radiasi elektromagnetik

18
Gelombang elektromagnetik 1. Penemuan Gelombang elektromagnetik Pada jaman Newton, orang telah mengetahui bahwa cahaya merambat lurus. Orang juga telah mengetahui bahwa ketika cahaya mengenai bidang batas antara dua medium.tembus cahaya, cahaya tersebut dibiaskan (dibelokkan). Untuk menjelaskan kedua fenomena cahaya ini, Newton menganggap bahwa benda-benda bercahaya menembakkan sejumlah partikel ke segala arah. Partikel-partikel itu tidak bermassa sehingga tidak dipengaruhi oleh gaya gravitasi. Sesuai hukum I Newton, partikel-partikel cahaya ini akan bergerak lurus dengan kecepatan tetap. Ketika partikel-partikel cahaya ini dihentikan oleh sebuah penghalang tak tembus cahaya, suatu bayangan tajam akan dibentuk pada penghalang tersebut. Pada tahun 1804,Thomas Young (1773-1829), ilmuwan Inggris, berhasil mendemonstrasikan interferansi cahaya, yaitu fenomena di mana dua sumber cahaya koheren yang dihasilkan oleh celah ganda membentuk pita terang dan pita gelap secara bergantian pada layar. Fenomena interferensi cahaya tidak dapat dijelaskan oleh teori partikel cahaya Newton. Jika cahaya disusun oleh partikel-partikel, layar akan menerima partikel-partikel dari kedua celah. Daerah dimana partikel-partikel saling bertumpukan (di sekitar daerah pusat P) harusnya lebih terang secara seragam daripada di sekitar daerah pinggiran (disekitar ujung Q dan R). Fakta ini tidak terjadi. Sebagai gantinya, justru diamati pita terang dan pita gelap saling bergantian di layar. Augustin Fresnel (1788-1827), ilmuwan Perancis, melakukan percobaan yang mirip dengan percobaan interferensi Young. Bahkan Fresner-lah yang berjasa dalam memberikan teori matematika tentang interferensi dan difraksi cahaya. Fresnel menerima penghargaan dari Paris Academi pada tahun 1818. Kegagalan teori partikel cahaya newton menjelaskan interferensi cahaya menyebabkan Young dan Frensnel mengemukakan teori gelombang transversal cahaya. Kedudukan memandang cahaya sebagai gelombang transversal yang merambat melalui suatu medium.

Upload: niki

Post on 10-Jun-2015

4.716 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: radiasi elektromagnetik

Gelombang elektromagnetik

1. Penemuan Gelombang elektromagnetik

Pada jaman Newton, orang telah mengetahui bahwa cahaya merambat lurus. Orang juga telah mengetahui bahwa ketika cahaya mengenai bidang batas antara dua medium.tembus cahaya, cahaya tersebut dibiaskan (dibelokkan). Untuk menjelaskan kedua fenomena cahaya ini, Newton menganggap bahwa benda-benda bercahaya menembakkan sejumlah partikel ke segala arah. Partikel-partikel itu tidak bermassa sehingga tidak dipengaruhi oleh gaya gravitasi. Sesuai hukum I Newton, partikel-partikel cahaya ini akan bergerak lurus dengan kecepatan tetap. Ketika partikel-partikel cahaya ini dihentikan oleh sebuah penghalang tak tembus cahaya, suatu bayangan tajam akan dibentuk pada penghalang tersebut.

Pada tahun 1804,Thomas Young (1773-1829), ilmuwan Inggris, berhasil mendemonstrasikan interferansi cahaya, yaitu fenomena di mana dua sumber cahaya koheren yang dihasilkan oleh celah ganda membentuk pita terang dan pita gelap secara bergantian pada layar.

