radiasi dan dunia yang kita huni

27
Radiasi dan Dunia yang Kita Huni Apa yang dimaksud dengan radiasi? Radiasi dapat diartikan sebagai energi yang dipancarkan dalam bentuk artikel atau gelombang. Pengertian tentang radiasi dan gelombang dapat dijelaskan pada kejadian berikut. Apa yang Anda lakukan jika Anda melihat kolam air tenang yang pada permukaannya mengapung beberapa helai daun? Secara spontan mungkin Anda akan melempar kerikil ke kolam tersebut. Dapat Anda lihat bahwa pada lokasi jatuhnya kerikil akan muncul riak, yang kemudian akan menyebar dalam bentuk lingkaran. Riak-riak tersebut adalah gelombang dan memperlihatkan pergerakan energi yang diberikan oleh kerikil, dan energi tersebut menyebar dari lokasi jatuhnya kerikil ke segala arah. Ketika riak mencapai daun, daun tersebut akan terangkat naik ke puncak gelombang.

Upload: samuel-bojes

Post on 13-Apr-2016

21 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Radiasi Dan Dunia Yang Kita Huni

Radiasi dan Dunia yang Kita Huni 

Apa yang dimaksud dengan radiasi?Radiasi dapat diartikan sebagai energi yang dipancarkan dalam bentuk artikel atau gelombang. Pengertian tentang radiasi dan gelombang dapat dijelaskan pada kejadian berikut.

Apa yang Anda lakukan jika Anda melihat kolam air tenang yang pada permukaannya mengapung beberapa helai daun? Secara spontan mungkin Anda akan melempar kerikil ke kolam tersebut. Dapat Anda lihat bahwa pada lokasi jatuhnya kerikil akan muncul riak, yang kemudian akan menyebar dalam bentuk lingkaran. Riak-riak tersebut adalah gelombang dan memperlihatkan pergerakan energi yang diberikan oleh kerikil, dan energi tersebut menyebar dari lokasi jatuhnya kerikil ke segala arah. Ketika riak mencapai daun, daun tersebut akan terangkat naik ke puncak gelombang.

Berdasarkan kejadian tersebut dapat dilihat bahwa untuk mengangkat sesuatu diperlukan energi. Karena itu, terangkatnya daun memperlihatkan bahwa gelombang mempunyai energi, dan energi tersebut telah bergerak dari lokasi jatuhnya kerikil ke lokasi terangkatnya daun. Hal yang sama juga berlaku untuk berbagai jenis gelombang dan radiasi lain.

Page 2: Radiasi Dan Dunia Yang Kita Huni

Salah satu karakteristik dari semua radiasi adalah radiasi mempunyai panjang gelombang, yaitu jarak dari suatu puncak gelombang ke puncak gelombang berikutnya.

Radiasi terdiri dari beberapa jenis, dan setiap jenis radiasi tersebut memiliki panjang gelombang masing-masing.

Ditinjau dari massanya, radiasi dapat dibagi menjadi radiasi elektromagnetik dan radiasi partikel. Radiasi elektromagnetik adalah radiasi yang tidak memiliki massa. Radiasi ini terdiri dari gelombang radio, gelombang mikro, inframerah, cahaya tampak, sinar-X, sinar gamma dan sinar kosmik. Radiasi partikel adalah radiasi berupa partikel yang memiliki massa, misalnya partikel beta, alfa dan neutron.

Jika ditinjau dari "muatan listrik"nya, radiasi dapat dibagi menjadi radiasi pengion dan radiasi non-pengion. Radiasi pengion adalah radiasi yang apabila menumbuk atau menabrak sesuatu, akan muncul partikel bermuatan listrik yang disebut ion. Peristiwa terjadinya ion ini disebut ionisasi. Ion ini kemudian akan menimbulkan efek atau pengaruh pada bahan, termasuk benda hidup. Radiasi pengion disebut juga radiasi atom atau

radiasi nuklir. Termasuk ke dalam radiasi pengion adalah sinar-X, sinar gamma, sinar kosmik, serta partikel beta, alfa dan neutron. Partikel beta, alfa dan neutron dapat menimbulkan ionisasi secara langsung. Meskipun tidak memiliki massa dan muatan listrik, sinar-X, sinar gamma dan sinar kosmik juga termasuk ke dalam radiasi pengion karena dapat menimbulkan ionisasi secara tidak langsung. Radiasi non-pengion adalah radiasi yang tidak dapat menimbulkan ionisasi. Termasuk ke dalam radiasi non-pengion adalah gelombang radio, gelombang mikro, inframerah, cahaya tampak dan ultraviolet.

Page 3: Radiasi Dan Dunia Yang Kita Huni

Tulisan ini hanya akan membicarakan radiasi pengion, khususnya sinar-X dan sinar gamma. Kedua jenis radiasi ini mempunyai potensi bahaya yang lebih besar dibandingkan dengan jenis radiasi lainnya. Pengaruh sinar kosmik hampir dapat diabaikan karena sebelum mencapai tubuh manusia, radiasi ini telah berinteraksi terlebih dahulu dengan atmosfir bumi. Radiasi beta hanya dapat menembus kertas tipis, dan tidak dapat menembus tubuh manusia, sehingga pengaruhnya dapat diabaikan. Demikian pula dengan radiasi alfa, yang hanya dapat menembus beberapa milimeter udara. Sedang radiasi neutron pada umumnya hanya terdapat di reaktor nuklir.

