makalah radiasi panas dan radiasi benda hitam

66
MAKALAH FISIKA PANAS DAN GELOMBANG TENTANG RADIASI PANAS Disusun oleh : Kurniawan Aprianto NPM : 25114944 Kelas : 2KB07

Upload: kurniawanapr

Post on 12-Jan-2017

2.394 views

Category:

Education


13 download

TRANSCRIPT

MAKALAH FISIKA PANAS DAN GELOMBANGTENTANG RADIASI PANAS

Disusun oleh :

Kurniawan Aprianto

NPM :

25114944

Kelas :

2KB07

UNIVERSITAS GUNADARMA

PTA 2015/2016

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Tuhan Yang Maha Esa, karena atas limpahan

karunia-Nya, penulis dapat menyelesaikan makalah Fisika Panas dan Gelombang yang berjudul

“RADIASI PANAS” dengan tepat waktu tanpa halangan suatu apapun. Diharapkan makalah ini

dapat memberikan wawasan dan informasi kepada pembaca tentang energi radiasi, radiasi

pengion dan efek biologis serta terapi radiasi.

Tak lupa penulis ucapkan terima kasih kepada:

1. Tuhan Yang Maha Esa

2. Ibu Elsa Rati Hariza, selaku dosen mata kuliah Fisika Panas dan Gelombang

3. Pihak lain yang telah mendukung sehingga terselesaikannya makalah ini.

Bagaimana pun penulis telah berusaha membuat makalah ini dengan sebaik-baiknya,

namun tidak ada kesempurnaan dalam karya manusia. Penulis menyadari masih banyak

kekurangan dalam penyusunan makalah ini. Oleh karena itu, kritik dan saran sangat penulis

harapkan untuk lebih menyempurnakan makalah ini. Mudah-mudahan sedikit yang penulis

sumbangkan ini, akan menjadi ilmu yang bermanfaat.

BAB I

PENDAHULUAN

Radiasi adalah pancaran energi melalui suatu materi atau ruang dalam bentuk panas,

partikel atau gelombang elektromagnetik/cahaya (foton) dari sumber radiasi. Ada beberapa

sumber radiasi yang kita kenal di sekitar kehidupan kita, contohnya adalah televisi, lampu

penerangan, alat pemanas makanan (microwave oven), komputer, dan lain-lain. Selain benda-

benda tersebut ada sumber-sumber radiasi yang bersifat unsur alamiah dan berada di udara, di

dalam air atau berada di dalam lapisan bumi. Beberapa di antaranya adalah Uranium dan

Thorium di dalam lapisan bumi; Karbon dan Radon di udara serta Tritium dan Deuterium yang

ada di dalam air

Di akhir tahun 1895, Roentgen (Wilhelm Conrad Roentgen, Jerman, 1845-1923), seorang

profesor fisika dan rektor Universitas Wuerzburg di Jerman dengan sungguh-sungguh melakukan

penelitian tabung sinar katoda. Ia membungkus tabung dengan suatu kertas hitam agar tidak

terjadi kebocoran fotoluminesensi dari dalam tabung ke luar. Lalu ia membuat ruang penelitian

menjadi gelap. Pada saat membangkitkan sinar katoda, ia mengamati sesuatu yang di luar

dugaan. Pelat fotoluminesensi yang ada di atas meja mulai berpendar di dalam kegelapan.

Walaupun dijauhkan dari tabung, pelat tersebut tetap berpendar. Dijauhkan sampai lebih 1 m dari

tabung, pelat masih tetap berpendar. Roentgen berpikir pasti ada jenis radiasi baru yang belum

diketahui terjadi di dalam tabung sinar katoda dan membuat pelat fotoluminesensi berpendar.

Radiasi ini disebut sinar-X yang maksudnya adalah radiasi yang belum diketahui. Tahun 1895 itu

Roentgen sendirian melakukan penelitian sinar-X dan meneliti sifat-sifatnya. Pada tahun itu juga

Roentgen mempublikasikan laporan penelitiannya.