Fenomena interferensi cahaya tidak dapat dijelaskan oleh teori partikel cahaya Newton. Jika cahaya disusun oleh partikel-partikel, layar akan menerima partikel-partikel dari kedua celah. Daerah dimana partikel-partikel saling bertumpukan (di sekitar daerah pusat P) harusnya lebih terang secara seragam daripada di sekitar daerah pinggiran (disekitar ujung Q dan R). Fakta ini tidak terjadi. Sebagai gantinya, justru diamati pita terang dan pita gelap saling bergantian di layar.

Augustin Fresnel (1788-1827), ilmuwan Perancis, melakukan percobaan yang mirip dengan percobaan interferensi Young. Bahkan Fresner-lah yang berjasa dalam memberikan teori matematika tentang interferensi dan difraksi cahaya. Fresnel menerima penghargaan dari Paris Academi pada tahun 1818.

Kegagalan teori partikel cahaya newton menjelaskan interferensi cahaya menyebabkan Young dan Frensnel mengemukakan teori gelombang transversal cahaya. Kedudukan memandang cahaya sebagai gelombang transversal yang merambat melalui suatu medium.

Memandang cahaya sebagai gelombang transversal yang memerlukan medium untuk perambatan sungguh menyulitkan para ilmuwan. Bagaimana orang bisa percaya bahwa medium ( disebut eter) memenuhi semua angkasa, padahal orang mengetahui bahwa planet-planet bergerak bebas melalui angkasa tepat seperti planet-planet ini bergerak melalui suatu vakum yang tanpa hambatan sama sekali. James Clerk Maxwell (1831-1879), ilmuwan Skotlandia yang telah menekuni listrik dan magnet selama bertahun-tahun, kemudian mengajukan suatu teori gelombang elektromagnetik.

Bila kita melihat perambatan medan listrik dan medan magnetic pada satu arah saja, maka lukisan perubahan medan listrik dan medan magnetic yang menghasilkan gelombang elektromagnetik. Energi gelombang elektromagnetik terbagi aama dalam bentuk medan magnetic dan medan listrik. Medan listrik dan medan magnetic selalu saling tegak lurus, dan keduanya tegak lurus terhadap arah perambatan gelombang. Jadi, gelombang elektromagnetik merupakan gelombangtransversal.

Page 2: radiasi elektromagnetik
Page 3: radiasi elektromagnetik

Radiasi elektromagnetik adalah kombinasi medan listrik dan medan magnet yang berosilasi dan merambat lewat ruang dan membawa energi dari satu tempat ke tempat yang lain. Cahaya tampak adalah salah satu bentuk radiasi elektromagnetik. Penelitian teoritis tentang radiasi elektromagnetik disebut elektrodinamik, sub-bidang elektromagnetisme.

Gelombang elektromagnetik ditemukan oleh Heinrich Hertz.

Setiap muatan listrik yang memiliki percepatan memancarkan radiasi elektromagnetik. Waktu kawat (atau panghantar seperti antena) menghantarkan arus bolak-balik, radiasi elektromagnetik dirambatkan pada frekuensi yang sama dengan arus listrik. Bergantung pada situasi, gelombang elektromagnetik dapat bersifat seperti gelombang atau seperti partikel. Sebagai gelombang, dicirikan oleh kecepatan (kecepatan cahaya), panjang gelombang, dan frekuensi. Kalau dipertimbangkan sebagai partikel, mereka diketahui sebagai foton, dan masing-masing mempunyai energi berhubungan dengan frekuensi gelombang ditunjukan oleh hubungan Planck E = Hν, di mana E adalah energi foton, h ialah konstanta Planck — 6.626 × 10 −34 J·s — dan ν adalah frekuensi gelombang.

Einstein kemudian memperbarui rumus ini menjadi Ephoton = hν.