Page 4: Radiasi Dan Dunia Yang Kita Huni

Bagaimana terjadinya radiasi?Radiasi dapat diartikan sebagai energi yang dipancarkan dalam bentuk partikel atau gelombang. Jika suatu inti tidak stabil, maka inti mempunyai kelebihan energi. Inti itu tidak dapat bertahan, suatu saat inti akan melepaskan kelebihan energi tersebut dan mungkin melepaskan satu atau dua atau lebih partikel atau gelombang sekaligus.

Setiap inti yang tidak stabil akan mengeluarkan energi atau partikel radiasi yang berbeda. Pada sebagian besar kasus, inti melepaskan energi elektromagnetik yang disebut radiasi gamma, yang dalam banyak hal mirip dengan sinar-X. Radiasi gamma bergerak lurus dan mampu menembus sebagian besar bahan yang dilaluinya. Dalam banyak kasus, inti juga melepaskan radiasi beta. Radiasi beta lebih mudah untuk dihentikan. Seng atap atau kaca jendela dapat menghentikan radiasi beta. Bahkan pakaian yang kita pakai dapat melindungi dari radiasi beta. Unsur-unsur tertentu, terutama yang berat seperti uranium, radium dan plutonium, melepaskan radiasi alfa. Radiasi alfa dapat dihalangi seluruhnya dengan selembar kertas. Radiasi alfa tidak dapat menembus kulit kita. Radiasi alfa sangat berbahaya hanya jika bahan-bahan yang melepaskan radiasi alfa masuk kedalam tubuh kita.

Sinar-X merupakan jenis radiasi yang paling banyak ditemukan dalam kegiatan sehari-hari. Semua sinar-X di bumi ini dibuat oleh manusia dengan menggunakan peralatan listrik tegangan tinggi. Alat pembangkit sinar-X dapat dinyalakan dan dimatikan. Jika tegangan tinggi dimatikan, maka tidak akan ada lagi radiasi. Sinar-X dapat menembus bahan, misalnya jaringan tubuh, air, kayu atau besi, karena sinar-X mempunyai panjang gelombang yang sangat pendek. Sinar-X hanya dapat ditahan secara efektif oleh bahan yang mempunyai kerapatan tinggi, misalnya timah hitam (Pb) atau beton tebal.

Radiasi gamma mempunyai sifat yang serupa dengan sinar-X, namun radiasi gamma berasal dari inti atom. Karena berasal dari inti atom, radiasi gamma akan memancar secara terus-menerus, dan tidak dapat dinyalakan atau dimatikan seperti halnya sinar-X. Radiasi gamma yang terdapat di alam terutama berasal dari bahan-bahan radioaktif alamiah, seperti radium atau kalium radioaktif. Beberapa inti atom yang dapat memancarkan radiasi gamma juga dapat dibuat oleh manusia.

Beberapa unsur, misalnya besi atau oksigen, dapat memiliki beberapa inti atom yang hampir sama, disebut isotop. Jika suatu isotop dapat memancarkan radiasi, maka disebut radioisotop. Radioisotop seringkali disebut juga sebagai radionuklida. Perbedaan antara isotop yang satu dengan isotop lainnya biasanya dinyatakan dengan angka. Sebagai contoh, kalium-39 dan kalium-40 merupakan isotop-isotop dari unsur kalium.

Pemancaran radiasi dari suatu bahan radioaktif tidak dapat dimatikan atau dimusnahkan. Pemancaran radiasi hanya akan berkurang secara alamiah. Akibat memancarkan radiasi, suatu bahan radioaktif akan melemah aktivitasnya (kekuatannya), disebut peluruhan.

Selain itu, jika suatu bahan radioaktif memancarkan radiasi, bahan radioaktif tersebut dapat berubah menjadi bahan lain. Bahan lain ini dapat bersifat tidak stabil (masih dapat memancarkan radiasi lagi), dan dapat pula bersifat stabil (tidak memancarkan radiasi lagi).

Page 5: Radiasi Dan Dunia Yang Kita Huni

Setiap radioisotop akan berkurang atau melemah separo dari aktivitas awalnya dalam jangka waktu tertentu, yang bervariasi dari beberapa detik hingga milyaran tahun, bergantung pada jenis radioisotopnya. Jangka waktu tertentu tersebut disebut umur-paro. Sebagai contoh, umur-paro radium adalah 1.622 tahun; artinya, aktivitas radium akan berkurang setengahnya dalam 1.622 tahun, setengah aktivitas sisanya akan berkurang lagi dalam waktu 1.622 tahun berikutnya, dan seterusnya.

 

Darimana radiasi berasal?Tanpa kita sadari, sebenarnya kita hidup dalam lingkungan yang penuh dengan radiasi. Radiasi telah menjadi bagian dari lingkungan kita semenjak dunia ini diciptakan, bukan hanya sejak ditemukan tenaga nuklir setengah abad yang lalu. Terdapat lebih dari 60 radionuklida yang berdasarkan asalnya dibagi atas 2 kategori:

1. Radionuklida alamiah: radionuklida yang terbentuk secara alami, terbagi menjadi dua yaitu:2.

- Primordial: radionuklida ini telah ada sejak bumi diciptakan.- Kosmogenik: radionuklida ini terbentuk sebagai akibat dari interaksi sinar kosmik.