BAB II

PEMBAHASAN

RADIASI

A. Sejarah Radiasi

Di akhir tahun 1895, Roentgen (Wilhelm Conrad Roentgen, Jerman, 1845-1923),

seorang profesor fisika dan rektor Universitas Wuerzburg di Jerman dengan sungguh-

sungguh melakukan penelitian tabung sinar katoda. Ia membungkus tabung dengan suatu

kertas hitam agar tidak terjadi kebocoran fotoluminesensi dari dalam tabung ke luar. Lalu ia

membuat ruang penelitian menjadi gelap. Pada saat membangkitkan sinar katoda, ia

mengamati sesuatu yang di luar dugaan. Pelat fotoluminesensi yang ada di atas meja mulai

berpendar di dalam kegelapan. Walaupun dijauhkan dari tabung, pelat tersebut tetap

berpendar. Dijauhkan sampai lebih 1 m dari tabung, pelat masih tetap berpendar. Roentgen

berpikir pasti ada jenis radiasi baru yang belum diketahui terjadi di dalam tabung sinar

katoda dan membuat pelat fotoluminesensi berpendar. Radiasi ini disebut sinar-X yang

maksudnya adalah radiasi yang belum diketahui. 

Tahun 1895 itu Roentgen sendirian melakukan penelitian sinar-X dan meneliti sifat-

sifatnya. Pada tahun itu juga Roentgen mempublikasikan laporan penelitiannya. Berikut ini

adalah sifat-sifat sinar-X:

1. Sinar-X dipancarkan dari tempat yang paling kuat tersinari oleh sinar katoda.

2. Intensitas cahaya yang dihasilkan pelat fotoluminesensi, berbanding terbalik dengan

kuadrat jarak antara titik terjadinya sinar-X dengan pelat fotoluminesensi. Meskipun pelat

dijauhkan sekitar 2 m, cahaya masih dapat terdeteksi.

3. Sinar-X dapat menembus buku 1000 halaman tetapi hampir seluruhnya terserap oleh

timbal setebal 1,5 mm.

4. Pelat fotografi sensitif terhadap sinar-X.

5. Ketika tangan terpapari sinar-X di atas pelat fotografi, maka akan tergambar foto tulang

tersebut pada pelat fotografi. Skema peralatan ditampilkan pada Gambar 2. Foto tulang

tangan yang diambil pada saat itu ditampilkan pada Gambar 3.

6. Lintasan sinar-X tidak dibelokkan oleh medan magnet (daya tembus dan lintasan yang

tidak terbelokkan oleh medan magnet merupakan sifat yang membuat sinar-X berbeda

dengan sinar katoda).

Laporan pertama Roentgen mengenai sinar-X dimuat pada halaman 132-141 laporan

Asosiasi Fisika Medik Wuerzburg tahun 1895. Di awal tahun 1896 reprint laporan Roentgen

dikirimkan kepada ilmuwan-ilmuwan terkenal. Karena tidak dibelokkan oleh medan magnet,

maka orang tahu bahwa sinar-X berbeda dengan sinar katoda. Pada saat itu belum ditemukan

fenomena interferensi dan difraksi. Karena itu muncullah persaingan antara teori partikel

dengan teori gelombang untuk menjelaskan esensi/substansi sinar-X. Teori partikel

dikemukakan antara lain oleh W.H. Bragg, teori gelombang dikemukakan antara lain oleh

Stokes dan C.G. Barkla. Sejak saat itu teori gelombang didukung oleh lebih banyak orang.

Pada tahun 1912, fenomena difraksi sinar-X oleh kristal ditemukan oleh Max von Laue dan

kemudian dapat dipastikan bahwa sinar-X adalah gelombang elektromagnetik. Tahun 1922

Compton menemukan efek Compton berdasarkan penelitian hamburan Compton.

Berdasarkan penelitian sinar-X ia dapat memastikan bahwa gelombang elektromagnetik

memiliki sifat dualisme gelombang dan materi (partikel).