Spektrum elektromagnetik adalah rentang semua radiasi elektromagnetik yang mungkin. Spektrum elektromagnetik dapat dijelaskan dalam panjang gelombang, frekuensi, atau tenaga per foton. Spektrum ini secara langsung berkaitan (lihat juga tabel dan awalan SI):

Panjang gelombang dikalikan dengan frekuensi ialah kecepatan cahaya: 300 Mm/s, yaitu 300 MmHz

Energi dari foton adalah 4.1 feV per Hz, yaitu 4.1μeV/GHz Panjang gelombang dikalikan dengan energy per foton adalah 1.24 μeVm

Page 4: radiasi elektromagnetik

Spektrum elektromagnetik dapat dibagi dalam beberapa daerah yang terentang dari sinar gamma gelombang pendek berenergi tinggi sampai pada gelombang mikro dan gelombang radio dengan panjang gelombang sangat panjang. Pembagian ini sebenarnya tidak begitu tegas dan tumbuh dari penggunaan praktis yang secara historis berasal dari berbagai macam metode deteksi. Biasanya dalam mendeskripsikan energi spektrum elektromagnetik dinyatakan dalam elektronvolt untuk foton berenergi tinggi (di atas 100 eV), dalam panjang gelombang untuk energi menengah, dan dalam frekuensi untuk energi rendah (λ ≥ 0,5 mm). Istilah "spektrum optik" juga masih digunakan secara luas dalam merujuk spektrum elektromagnetik, walaupun sebenarnya hanya mencakup sebagian rentang panjang gelombang saja (320 - 700 nm)[1].

Karakteristik dan Penerapan Tiap Gelombang Elektromagnetik

GELOMBANG RADIO

Frekuensi gelombang radio untuk pengiriman suara

Radio adalah teknologi yang digunakan untuk pengiriman sinyal dengan cara modulasi dan radiasi elektromagnetik (gelombang elektromagnetik). Gelombang ini melintas dan merambat lewat udara dan bisa juga merambat lewat ruang angkasa yang hampa udara, karena gelombang ini tidak memerlukan medium pengangkut (seperti molekul udara).

Gelombang radio adalah satu bentuk dari radiasi elektromagnetik, dan terbentuk ketika objek bermuatan listrik dimodulasi (dinaikkan frekuensinya) pada frekuensi yang terdapat dalam frekuensi gelombang radio (RF) dalam suatu spektrum elektromagnetik. Gelombang radio ini berada pada jangkauan frekuensi 10 hertz (Hz) sampai beberapa gigahertz (GHz), dan radiasi elektromagnetiknya bergerak dengan cara osilasi elektrik maupun magnetik.

Page 5: radiasi elektromagnetik

Gelombang elektromagnetik lainnya, yang memiliki frekuensi di atas gelombang radio meliputi sinar gamma, sinar-X, inframerah, ultraviolet, dan cahaya terlihat.

Ketika gelombang radio dipancarkan melalui kabel, osilasi dari medan listrik dan magnetik tersebut dinyatakan dalam bentuk arus bolak-balik dan voltase di dalam kabel. Hal ini kemudian dapat diubah menjadi signal audio atau lainnya yang membawa informasi.

Meskipun kata 'radio' digunakan untuk hal-hal yang berkaitan dengan alat penerima gelombang suara, namun transmisi gelombangnya dipakai sebagai dasar gelombang pada televisi, radio, radar, dan telepon genggam pada umumnya.

Frekuensi adalah ukuran jumlah putaran ulang per peristiwa dalam selang waktu yang diberikan. Untuk memperhitungkan frekuensi, seseorang menetapkan jarak waktu, menghitung jumlah kejadian peristiwa, dan membagi hitungan ini dengan panjang jarak waktu. Hasil perhitungan ini dinyatakan dalam satuan hertz (Hz) yaitu nama pakar fisika Jerman Heinrich Rudolf Hertz yang menemukan fenomena ini pertama kali. Frekuensi sebesar 1 Hz menyatakan peristiwa yang terjadi satu kali per detik.