3. Radionuklida buatan manusia: radionuklida yang terbentuk karena dibuat oleh manusia.

Radionuklida terdapat di udara, air, tanah, bahkan di tubuh kita sendiri. Setiap hari kita terkena radiasi, baik dari udara yang kita hirup, dari makanan yang kita konsumsi maupun dari air yang kita minum. Tidak ada satupun tempat di bumi ini yang bebas dari radiasi.

Page 6: Radiasi Dan Dunia Yang Kita Huni

Primordial

Radionuklida primordial telah ada sejak alam semesta terbentuk. Pada umumnya, radionuklida ini mempunyai umur-paro yang panjang. Tabel berikut memperlihatkan beberapa radionuklida primordial.

Tabel Radionuklida Primordial

Nuklida Lambang Umur-paro Keterangan

Uranium 235

235U 7,04x108 tahun

0,72% dari uranium alam

Uranium 238

238U 4,47x109 tahun

99,2745% dari uranium alam; pada batuan terdapat 0,5 - 4,7 ppm uranium alam

Thorium 232

232Th 1,41x1010 tahun

Pada batuan terdapat 1,6 - 20 ppm.

Radium 226

226Ra 1,60x103 tahun

Terdapat di batu kapur

Radon 222

222Rn 3,82 hari Gas mulia

Kalium 40

40K 1,28x109 tahun

Terdapat di tanah

Kosmogenik

Sumber radiasi kosmik berasal dari luar sistem tata surya kita, dan dapat berupa berbagai macam radiasi. Radiasi kosmik ini berinteraksi dengan atmosfir bumi dan membentuk nuklida radioaktif yang sebagian besar mempunyai umur-paro pendek, walaupun ada juga yang mempunyai umur-paro panjang. Tabel berikut memperlihatkan beberapa radionuklida kosmogenik.

Tabel Radionuklida Kosmogenik

Nuklida Lambang Umur-paro Sumber

Karbon 14

14C 5.730 tahun Interaksi 14N(n,p)14C

Tritium 3

3H 12,3 tahun Interaksi 6Li(n,a)3H

Page 7: Radiasi Dan Dunia Yang Kita Huni

Berilium 7

7Be 53,28 hari Interaksi sinar kosmik dengan unsur N dan O

Buatan Manusia

Manusia telah menggunakan bahan radioaktif selama lebih dari 100 tahun. Tabel berikut memperlihatkan beberapa radionuklida buatan manusia.

Tabel Radionuklida Buatan Manusia

Nuklida Lambang Umur-paro Sumber

Tritium 3 3H 12,3 tahun Dihasilkan dari uji-coba senjata nuklir, reaktor nuklir, dan fasilitas olah-ulang bahan bakar nuklir.

Iodium 131 131I 8,04 hari Produk fisi yang dihasilkan dari uji-coba senjata nuklir, reaktor nuklir. 131I sering digunakan untuk mengobati penyakit yang berkaitan dengan kelenjar thyroid.

Iodium 129 129I 1,57x107 tahun

Produk fisi yang dihasilkan dari uji-coba senjata nuklir dan reaktor nuklir.

Cesium 137 137Cs 30,17 tahun Produk fisi yang dihasilkan dari uji-coba senjata nuklir dan reaktor nuklir.

Stronsium 90 90Sr 28,78 tahun Produk fisi yang dihasilkan dari uji-coba senjata nuklir dan reaktor nuklir.

Technesium 99m

99mTc 6,03 jam Produk peluruhan dari 99Mo, digunakan dalam diagnosis kedokteran.

Technesium 99

99Tc 2,11x105 tahun

Produk peluruhan 99mTc.

Plutonium 239

239Pu 2,41x104 tahun

Dihasilkan akibat 238U ditembaki neutron.

 

Beberapa Fakta Menarik dari Radioaktivitas Alamiah

Page 8: Radiasi Dan Dunia Yang Kita Huni

Tubuh Manusia

Tubuh manusia terdiri atas bahan kimia, beberapa diantaranya merupakan radionuklida yang berasal dari makanan dan air yang kita konsumsi tiap hari. Tabel berikut memperlihatkan perkiraan jumlah radionuklida yang terdapat pada tubuh manusia dengan berat 70 kg.

Tabel Radioaktivitas Alamiah yang Terdapat Pada Tubuh Manusia

Nuklida Massa Nuklida Asupan Sehari-hari

Uranium 90 g 1.9 g

Thorium 30 g 3 g

Kalium 40 17 mg 0,39 mg

Radium 31 pg 2,3 pg

Karbon 14 95 g 1,8 g

Tritium 0,06 pg 0,003 pg

Polonium 0,2 pg 0,6 g

Bahan Bangunan

Bahan bangunan pada rumah yang kita tempati juga mengandung bahan-bahan radioaktif. Tabel berikut memperlihatkan beberapa bahan bangunan dan konsentrasi uranium, thorium dan kalium yang terkandung di dalam bahan bangunan tersebut.