B. Pengertian Radiasi

Radiasi adalah pancaran energi melalui suatu materi atau ruang dalam bentuk panas,

partikel atau gelombang elektromagnetik/cahaya (foton) dari sumber radiasi. Ada beberapa

sumber radiasi yang kita kenal di sekitar kehidupan kita, contohnya adalah televisi, lampu

penerangan, alat pemanas makanan (microwave oven), komputer, dan lain-lain. 

Selain benda-benda tersebut ada sumber-sumber radiasi yang bersifat unsur alamiah

dan berada di udara, di dalam air atau berada di dalam lapisan bumi. Beberapa di antaranya

adalah Uranium dan Thorium di dalam lapisan bumi; Karbon dan Radon di udara serta

Tritium dan Deuterium yang ada di dalam air.

Radiasi dalam bentuk partikel adalah jenis radiasi yang mempunyai massa terukur.

Sebagai contoh adalah radiasi alpha dengan simbol:  2α4 angka 4 pada simbol radiasi

menunjukkan jumlah massa dari radiasi tersebut adalah 4 satuan massa atom (sma) dan

angka 2 menunjukkan jumlah muatan radiasi tersebut adalah positif 2, serta radiasi beta

dengan simbol:  -1β0  menunjukkan bahwa jumlah massa dari jenis radiasi tersebut adalah 0

dan jumlah muatannya adalah 1 negatif.

Sedangkan radiasi neutron dengan simbol: 1η0  menunjukkan bahwa jumlah massa

dari neutron adalah 1 sma dan jumlah muatannya adalah 0. Radiasi dalam bentuk gelombang

elektromagnetik atau disebut juga dengan foton adalah jenis radiasi yang tidak mempunyai

massa dan muatan listrik. Misalnya adalah gamma dan sinar-X, dan juga termasuk radiasi

tampak seperti sinar lampu, sinar matahari, gelombang microwave, radar dan handphone.

Secara garis besar radiasi digolongkan ke dalam radiasi pengion dan radiasi non-pengion. 

C. Jenis Radiasi

1. Radiasi Pengion

Radiasi pengion adalah jenis radiasi yang dapat menyebabkan proses ionisasi

(terbentuknya ion positif dan ion negatif) apabila berinteraksi dengan materi. Yang

termasuk dalam jenis radiasi pengion adalah partikel alpha, partikel beta, sinar gamma,

sinar-X dan neutron. Setiap jenis radiasi memiliki karakteristik khusus. Yang termasuk

radiasi pengion adalah partikel alfa (α), partikel beta (β), sinar gamma (γ), sinar-X,

partikel neutron.

Radiasi pengion terhadap sistem biologik (192) Hill. Efek bioogis yang timbul oleh

radiasi pengion (194) gita

2. Radiasi Non Pengion

Radiasi non-pengion adalah jenis radiasi yang tidak akan menyebabkan efek

ionisasi apabila berinteraksi dengan materi. Radiasi non-pengion tersebut berada di

sekeliling kehidupan kita. Yang termasuk dalam jenis radiasi non-pengion antara lain

adalah gelombang radio (yang membawa informasi dan hiburan melalui radio dan

televisi); gelombang mikro (yang digunakan dalam microwave oven dan transmisi seluler

handphone); sinar inframerah (yang memberikan energi dalam bentuk panas); cahaya

tampak (yang bisa kita lihat); sinar ultraviolet (yang dipancarkan matahari).

D. Sifat Radiasi

Ada dua macam sifat radiasi yang dapat digunakan untuk mengetahui keberadaan sumber

radiasi pada suatu tempat atau bahan, yaitu sebagai berikut :

Radiasi tidak dapat dideteksi oleh indra manusia, sehingga untuk mengenalinya

diperlukan suatu alat bantu pendeteksi yang disebut dengan detektor radiasi. Ada beberapa

jenis detektor yang secara spesifik mempunyai kemampuan untuk melacak keberadaan jenis

radiasi tertentu yaitu detektor alpha, detektor gamma, detektor neutron, dll.