Secara alternatif, seseorang bisa mengukur waktu antara dua buah kejadian/ peristiwa (dan menyebutnya sebagai periode), lalu memperhitungkan frekuensi (f ) sebagai hasil kebalikan dari periode (T ), seperti nampak dari rumus di bawah ini:

,

Lihat juga: amplitudo

Gelombang sinusoida dengan beberapa macam frekuensi; gelombang yang bawah mempunyai frekuensi yang lebih tinggi

Page 6: radiasi elektromagnetik

Frekuensi radio

Rough plot of Earth's atmospheric transmittance (or opacity) to various wavelengths of electromagnetic radiation, including radio waves.

Frekuensi radio menunjuk ke spektrum elektromagnetik di mana gelombang elektromagnetik dapat dihasilkan oleh pemberian arus bolak-balik ke sebuah antena. Frekuensi seperti ini termasuk bagian dari spektrum di bawah ini:

Nama band Singkatan band ITU Frekuensi Panjang gelombang

< 3 Hz > 100,000 km

Extremely low frequency ELF 1 3–30 Hz 100,000 km – 10,000 km

Super low frequency SLF 2 30–300 Hz 10,000 km – 1000 km

Ultra low frequency ULF 3 300–3000 Hz 1000 km – 100 km

Very low frequency VLF 4 3–30 kHz 100 km – 10 km

Low frequency LF 5 30–300 kHz 10 km – 1 km

Medium frequency MF 6 300–3000 kHz 1 km – 100 m

High frequency HF 7 3–30 MHz 100 m – 10 m

Very high frequency VHF 8 30–300 MHz 10 m – 1 m

Ultra high frequency UHF 9 300–3000 MHz 1 m – 100 mm

Super high frequency SHF 10 3–30 GHz 100 mm – 10 mm

Extremely high frequency EHF 11 30–300 GHz 10 mm – 1 mm

Di atas 300 GHz < 1 mm

Catatan: di atas 300 GHz, penyerapan radiasi elektromagnetik oleh atmosfer Bumi begitu besar sehingga atmosfer secara efektif menjadi "opak" ke frekuensi lebih tinggi dari radiasi elektromagnetik, sampai atmosfer menjadi transparan lagi pada yang disebut jangka frekuensi infrared dan jendela optikal.

Page 7: radiasi elektromagnetik

Band ELF, SLF, ULF, dan VLF bertumpuk dengan spektrum AF, sekitar 20–20,000 Hz. Namun, suara disalurkan oleh kompresi atmosferik dan pengembangan, dan bukan oleh energi elektromagnetik.

Penghubung listrik didesain untuk bekerja pada frekuensi radio yang dikenal sebagai Penghubung RF. RF juga merupakan nama dari penghubung audio/video standar, yang juga disebut BNC (Bayonet Neill-Concelman).

Band frekuensi yang memiliki nama

Band III - 174–245 MHz ISM band ...... frekuensi tertentu bervariasi

Microwave (IEEE US)

L band 1 to 2 GHzS band 2 to 4 GHzC band 4 to 8 GHzX band 8 to 12 GHzKu band 12 to 18 GHzK band 18 to 26 GHzKa band 26 to 40 GHzV band 40 to 75 GHzW band 75 to 111 GHz

Page 8: radiasi elektromagnetik

Gelombang mikroGelombang mikro (microwave) adalah gelombang elektromagnetik dengan frekuensi super tinggi (Super High Frequency, SHF), yaitu diatas 3 GHz (3x109 Hz).

Jika gelombang mikro diserap oleh sebuah benda, akan muncul efek pemanasan pada benda tersebut. Jika makanan menyerap radiasi gelombang mikro, makanan menjadi panas dan masak dalam waktu singkat. Proses inilah yang dimanfaatkan dalam oven microwave.