Tabel Konsentrasi Uranium, Thorium dan Kalium dalam Bahan Bangunan

Uranium(ppm)

Thorium(ppm)

Kalium(ppm)

Granit 4,7 2 4

Batu pasir (sandstone) 0,45 1,7 1,4

Semen 3,4 5,1 0,8

Batako kapur (limestone concrete)

2,3 2,1 0,3

Batako semen 0,8 2,1 1,3

Page 9: Radiasi Dan Dunia Yang Kita Huni

(sandstone concrete)

Papan Partisi (dry wallboard)

1,0 3 0,3

Gypsum 13,7 16,1 0,02

Kayu - - 11,3

Batu bata tanah liat (clay brick)

8,2 10,8 2,3

 

Catatan:Beberapa satuan yang biasa dipakai adalah: ppm - part per million, g - gram, kg - kilogram (1000 gram), mg - miligram (10-3 gram), g - mikrogram (10-6 gram), pg - pikogram (10-12 gram).

Reaktor Nuklir Alam di Oklo

Pada tahun 1972, di Oklo (salah satu daerah di negara Gabon, Afrika Barat) telah ditemukan reaktor nuklir alam yang beroperasi sekitar 1,7 milyar tahun lalu.

Reaktor tersebut ditemukan oleh para ahli geologi Perancis ketika mereka meneliti sampel di tambang uranium Oklo. Pada umumnya, U-235 yang merupakan nuklida bahan bakar reaktor nuklir memiliki kelimpahan sekitar 0,7202%. Para ahli geologi Perancis tersebut menemukan bahwa kelimpahan U-235 di Oklo mencapai 0,7171%. Meskipun perbedaannya sangat kecil, namun para ahli tersebut tertarik untuk meneliti lebih lanjut. Mereka terkejut ketika menemukan sampel yang memiliki kelimpahan hanya 0,44%. Perbedaan ini hanya dapat dijelaskan jika U-235 tersebut telah dipakai sebagai bahan bakar dalam reaktor nuklir.

Dalam penelitian lebih lanjut telah ditemukan beberapa produk fisi dalam jumlah melimpah di 6 lokasi sekitar. Produk fisi merupakan bahan-bahan radioaktif akibat reaksi pembelahan U-235 yang terjadi di reaktor nuklir. Di lokasi tesebut juga telah ditemukan bahan radioaktif neodymium, yang kelimpahannya hampir sama dengan yang ditemukan di reaktor nuklir masa kini. Hal tersebut membuktikan bahwa alam telah dapat membuat reaktor nuklir pada 1,7 milyar tahun lalu, sesuatu hal yang baru dapat dilakukan oleh manusia pada abad 20.

Daerah Radiasi Alam Tinggi

Beberapa daerah di bumi mempunyai radiasi alam yang lebih tinggi dari rata-rata di permukaan bumi, misalnya di India dan Brazil. Pada daerah tertentu di negara tersebut, permukaan tanah tertutupi oleh suatu bahan yang berwarna hitam yang disebut pasir monasit, yang merupakan

Page 10: Radiasi Dan Dunia Yang Kita Huni

turunan dari deposit uranium. Pasir monasit tersebut melingkupi daerah yang relatif luas dengan populasi penduduk yang cukup besar. Tingkat radiasi pada tinggi setengah meter dari permukaan tanah bisa lebih dari 20 kali dari radiasi alam daerah lain. Penelitian pada populasi tersebut, termasuk penduduk yang tinggal pada daerah tersebut selama beberapa generasi, tidak menemukan suatu kelainan, kecenderungan kanker atau penyakit akibat radiasi lainnya.

Suatu hal menarik dari kenyataan ini adalah bahwa pasir yang mengandung radioaktif tersebut diyakini mempunyai khasiat menyembuhkan penyakit. Sebagian orang bersedia membayar untuk berbaring di tanah yang mempunyai tingkat radiasi relatif tinggi atau berendam dalam air yang mengandung unsur radioaktif selama berhari-hari untuk menyembuhkan penyakitnya. Akan tetapi tidak ada catatan mengenai adanya orang yang sakit, maupun yang sembuh dari sakit setelah melakukan hal tersebut.

Bagaimana kita mengetahui adanya radiasi?Radiasi tidak dapat dilihat, didengar, dicium, dirasakan atau diraba. Indera manusia tidak dapat mendeteksi radiasi sehingga seseorang tidak dapat mengetahui kapan ia dalam bahaya atau tidak. Radiasi hanya dapat diketahui dengan menggunakan alat, yang disebut monitor radiasi. Monitor radiasi terdiri dari detektor radiasi dan rangkaian elektronik penunjang. Pada umumnya, monitor radiasi dilengkapi dengan alarm yang akan mengeluarkan bunyi jika ditemukan radiasi. Bunyi alarm semakin keras apabila tingkat radiasi yang ditemukan semakin tinggi. Monitor radiasi umumnya digunakan hanya untuk mengetahui ada atau tidaknya radiasi.