Radiasi dapat berinteraksi dengan materi yang dilaluinya melalui proses ionisasi,

eksitasi dan lain-lain. Dengan menggunakan sifat-sifat tersebut kemudian digunakan sebagai

dasar untuk membuat detektor radiasi.

E. Sumber-Sumber Radiasi

Radiasi berada di mana-mana, karena sumber radiasi tersebar di mana saja di alam

semesta, baik yang terjadi secara alami (sumber radiasi alam) maupun yang terjadi karena

aktivitas manusia (sumber radiasi buatan). Sumber radiasi alam sudah ada sejak alam

semesta terbentuk, dan radiasi yang dipancarkan oleh sumber alam ini disebut radiasi latar

belakang. Sedangkan sumber radiasi buatan baru diproduksi di abad 20, tetapi telah

memberikan paparan secara signifikan kepada manusia. Sumber radiasi dibagi dua :

Radiasi alam : sumber radiasi kosmik, sumber radiasi terestrial (primordial), sumber radiasi

dari dalam tubuh manusia

Radiasi buatan : radionuklida buatan, pesawat sinar-X, reaktor nuklir, akselerator

Wilhelm Wien adalah fisikawan berkebangsaan Jerman yang memenangkan Penghargaan Nobel di bidang fisika pada tahun 1911 untuk penemuannya mengenai hukum yang mengatur radiasi panas. Wilhelm Wien menemukan suatu hubungan empirik sederhana antara panjanggelombang yang dipancarkan untuk as maksimum sebuah benda dengan suhu mutlak T.

Wien lahir 13 Januari 1864 di Gaffken dekat Fischhausen, Provinsi Prussia (sekarang Primorsk, Rusia) sebagai anak dari pemilik tanah Carl Wien. Pada tahun 1866, keluarganya pindah ke Drachstein dekat Rastenburg (Rastembork).

Pada tahun 1879, Wien sekolah di Rastenburg dan Wien melanjutkan studinya ke Universitas Göttingen pada tahun 1882 untuk belajar matematika dan ilmu alam dan pada tahun yang

sama juga ke Universitas Berlin. Sejaktahun 1883 hingga 1885 Wien bekerja di laboratorium Hermann von Helmholtz. Tak lama kemudian di tahun 1886 Wien mengambil gelar doktor dengan tesis di atas percobaan pada difraksi cahaya pada bagian logam dan pengaruh bahan-bahan pada warna cahaya dibiaskan. Dari 1896-1899, Wien kuliah di RWTH Aachen University. Pada tahun 1900 ia pergi ke Universitas Würzburg dan menjadi penerus dari Wilhelm Conrad Röntgen.

Wien berhasil mencetuskan hukum perpindahan di tahun 1893 yang menyatakan  perubahan panjang gelombang dengan suhu. Satu tahun kemudian Wien telah menerbitkan sebuah makalah tentang suhu dan entropi radiasi. Kemudian di tahun 1896 Wien mencatat prestasi dengan mencetuskan rumus Wien untuk radiasi benda hitam. Akan tetapi rumus Wien hanya berlaku untuk gelombang pendek. Namun demikian, Max Planck menggunakan rumus Wien sebagai dasar untuk menyelesaikan masalah dalam kesetimbangan termal radiasi melalui fisika kuantum. Pada tahun 1900 Wien  memperkenalkan dasar elektromagnetik mekanik.

Hukum Pergeseran Wien

Gb. 1

Spektrum radiasi benda hitam pada awalnya dipelajari oleh Rayleigh dan Jeans menggunakan pendekatan fisika klasik. Mereka meninjau radiasi dalam rongga bertemperatur T yang dindingnya merupakan pemantul sempurna sebagai sederetan gelombang elektromagnetik. Akan tetapi, pada suhu 2.000 K bentuk grafik hasil eksperimen berbeda dengan bentuk grafik yang dikemukakan Rayleighdan Jeans, seperti ditunjukkan pada gambar 1.