Gelombang mikro juga dimanfaatkan pada RADAR (Radio Detection and Ranging). RADAR digunakan untuk mencari dan menentukan jejak suatu benda dengan gelombang mikro dengan frekuensi sekitar 1010 Hz

Page 9: radiasi elektromagnetik

Inframerah

Gambar dari seekor anjing kecil diambil dalam cahaya inframerah-tengah (warna salah)

Inframerah adalah radiasi elektromagnetik dari panjang gelombang lebih panjang dari cahaya tampak, tetapi lebih pendek dari radiasi gelombang radio. Namanya berarti "bawah merah" (dari bahasa Latin infra, "bawah"), merah merupakan warna dari cahaya tampak dengan gelombang terpanjang. Radiasi inframerah memiliki jangkauan tiga "order" dan memiliki panjang gelombang antara 700 nm dan 1 mm.

Spektrum optik

Spektrum optik (cahaya atau spektrum terlihat atau spektrum tampak) adalah bagian dari spektrum elektromagnetik yang tampak oleh mata manusia. Radiasi elektromagnetik dalam rentang panjang gelombang ini disebut sebagai cahaya tampak atau cahaya saja. Tidak ada batasan yang tepat dari spektrum optik; mata normal manusia akan dapat menerima panjang gelombang dari 400 sampai 700   nm , meskipun beberapa orang dapat menerima panjang gelombang dari 380 sampai 780 nm. Mata yang telah beradaptasi dengan cahaya biasanya memiliki sensitivitas maksimum di sekitar 555 nm, di wilayah kuning dari spektrum optik.

Panjang gelombang yang kasat mata didefinisikan oleh jangkauan spektral jendela optik, wilayah spektrum elektromagnetik yang melewati atmosfer Bumi sebagian besar tanpa dikurangi (meskipun cahaya biru dipencarkan lebih banyak dari cahaya merah, salah satu alasan mengapai langit berwarna biru). Radiasi elektromagnetik di luar jangkauan panjang gelombang optik, atau jendela transmisi lainnya, hampir seluruhnya diserap oleh atmosfer.

Page 10: radiasi elektromagnetik

Cahaya putih dipencarkan oleh sebuah prisma menjadi warna-warna dalam spektrum optik.

Warna-warna di dalam spektrum

Meskipun spektrum optik adalah spektrum yang kontinu sehingga tidak ada batas yang jelas antara satu warna dengan warna lainnya, tabel berikut memberikan batas kira-kira untuk warna-warna spektrum :[1]

ungu 380–450 nmbiru 450–495 nmhijau 495–570 nmkuning 570–590 nmjingga 590–620 nmmerah 620–750 nm

UltraunguRadiasi ultraungu (sering disingkat UV, dari bahasa Inggris: ultraviolet) adalah radiasi elektromagnetis terhadap panjang gelombang yang lebih pendek dari daerah dengan sinar tampak, namun lebih panjang dari sinar-X yang kecil.

Radiasi UV dapat dibagi menjadi hampir UV (panjang gelombang: 380–200 nm) dan UV vakum (200–10 nm). Ketika mempertimbangkan pengaruh radiasi UV terhadap kesehatan manusia dan lingkungan, jarak panjang gelombang sering dibagi lagi kepada UVA (380–315 nm), yang juga disebut "Gelombang Panjang" atau "blacklight"; UVB (315–280 nm), yang juga disebut "Gelombang Medium" (Medium Wave); dan UVC (280-10 nm), juga disebut "Gelombang Pendek" (Short Wave).

Istilah ultraviolet berarti "melebihi ungu" (dari bahasa Latin ultra, "melebihi"), sedangkan kata ungu merupakan warna panjang gelombang paling pendek dari cahaya dari sinar tampak. Beberapa hewan, termasuk burung, reptil, dan serangga seperti lebah dapat melihat hingga mencapai "hampir UV". Banyak buah-buahan, bunga dan benih terlihat lebih jelas di latar belakang dalam panjang gelombang UV dibandingkan dengan penglihatan warna manusia.