Monitor radiasi yang digunakan untuk mengukur jumlah radiasi atau dosis yang diterima oleh seseorang disebut dosimeter perorangan dan monitor radiasi yang digunakan untuk mengukur kecepatan radiasi atau laju dosis di suatu area dikenal dengan survaimeter. Alat-alat tersebut dapat disamakan dengan indikator jarak dan speedometer pada mobil. Indikator jarak menunjukkan berapa km atau mil yang telah dijalani oleh mobil, seperti halnya dosimeter perorangan menunjukkan berapa dosis radiasi yang telah diterima oleh seseorang. Speedometer menunjukkan pada kita beberapa km atau mil kecepatan mobil perjam, seperti survaimeter menunjukkan berapa laju dosis radiasi.

Salah satu cara untuk mengukur dosis radiasi pada dosimeter perorangan adalah berdasarkan pada tingkat kehitaman film jika terkena radiasi. Dengan memproses film dan mengukur tingkat kehitamannya, dosis radiasi yang diterima oleh seseorang dapat diperkirakan.

Cara lain untuk mengukur dosis adalah berdasarkan pada jumlah cahaya yang dihasilkan pada bahan tertentu akibat oleh radiasi setelah dilakukan proses pemanasan. Dosimeter perorangan ini disebut TLD (Thermo Luminescence Dosimeter). TLD lebih peka dan akurat daripada dosimeter film dan dapat digunakan kembali setelah dilakukan proses pembacaan dosis.

Page 11: Radiasi Dan Dunia Yang Kita Huni

Berbeda dengan dosimeter perorangan yang memberikan informasi dosis radiasi yang telah diterima, survaimeter memberikan informasi laju dosis radiasi pada suatu area pada suatu saat. Hasil perkalian antara laju dosis yang ditunjukkan survaimeter dan lama waktu selama berada di area merupakan perkiraan jumlah radiasi atau dosis yang diterima bila berada di suatu area selama waktu tersebut. Dengan survaimeter ini seseorang dapat menjaga diri agar tidak terkena radiasi yang melebihi batas yang diizinkan.

Apakah radiasi aman?Perlu kita sadari, bahwa tidak ada satupun aktivitas manusia yang benar-benar aman dan bebas dari risiko. Bahkan, ketika duduk santai di kursi sekalipun, kita menghadapi risiko terjungkal dari kursi. Dalam setiap tindakan yang kita lakukan selalu ada risiko, betapapun kecilnya risiko tersebut. Kadangkala, tanpa disadari, kita mengabaikan risiko tersebut. Sebagai contoh, ketika hendak menyeberang jalan sewaktu lalulintas tidak padat, kita hanya menunggu adanya jeda antar kendaraan untuk menyeberang. Dalam hal ini, tanpa sadar kita mengabaikan risiko tertabrak oleh kendaraan.

Setiap tindakan yang kita ambil mungkin relatif lebih aman, atau sebaliknya, relatif lebih berbahaya dari tindakan alternatif lainnya.  Sebagai contoh, untuk mendeteksi suatu penyakit apakah kanker atau bukan, kita dapat menggunakan sinar-X. Penggunaan sinar-X itu sendiri mengandung risiko, namun jika kanker dibiarkan tak terdeteksi, hal tersebut dapat berakibat fatal. Dalam hal ini, risiko penggunaan sinar-X untuk mendeteksi kanker jauh lebih kecil daripada risiko membiarkan kanker tak terdeteksi. Hal ini seringkali disebut sebagai pertimbangan manfaat-risiko.

Karena itu, kita tidak dapat mengatakan bahwa radiasi aman, atau sebaliknya, radiasi berbahaya. Yang bisa kita lakukan adalah mengambil risiko yang sekecil-kecilnya untuk mendapatkan keuntungan yang sebesar-besarnya. Tidak ada salahnya kita menggunakan  radiasi, jika manfaat yang akan kita dapat jauh lebih besar daripada risikonya.

Apakah radiasi bermanfaat?Radiasi pengion banyak menjanjikan manfaat bagi umat manusia, walaupun demikian kita harus waspada terhadap risikonya. Sebagai contoh, matahari 

Page 12: Radiasi Dan Dunia Yang Kita Huni

memancarkan segala jenis radiasi, termasuk radiasi inframerah (panas), radiasi cahaya tampak dan radiasi ultraviolet. Radiasi-radiasi tersebut merupakan bagian dari kehidupan sehari-hari, dan kita tidak dapat hidup tanpa radiasi-radiasi tersebut. Namun, kita juga harus menyadari bahwa setiap radiasi alamiah dapat berakibat buruk. Terlalu banyak inframerah dapat menyebabkan benda terbakar. Terlalu banyak cahaya tampak dapat menyebabkan kebutaan, dan terlalu banyak ultraviolet dapat mengakibatkan kanker kulit atau kulit terbakar.

Masyarakat awam sering mendengar atau mengalami pemeriksaan kesehatan menggunakan sinar-X. Sinar-X digunakan dalam bidang kedokteran untuk menggambarkan rangka tubuh manusia dan struktur tubuh bagian dalam, mendeteksi benda-benda asing dalam tubuh, tulang patah, serta beberapa penyakit, misalnya tuberkolosis (TBC) dan pembengkakan jantung.