Gb. 2

Rayleigh dan Jeans meramalkan bahwa benda hitam ideal pada kesetimbangan termal akan memancarkan radiasi dengan daya tak terhingga. Akan tetapi, ramalan Rayleigh dan Jeans tidak terbukti secara eksperimental. Ramalan ini dikenal sebagai bencana ultraungu. Ilmuwan  lain yang mempelajari spektrum radiasi benda hitam adalah Wilhelm Wien. Wien mempelajari hubungan antara suhu dan panjang gelombang pada intensitas maksimum. Perhatikan gambar 2 di samping! Puncak-puncak kurva pada grafik 2 menunjukkan intensitas radiasi pada tiap-tiap suhu. Dari gambar 2 tampak bahwa puncak kurva bergeser ke arah panjang gelombang yang pendek jika suhu semakin tinggi. Panjang gelombang pada intensitas maksimum ini disebut sebagai panjang gelombang maks. Wien merumuskan hubungan antara suhu dan panjang gelombang maks sebagai berikut.

λm = panjang gelombang dengan intensitas maksimum (m)

T = suhu mutlak benda hitam (K)

C = tetapan pergeseran Wien = 2,90 x 10-3 m K

Kesimpulan Teori Wien

BENDA YANG BERADIASI MEMANCARKAN ENERGI DALAM BENTUK

GELOMBANG

F. Terapi Radiasi

Prinsip dasar terapi radiasi adalah menimbulkan kerusakan pada jaringan tumor sebesar

mungkin, dengan kerusakan seminimal mungkin pada jaringan normal disekitar jaringan normal

disekitar tumor. Hal ini dapat dicapai dengan penyinaran langsung pada tumor di berbagai arah,

sehingga diperoleh dosis maksimum pada tumor tersebut. Dalam melakukan terapi radiasi perlu

memperhatikan faktor-faktor sebagai berikut :

1. Jenis radiasi : sinar-X voltage, uranium, radium,  dan sebagainya.

2. Jenis sel : sel-sel embrional atau bukan.

3. Lingkungan sel : apakah terjamin adanya penyaluran darah disekitar sel tersebut atau

tidak.

4. RBE sangat tinggi (lebih dari satu) mempunyai kemampuan mematikan sel lebih besar.

Perencanaan Terapi Radiasi

Sebelum dilakukan terapi radiasi perlu adanya perencanaan yang baik sehingga dalam

pelaksanaan terapi radiasi dapat memberikan hasil sesuai dengan yang diharapkan. Beberapa hal

yang perlu diperhatikan dalam perencanaan terapi radiasi adalah :

a. Menetapkan letak dan luas tumor

b. Teknik penyinaran dan distribusi dosis

c. Toleransi jaringan

Metode Radioterapi

Ada tiga metode radioterapi :

a. Radioterapi jarak jauh (Megavoltage Therapy) menggunakan sinar-X dengan super

voltage (megavoltage) dimana sumber radiasi berada diluar tubuh.

b. Radio jarak dekat (Brachy Therapy), menggunakan radium atau gas radon radioaktif

dimana sumber radiasi terletak di permukaan atau ditanamkan di dalam tumor dalam

bentuk biji-biji material.

c. Penggunaan radioisotop untuk terapi secara sistematik dalam tubuh, menggunakan zat

radioaktif yang mengikuti dallam peredaran darah dan akan mencapai sasaran yang akan

dituju.

Proteksi Radiasi

Untuk menghindari efek-efek yang merugikan tubuh manusia dan makhluk biologis

yang diakibatkan oleh radiasi pengion, perlu diperlukan tindakan perlindungan (proteksi)

terhadap radiasi. Efek kronis dari radiasi dapat timbul beberapa tahun kemudian akibat suatu

occupational exposure (pekerjaan penyinaran). Salah satu usaha yang dilakukan oleh

International Commission on Radiological Protection (ICRP) untuk menghindari bahaya

radiasi maka di tentukan suatu dosis maksimum yang dapat diperkenankan sebagai pedoman

dalam proteksi radiasi, yaitu Maximum Permissible Dose (MPD). Nilai MPD ini telah

beberapa kali mengalami perubahan. Oleh karena proteksi radiasi tidak saja ditinjau dari

sudut efek somatis saja, tetapi juga efek genetis.

