,

algoritma DIJKSTRA
10
Algoritma dijkstra adalah salah satu algoritma untuk memecahkan masalah “ single source shortest path”
Pada algoritma dijkstra pemecahan masalah diperuntukkan untuk sebuah Graph G=(V,E) yang berbobot non negatif.
Diasumsikan w(i,j) ≥0 untuk masing-masing edge (i,j) ЄE

Metode algoritma DIJKSTRA
11
1. Inisialisasi s (sumber) Pilih salah satu vertex sebagai sumber Maka d(s) = 0 Beri label 0 pada vertex s
2. Untuk masing-masing edge e Є E Jika i adalah endpoint dari e yang sudah diberi label dan j
adalah endpoint yang belum diberi label maka p(i,j) adalah = d(i) + w(i,j)

12
3. e adalah edge untuk T yang mempunyai nilai P terkecil Jika i adalah endpoint dari e yang sudah diberi label dan j
adalah endpoint yang belum diberi label maka tambahkan e dan vertex j ke tree T
d(j)=P(ij)
Beri label d(j) pada vertex j
4. Kembali ke no 2
Metode algoritma DIJKSTRA

Metode algoritma DIJKSTRA menggunakan metode
relaksasi
13
Relaksasi (i,j,w)
Jika d(j)>d(i)+w(i,j)
Maka d(j) adalah d(i) + w(i,j)
Beri label d(j) pada j
Metode dijkstra

Metode algoritma DIJKSTRA
14
Output algoritma dijkstra adalah spanning tree T, dimana path dari vertex s (sumber) ke masing-masing vertex v adalah sebuah shortest path dari s ke v dalam sebuah graph G.
Label pada sebuah vertex adalah jarak dari s ke masing-masing vertex

Contoh 1
15
Tentukan shortest path dari A ke setiap v pada graph G
berikut:
A
DC
E
7
10
6
48
5
2
15
9
B

Contoh 1(cont)
16
Spanning tree T kosong1. Inisialisasi s (sumber)
pilih vertex A sebagai sumber. S=A, maka d(A)=0. beri label 0 pada A
2. Untuk semua edge Є E, i adalah endpoint yg sudah di label , i = A j adalah endpoint yg belum dilabel j= B,C,D,E P(AB)=10, P(AC)=7, P(AE)=15
A
DC
E
7
10
6
48
5
2
15
9
B
d(A)=0

Contoh 1(cont)
17
A
DC
E
7
10
6
48
5
2
15
9
B
d(A)=0
d(C)=7
3 . AC yang mempunyai nilai P terkecil sehingga C ditambahkan ke spanning tree T d(c)=P(AC)=7
Beri label d (c) pada vertex c

Contoh 1(cont)
18
4. Kembali ke no 2 P(AB)=10,P(AE)=15,
P(CB)=22,P(CD)=9,P(CE)=15
CD yg mempunyai nilai P terkecil, sehingga D ditambahkan ke T
Beri label d(D)=9
A
DC
E
7
10
6
48
5
2
15
9
B
d(A)=0
d(C)=7
d(D)=9

19
Contoh 1(cont)
5. Kembali ke no 2• P(AB)=10,P(AE)=15,
P(CB)=22,P(CE)=15,P(DB)=15,P(DE)=13
• AB yg mempunyai nilai terkecil,sehingga B ditambahkan ke T
• Beri label d(B) =10
A
DC
E
7
10
6
48
5
2
15
9
B
d(A)=0
d(C)=7
d(D)=9
d(B)=10

Contoh 1(cont)
20
5. Kembali ke no 2 P(AE)=15, P(CB)=22,
P(CE)=15,P(DB)=15,P(DE)=13, P(BE)=18
DE yg mempunyai nilai terkecil,sehingga E ditambahkan ke T
Beri label d(E) =13
6. Semua vertex sudah diberi label
7. selesai
A
DC
E
7
10
6
48
5
2
15
9
B
d(A)=0
d(C)=7
d(B)=10
d(D)=9
d(E)=13

Aplikasi dijkstra
21
Dijkstra's algorithm determines the distances (costs) between a given vertex and all other vertices in a graph.This may be useful to determine alternatives in decision making.
Dijkstra's algorithm is almost identical to that of Prim's.The algorithm begins at a specific vertex and extends outward within the graph, until all vertices have been reached.
The only distinction is that Prim's algorithm stores a minimum cost edge whereas Dijkstra's algorithm stores the total cost from a source vertex to
the current vertex.
More simply, Dijkstra's algorithm stores a summation of minimum cost edges whereas Prim's algorithm stores at most one minimum cost edge.

contoh
22

contoh
23

contoh
24

contoh
25

contoh
26

contoh
27

soal
28
Tentukan shortest path dari A ke semua node pada graph berikut :

BELLMAN FORD
29
Algoritma ini merupakan pengembangan dari algoritma Djikstra,
Algoritma Bellman Ford akan benar jika dan hanya jika graph tidak terdapat cycle dengan bobot negatif yang dicapai dari sumber s.
No cycleDiasumsikan shortest paths tidak mempunyai cycles.
shortest path maksimum mempunyai |V|-1 edge

Ciri – ciri Algoritma Bellman-Ford :
30
Bekerja walaupun terdapat edge dengan bobot negative. Harus directed edge (jika tidak graph akan memiliki cycle dengan
bobot negatif) Iterasi i menemukan seluruh shortest path dengan menggunakan i
edge. Dapat mendeteksi cycle dengan bobot negatif jika ada.