Namun, bila tidak digunakan secara hati-hati, sinar-X dapat meningkatkan risiko kanker dan bahkan dapat mengakibatkan kematian pasien. Akan tetapi, sifat-sifat radiasi pengion dan cara untuk meminimalkan jumlah dosis yang diterima dari penyinaran radiasi sinar-X telah dipahami. Karena itu, tak ada lagi alasan untuk takut terhadap penyinaran sinar-X, sepanjang digunakan secara tepat. Kita dapat meminimalkan pemakaian yang tidak tepat melalui pendidikan, pelatihan dan penegakan hukum atau aturan dan ketentuan yang berlaku. Semua radiasi pengion dapat digunakan secara luas untuk keperluan yang bermanfaat dengan tingkat keamanan yang tinggi.

2. Dosis dan Efek RadiasiSatuan dan Dosis Radiasi

Kita tidak dapat mendeteksi radiasi secara langsung dengan menggunakan panca indera; namun kita dapat mendeteksinya dengan menggunakan peralatan khusus, yang disebut Detektor Radiasi, misalnya film fotografi, tabung Geiger-Müller, pencacah sintilasi, bahan termoluminesensi maupun dioda silikon. Hasil pengukuran detektor radiasi tersebut dapat kita interpretasikan sebagai energi radiasi yang terserap di seluruh tubuh manusia atau di organ tertentu, misalnya hati.

Banyaknya energi radiasi pengion yang terserap per satuan massa bahan, misalnya jaringan tubuh manusia, disebut Dosis Terserap yang dinyatakan dalam satuan gray, dengan simbol Gy. Untuk nilai yang lebih kecil, biasa digunakan miligray, mGy, yang sama dengan seperseribu gray. Istilah gray diambil dari nama fisikawan Inggris, Harold Gray.

Page 13: Radiasi Dan Dunia Yang Kita Huni

Besar dosis terserap yang sama untuk jenis radiasi yang berbeda belum tentu mengakibatkan efek biologis yang sama, karena setiap jenis radiasi pengion memiliki keunikan masing-masing dalam berinteraksi dengan jaringan tubuh manusia. Sebagai contoh, dosis terserap 1 Gy yang berasal dari radiasi alfa lebih berbahaya dibandingkan dengan dosis terserap 1 Gy yang berasal dari radiasi beta.

Karena adanya perbedaan tersebut, kita memerlukan besaran dosis lain yang tidak bergantung pada jenis radiasi. Besaran itu disebut Dosis Ekivalen dan memiliki satuan sievert, dengan simbol Sv. Untuk nilai yang lebih kecil, biasa digunakan milisievert, mSv, yang sama dengan seperseribu sievert. Istilah sievert diambil dari nama fisikawan Swedia, Rolf Sievert.

Dosis ekivalen adalah dosis terserap dikalikan dengan Faktor Bobot-Radiasi. Nilai faktor bobot-radiasi ini berlainan untuk setiap jenis radiasi, bergantung pada kemampuan radiasi tersebut untuk merusak jaringan tubuh manusia. Faktor bobot-radiasi untuk elektron (radiasi beta), foton (gamma dan sinar-X) bernilai 1 (satu), sedang untuk radiasi alfa bernilai 20. Ini berarti radiasi alfa bisa mengakibatkan kerusakan pada jaringan tubuh 20 kali lebih parah dibandingkan dengan radiasi beta, gamma atau sinar-X. Dengan adanya dosis ekivalen ini, maka kita dapat menyatakan bahwa dosis ekivalen 1 Sv yang berasal dari radiasi alfa akan mengakibatkan kerusakan yang sama dengan dosis ekivalen 1 Sv yang berasal dari radiasi beta.

Page 14: Radiasi Dan Dunia Yang Kita Huni

Selain bergantung pada jenis radiasi, setiap organ atau jaringan tubuh juga mempunyai kepekaan masing-masing terhadap radiasi. Kerusakan akibat radiasi yang diterima oleh suatu organ, misalnya hati, juga berbeda dengan organ lain, misalnya paru-paru. Karena itu, setiap organ juga mempunyai Faktor Bobot-Organ.

Untuk memudahkan, biasanya kita hanya memperhatikan berapa dosis radiasi yang mengenai seluruh tubuh. Besaran dosis radiasi ini disebut Dosis Efektif. Dosis efektif menyatakan penjumlahan dari dosis ekivalen yang diterima oleh setiap organ utama tubuh dikalikan dengan faktor bobot-organnya.

Perhitungan dosis efektifAnggaplah seseorang menerima dosis ekivalen 100 mSv pada paru-paru, 70 mSv pada hati dan 300 mSv pada tulang. Dosis efektif = (100x0,12) + (70x0,05) + (300x0,01) = 18,5 mSv. Risiko akibat menerima radiasi pada beberapa organ tubuh tersebut akan sama dengan risiko jika ia menerima dosis ekivalen 18,5 mSv secara merata pada seluruh tubuhnya.

Biasanya, dosis efektif seringkali disebut secara singkat sebagai Dosis atau Dosis Radiasi saja. Dalam satuan lama, sebelum tahun 1970, dosis radiasi dinyatakan dalam rem, dengan 1 Sv sama dengan 100 rem.