Sinar-X

Page 11: radiasi elektromagnetik

Sebuah foto sinar-X (radiograf) diambil oleh Röntgen

Sinar-X atau sinar Röntgen adalah salah satu bentuk dari radiasi elektromagnetik dengan panjang gelombang berkisar antara 10 nanometer ke 100 picometer (mirip dengan frekuensi dalam jangka 30 PHz to 60 EHz). Sinar-X umumnya digunakan dalam diagnosis gambar medikal dan Kristalografi sinar-X. Sinar-X adalah bentuk dari radiasi ion dan dapat berbahaya.

Sinar gamma

Sinar gamma

Sinar gamma (seringkali dinotasikan dengan huruf Yunani gamma, γ) adalah sebuah bentuk berenergi dari radiasi elektromagnetik yang diproduksi oleh radioaktivitas atau proses nuklir atau subatomik lainnya seperti penghancuran elektron-positron.

Sinar gamma membentuk spektrum elektromagnetik energi-tertinggi. Mereka seringkali didefinisikan bermulai dari energi 10 keV/ 2,42 EHz/ 124 pm, meskipun radiasi elektromagnetik dari sekitar 10 keV sampai beberapa ratus keV juga dapat menunjuk kepada sinar X keras. Penting untuk diingat bahwa tidak ada perbedaan fisikal antara sinar gamma dan sinar X dari energi yang sama -- mereka adalah dua

Page 12: radiasi elektromagnetik

nama untuk radiasi elektromagnetik yang sama, sama seperti sinar matahari dan sinar bulan adalah dua nama untuk cahaya tampak. Namun, gamma dibedakan dengan sinar X oleh asal mereka. Sinar gamma adalah istilah untuk radiasi elektromagnetik energi-tinggi yang diproduksi oleh transisi energi karena percepatan elektron. Karena beberapa transisi elektron memungkinkan untuk memiliki energi lebih tinggi dari beberapa transisi nuklir, ada penindihan antara apa yang kita sebut sinar gamma energi rendah dan sinar-X energi tinggi.

Sinar gamma merupakan sebuah bentuk radiasi mengionisasi; mereka lebih menembus dari radiasi alpha atau beta (keduanya bukan radiasi elektromagnetik), tapi kurang mengionisasi.

Perlindungan untuk sinar γ membutuhkan banyak massa. Bahan yang digunakan untuk perisai harus diperhitungkan bahwa sinar gamma diserap lebih banyak oleh bahan dengan nomor atom tinggi dan kepadatan tinggi. Juga, semakin tinggi energi sinar gamma, makin tebal perisai yang dibutuhkan. Bahan untuk menahan sinar gamma biasanya diilustrasikan dengan ketebalan yang dibutuhkan untuk mengurangi intensitas dari sinar gamma setengahnya. Misalnya, sinar gamma yang membutuhkan 1 cm (0,4 inchi) "lead" untuk mengurangi intensitasnya sebesar 50% jujga akan mengurangi setengah intensitasnya dengan konkrit 6 cm (2,4 inchi) atau debut paketan 9 cm (3,6 inchi).

Sinar gamma dari fallout nuklir kemungkinan akan menyebabkan jumlah kematian terbesar dalam penggunaan senjata nuklir dalam sebuah perang nuklir. Sebuah perlindungan fallout yang efektif akan mengurangi terkenanya manusia 1000 kali.

Sinar gamma memang kurang mengionisasi dari sinar alpha atau beta. Namun, mengurangi bahaya terhadap manusia membutuhkan perlindungan yang lebih tebal. Mereka menghasilkan kerusakan yang mirip dengan yang disebabkan oleh sinar-X, seperti terbakar, kanker, dan mutasi genetika.

Dalam hal ionisasi, radiasi gamma berinteraksi dengan bahan melalui tiga proses utama: efek fotoelektrik, penyebaran Compton, dan produksi pasangan

Page 13: radiasi elektromagnetik
Page 14: radiasi elektromagnetik