Contoh algoritma bellman ford
31
BF(G,w,s) // G = Graph, w = weight, s=source Determine Single Source(G,s); set Distance(s) = 0; Predecessor(s) = nil; for each vertex v in G other than s,
set Distance(v) = infinity, Predecessor(v) = nil;for i <- 1 to |V(G)| - 1 do //|V(G)| Number of vertices in the graph
for each edge (u,v) in G doif Distance(v) > Distance(u) + w(u,v) then
set Distance(v) = Distance(u) + w(u,v), Predecessor(v) = u; for each edge (u,r) in G do
if Distance(r) > Distance(u) + w(u,r);return false; //This means that the graph contains a cycle of negative weight
//and the shortest paths are not well defined
return true; //Lengths of shortest paths are in Distance array

Algoritma :
32
Bellman-Ford(G,w,s)Inisialisasi single source(G,s)
for i=1 to |V[G]|-1do for each edge (u,v) E[G]
do RELAX(u,v)for each edge (u,v) E[G] ;untuk mencek apakah ada atau tidak cycle dgn bobot negatif
do if d[v] > d[u] +w ((u,v)) ;jika hasil algoritma yang diinginkan belum didapat
then return FALSEreturn TRUE;

Teknik relaksasi
33
Untuk setiap vertex v Є V, d (v) adalah bobot upper bound sebuah shortest path dari s ke v,
d(v) disebut estimasi shortest-path

relaksasi
34
1. pada algorithm Dijkstra dan algoritma shortest-paths untuk directed acyclic graphs (DAG), setiap edge direlaksasi sekali.
2. pada algoritma Bellman-Ford, setiap edge direlaksasi beberapa kali.

Triangle Inequality
35
Lemma 1 Untuk setiap edge (u; v) Є E, mempunyai δ(s;v) ≤ δ(s;u)+w(u;v)

Upper-bound Property
36
Lemma 2
Kita selalu mempunyai d[v] ≥ (s;v) untuk seluruh vertices vЄV dan satu d[v] achieves the value (s;v), yang tidak pernah berubah
Corollary 1
Jika tidak terdapat path dari s ke v, maka kita selalu mempunyai d[v] = δ(s;v) = ∞.

Convergence Property
37
Lemma 3 If s u v is a shortest path in
G for some u; v ЄV and if d[u] = δ(s;u) atany time prior to relaxing edge (u;v), thend[v] = δ(s;v) at all times afterward.

Path-relaxation Property
38

Applications in routing
39
A distributed variant of Bellman-Ford algorithm is used in the Routing Information Protocol (RIP). The algorithm is distributed because it involves a number of nodes (routers) within an Autonomous system, a collection of IP networks typically owned by an ISP. It consists of the following steps:
Each node calculates the distances between itself and all other nodes within the AS and stores this information as a table.
Each node sends its table to all neighbouring nodes. When a node receives distance tables from its neighbours, it
calculates the shortest routes to all other nodes and updates its own table to reflect any changes.

Applications in routing
40
The main disadvantages of Bellman-Ford algorithm in this
setting are
Does not scale well
Changes in network topology are not reflected quickly since
updates are spread node-by-node.
Counting to infinity

algoritma Bellman Ford
41
Ada dua hal yang harus menjadi catatan pada algoritma Bellman-Ford, yaitu :
Shortest path tidak akan terdiri lebih dari V-1 edge dari graph yang bersangkutan, dengan asumsi tidak ada negative cycle.Jika terdapat lebih dari V-1 edge pada shortest path, maka ada node yang dilewati lebih dari satu kali.Hal tersebut akan mengakibatkan shortest path tidak optimal.
Pada tiap iterasi, harus dipertimbangkan edge mana yang akan digunakan terlebih dahulu.

contoh
42
• develop algorithm using the following working example
• use a table to show changes in estimates of distances and predecessors• initialize table — no predecessors

contoh
43
Revise estimates of distances
Ulangi sebanyak v-1 kali
Untuk masing-masing edge (u, v) dalam graph, set d(v) =
min[d(v), d(u) + w(u, v)]
Jika jarak direvisi, tentukan vertex predecessor baru
edges dapat diambil dengan berbagai cara misalnya sesuai
dengan urutan abjad: (a, b), (a,c), (a, d), (b, a), (c, b), . . . , (s,
b)

contoh
44
show how we can use predecessor information to trace paths from source

penjelasan
45

46

47

48

49

50

51

52

HAPPY LEARNING !!