Asal Dosis Radiasi dan Persentasenya 

Page 15: Radiasi Dan Dunia Yang Kita Huni

Dosis radiasi yang diterima oleh seseorang dapat berasal dari alam (secara alamiah) maupun dari radiasi buatan manusia (misalnya pemakaian sinar-X dalam bidang kedokteran). Dalam laporan yang dipublikasikan pada tahun 2000, UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) menyatakan bahwa secara rata-rata seseorang akan menerima dosis 2,8 mSv (280 mrem) per tahun. Sekitar 85% dari total dosis yang diterima seseorang berasal dari alam. Sekitar 43% dari total dosis yang diterima seseorang berasal dari radionuklida radon yang terdapat di dalam rumah.

Page 16: Radiasi Dan Dunia Yang Kita Huni

 

Radiasi Kosmik

Radiasi kosmik merupakan radiasi yang berasal dari angkasa luar, umumnya terdiri atas partikel proton. Proton merupakan partikel bermuatan, sehingga jumlah proton yang memasuki atmosfir bumi dipengaruhi oleh medan magnet bumi. Karena itu, dosis radiasi yang berasal dari radiasi kosmik bergantung pada garis lintang; semakin jauh dari khatulistiwa, semakin besar dosisnya.

Ketika memasuki atmosfir bumi, radiasi kosmik berinteraksi dengan atom/unsur penyusun atmosfir. Semakin mendekati bumi, jumlah radiasi kosmik akan semakin berkurang karena diserap oleh bahan penyusun atmosfir, sehingga dosisnya juga akan semakin berkurang. Pada permukaan bumi, secara rata-rata, dosisnya sekitar 0,4 mSv (40 mrem) per tahun.

Beberapa kota di bumi, misalnya kota Lhasa di Himalaya, Tibet, berada di lokasi yang cukup tinggi sehingga penduduknya akan mendapat dosis yang relatif lebih tinggi dibandingkan dengan mereka yang berada di permukaan bumi. Secara umum, intensitas

radiasi kosmik bertambah dua kali lipat untuk setiap ketinggian 2 km.

Selain itu, mereka yang sering bepergian dengan pesawat terbang juga akan mendapat dosis radiasi yang lebih tinggi. Penerbangan pada ketinggian 13 km, ketinggian yang umum untuk

Page 17: Radiasi Dan Dunia Yang Kita Huni

penerbangan komersial, memberikan tambahan dosis 0,005 mSv (0,5 mrem) per jam penerbangan untuk setiap penumpang.

Kerak bumi (terestrial)

Semua bahan yang terdapat dalam kerak bumi mengandung radionuklida, khususnya uranium (U), thorium (Th) dan kalium (K). Uranium tersebar di bebatuan dan tanah dalam konsentrasi yang sangat kecil. U-238 merupakan induk dari beberapa deret peluruhan radionuklida. Setiap radionuklida akan meluruh menjadi radionuklida lain hingga akhirnya tercapai nuklida stabil Pb-206. Salah satu radionuklida yang berada dalam deret peluruhan uranium ini adalah radon-222 (Rn-222) yang dapat berinteraksi dengan udara. Thorium juga tersebar di tanah, dan Th-232 merupakan radionuklida induk dari deret peluruhan lain. Konsentrasi kalium lebih banyak dibandingkan dengan uranium dan thorium.

Semua radionuklida tersebut memancarkan radiasi gamma. Karena itu, setiap saat kita mendapat radiasi gamma, baik sewaktu kita berada di dalam maupun di luar rumah. Dosis yang diterima akan bervariasi sesuai dengan struktur geologi daerah tempat tinggalnya dan dengan bahan bangunan yang dipakai. Secara rata-rata, kita menerima dosis 0,5 mSv (50 mrem) per tahun dari radiasi gamma alamiah yang berasal dari bebatuan dan tanah.

Kita mungkin berpikir bahwa dengan masuk ke dalam rumah, kita akan terhindar dari radiasi terestrial. Kenyataannya, kontribusi radiasi terestrial ini 20% terdapat di luar rumah, 80% berasal dari bahan bangunan.

Internal

Beberapa radionuklida yang berasal dari deret uranium dan thorium, misalnya Pb-210 dan Po-210, terdapat di udara, makanan dan air. Karena itu, kita juga mendapat radiasi secara internal (dari dalam tubuh). Selain itu, di dalam tubuh juga terdapat radionuklida K-40 dan produk peluruhan radon. Interaksi radiasi kosmik dengan atmosfir juga akan menghasilkan beberapa radionuklida, misalnya C-14, yang akan menambah radiasi internal. Dosis efektif rata-rata dari radiasi internal ini sekitar 0,3 mSv (30 mrem) per tahun. Sekitar separuh dari dosis ini berasal dari K-40.

Radon

Radiasi yang berasal dari gas radon (Rn-222) merupakan sumber utama radiasi yang kita terima sehari-hari. Hal ini terjadi karena Rn-222 dapat bergabung dengan udara yang kita hirup. Kemudian, gas radon yang memancarkan radiasi alfa ini dapat mengiradiasi paru-paru sehingga akan meningkatkan risiko terkena kanker.

Page 18: Radiasi Dan Dunia Yang Kita Huni

Jika gas radon keluar dari tanah, gas radon akan terdispersi (tersebar) ke udara. Karena itu, konsentrasi radon di lingkungan udara terbuka akan kecil. Namun, jika gas radon memasuki ruangan tertutup, khususnya melalui lantai rumah, konsentrasinya akan meningkat.