Proteksi radiasi bagi orang-orang yang berhubungan langsung dengan sumber

pengion dibagi dalam beberapa golongan, yaitu:

a. Proteksi radiasi terhadap penderita dengan terapi radiasi.

Pada terapi dosis tertentu yang diberikan kepada penderita, jaringan sehat

sekitarnya perlu mendapat perlindungan sebaik-baiknya. Pada penyinaran sekitar mata,

mata hars mendapat perlindungan dengan menggunakan timah hitam lead eye shield agar

lensa mata terhindar dari kerusakan. Pada penyinaran tumor yang tidak ganas dan

terhadap anak-anak perlu hati-hati dengan jumlah dosis yang diberikan, tidak

diperkenankan dilakukan berulang kali penyiranan oleh karena radiasi bersifat karsinogen.

b. Proteksi terhadap pekerja diagnostik radiologi

Pekerja diagnostik radiologi umumnya mendapat radiasi dari tabung sinar-X.

Untuk menghindari radiasi dari sinar-X dapat dibuat sekecil mungkin 50% tanpa

mengganggu informasi medis yang diperlukan. Faktor yang perlu diperhatikan dalam

proteksi terhadap pekerja adalah :

Filter/filtration

Kollimator

Kualitas film

Distribusi dari hasil luas penyinaran

Terapi pada penderita dengan terapi internal radiation yaitu yang menggunakan

radioisotop yang dimasukkan ke dalam tubuh yang sakit. Tindakan yang perlu dilakukan

untuk mencegah radiasi terhadap petugas meliputi :

a. Penderita harus tinggal dalam satu ruangan khusus

b. Perawat jangan terlalu lama berdekatan dengan sumber radiasi

c. Pada waktu membersihkan penderita, jangan terlalu dekat dengan sumber radiasi

d. Mengenakan pakaian pelindung

e. Pasien-pasien yang secara permanen ditanamkan bahan radioaktif ke dalam tubuhnya

atau yang menerima dosis terapi131I harus berada dirumah sakit sampai intensitas radiasi

di sekitar pasien tersebut mencapai tingkat keselamatan.

f. Kotoran penderita harus ditampung pada suatu tempat dan dibuang pada tempat tertentu.

Jenis-jenis Terapi Radiasi

Dalam bentuk yang paling umum, terapi radiasi menggunakan cahaya luar pada

radiasi gamma yang dihasilkan oleh sebuah akselerator linear. Jarang, radiasi cahaya electron

dan proton digunakan. Radiasi cahaya proton, yang bisa difokuskan pada daerah khusus,

sangat efektif mengobati kanker tertentu di daerah yang rusak pada jaringan normal yang

penting, seperti mata, otak, atau saraf tulang belakang. Semua jenis radiasi cahaya luar

difokuskan pada daerah tertentu atau organ tubuh yang mengandung kanker. Untuk

menghindari jaringan normal terlalu banyak kena cahaya, beberapa lintasan cahaya

digunakan dan jaringan yang mengelilinginya dilindungi sebanyak mungkin. Teknologi baru

pada radiansi cahaya luar, disebut terapi radiasi intensitas modul (IMRT). Terapi radiasi

cahaya luar diberikan sebagai rangkaian pembagian dosis seimbang melebihi jangka waktu

yang lama. Metode ini meningkatkan efek yang mematikan pada radiasi pada sel kanker

ketika mengurangi efek racun pada sel normal. Efek racun dikurangi karena sel normal bisa

memperbaiki dirinya sendiri dengan cepat antara dosis dimana sel kanker tidak bisa.