Dosis efektif rata-rata dari gas radon ini sekitar 1,2 mSv (120 mrem) per tahun. Karena dosis total rata-rata (baik berasal dari radiasi alamiah maupun buatan) sekitar 2,8 mSv (280 mrem) per tahun, maka kontribusi dari radon ini sekitar 43% dari dosis total yang kita terima. Karena itu, kita harus mewaspadai dosis radiasi yang berasal dari gas radon ini. Untuk mengurangi radiasi yang berasal dari gas radon, ruangan gedung harus memiliki ventilasi yang cukup agar gas radon dapat didispersikan oleh udara.

KedokteranDalam bidang kedokteran, radiasi pengion digunakan untuk diagnosis dan pengobatan (terapi). Pemakaian sinar-X untuk memeriksa pasien disebut radiologi diagnostik, jika radiasi digunakan untuk mengobati pasien, prosedurnya disebut radioterapi, sedang pemakaian obat-obatan yang mengandung bahan radioaktif, baik untuk keperluan diagnosis maupun terapi, disebut kedokteran nuklir. Dosis efektif rata-rata yang berasal dari bidang kedokteran ini sekitar 0,4 mSv (40 mrem) per tahun.

Atmosfir (uji-coba bom nuklir)

Jika bom nuklir diuji-coba di atas tanah, ledakan bom tersebut akan menghamburkan berbagai radionuklida, misalnya H-3 dan Pu-241, ke atmosfir. Dari atmosfir, radionuklida tersebut kemudian secara perlahan-lahan turun ke tanah. Sekitar 500 uji-coba bom nuklir dilaksanakan sebelum adanya pembatasan uji-coba bom nuklir pada tahun 1963.

Radionuklida utama yang menjadi bahaya radiasi pada uji-coba bom nuklir ini adalah C-14, Sr-90 dan Cs-137. Radionuklida tersebut dapat

masuk ke dalam tubuh melalui makanan dan minuman. Selain itu, radionuklida tersebut dapat juga terdapat di permukaan tanah sehingga akan menambah radiasi yang kita terima.

Dosis efektif rata-rata akibat radionuklida hasil uji-coba bom nuklir ini sekitar 0,005 mSv (0,5 mrem) per tahun. Jumlah ini jauh lebih kecil dibandingkan dengan dosis sekitar 0,1 mSv (10 mrem) pada tahun 1963 ketika uji-coba peledakan bom nuklir mencapai puncaknya.

Page 19: Radiasi Dan Dunia Yang Kita Huni

Kecelakaan PLTN Chernobyl

Pada tanggal 26 April 1986 terjadi kecelakaan di PLTN Chernobyl, Ukraina. Kecelakaan itu mengakibatkan tersebarnya sejumlah bahan radioaktif ke lingkungan selama 10 hari. Sekitar 31 orang meninggal dunia, termasuk 28 orang petugas pemadam kebakaran. Para petugas pemadam kebakaran tersebut mendapat dosis radiasi tinggi, antara 3 Sv (300 rem) hingga 16 Sv (1600 rem), yang berasal dari bahan radioaktif yang mengendap di tanah. Selain itu, mereka juga mengalami kontaminasi pada kulit yang mengakibatkan eritema akut. Sebanyak 209 orang juga mendapat perawatan di rumah sakit, 106 orang di antaranya didiagnosa menderita sakit akibat radiasi yang cukup parah. Kendati demikian, semuanya dapat disembuhkan dan diizinkan pulang setelah menjalani perawatan beberapa minggu atau bulan di rumah sakit.

Radionuklida utama yang menjadi bahaya pada kecelakaan ini adalah I-131, Cs-134 dan Cs-137. Dosis yang diterima berasal dari radiasi eksterna radionuklida yang terdapat di permukaan tanah, dari terhirupnya I-131 sehingga meningkatkan dosis radiasi pada thyroid, dan dari radiasi internal radionuklida yang terdapat pada bahan makanan.

Ketika UNSCEAR menerbitkan laporan pada tahun 2000, pada laporan itu masih disebutkan bahwa kecelakaan PLTN Chernobyl ini mengakibatkan dosis efektif rata-rata sekitar 0,002 mSv (0,2 mrem) per tahun.

PLTN

Pembangkit Listrik Tenaga Nuklir (PLTN) merupakan salah satu sumber daya energi listrik dunia. Pada setiap tahap daur bahan bakar nuklir, termasuk penambangan, fabrikasi, operasi reaktor serta olah-ulang bahan bakar, sejumlah kecil radionuklida dilepaskan ke lingkungan dalam bentuk cair, gas atau padat. Dosis efektif rata-rata yang berasal dari energi nuklir ini sekitar 0,0002 mSv (0,02 mrem) per tahun.

Page 20: Radiasi Dan Dunia Yang Kita Huni

Lain-lain

Selain mendapat dosis radiasi yang berasal dari latar belakang seperti disebutkan di atas, kita juga mendapat tambahan dosis radiasi, misalnya bila kita di"roentgen". Tabel berikut memperlihatkan beberapa sumber paparan yang dapat menambah dosis radiasi.

Page 21: Radiasi Dan Dunia Yang Kita Huni