Khususnya, seorang yang menerima dosis radiasi setiap hari melebihi jangka waktu 6 sampai

8 minggu. Untuk memastikan bahwa pada daerah yang sama diobati setiap waktu, orang

tersebut dengan tepat diposisikan menggunakan pembalut busa atau alat-alat lain. Pada cara

terapi radiasi yang lain, bahan radioaktif kemungkinan disuntikkan ke dalam pembuluh untuk

dialirkan menuju kanker (misalnya, yodium radioaktif, yang digunakan dalam penyembuhan

pada kanker tiroid). Cara lain menggunakan pellet kecil (biji) material radioaktif yang

diletakkan langsung ke dalam kanker (misalnya, palladium radioaktif digunakan untuk

kanker prostat). Penanaman ini menghasilkan radiasi hebat pada kanker, tetapi sedikit radiasi

yang menuju jaringan sekitarnya. Penanaman mengandung bahan radioaktif berumur pendek

yang berhenti menghasilkan radiasi setelah jangka waktu tertentu. Baru-baru ini. Bahan

radioaktif telah dicampur dengan protein disebut antibody monoclonal, yang mencari sel

kanker dan bergabung dengan mereka. Bahan radioaktif digabungkan ke inti antibodi pada

sel kanker dan menghancurkan mereka.

Efek Samping Terapi Radiasi

Efek samping dari terapi radiasi bisa merusak jaringan normal disekitar tumor. Efek

samping tergantung pada seberapa luas daerah yang akan diobati, dosis apa yang akan

diberikan, dan seberapa dekat tumor tersebut ke jaringan peka. Jaringan peka yaitu sel

normal yang cepat membelah, seperti kulit, sumsum tulang, folikel rambut, lapisan pada

mulut, kerongkongan dan usus. Radiasi bisa juga merusak indung telur dan testis. Dokter

berupaya untuk mengakurasi sasaran radiasi terapi untuk mencegah kerusakan yang

berlebihan pada sel normal. Gejala-gejala tergantung pada daerah yang menerima radiasi dan

bisa termasuk kelelahan, mulut perih, masalah-masalah kulit (kemerahan, gatal, mengelupas),

rasa sakit sekali ketika menelan, radang paru-paru (pneumonitis), hepatitis, masalah-masalah

lambung (mual, kehilangan nafsu makan, muntah, diare), masalah-masalah berkemih

(meningkatnya frekwensi, rasa terbakar ketika berkemih), dan jumlah darah rendah. Radiasi

pada tumor kepala dan leher seringkali menyebabkan kerusakan pada permukaan kulit sama

halnya dengan pada lapisan mulut dan kerongkongan. Dokter berupaya mengidentifikasi dan

mengobati beberapa gejala-gejala secepat mungkin sehingga orang tersebut tetap merasa

nyaman dan bisa melanjutkan pengobatan.

Radiasi panas adalah radiasi yang dipancarkan oleh sebuah benda sebagai akibat suhunya.

Setiap benda mampu memancarkan radiasi panas. Benda baru terlihat karena meradiasikan

panas jika suhunya melebihi 1.000 K. Pada suhu ini benda mulai berpijar merah seperti

kumparan pemanas sebuah kompor listrik. Faktor apa saja yang memengaruhi radiasi suatu

benda?

Pernahkah Anda membuat api unggun atau berada di dekat api unggun? Menurut Wikipedia,

api unggun adalah api di luar ruang yang didapat dari sengaja menyalakan kayu bakar,

potongan kayu, atau kumpulan dahan, ranting, jerami, atau daun-daun kering. Jika kita

berada dekat dengan api unggun, maka tubuh kita akan terasa panas. Tubuh akan terasa

semakin panas apabila kita berada semakin dekat dengan api unggun, hal ini disebabkan api

unggun itu memancarkan energi radiasi panas.

Benda selain mampu memancarkan panas, benda juga mampu menyerap panas (energi

kalor). Hal ini tergantung pada suhu antara benda dengan ruangan di sekitar benda. Apabila

suhu benda lebih tinggi daripada suhu ruangan, benda akan memancarkan panas dan

sebaliknya jika suhu benda lebih rendah, maka benda tersebut akan menyerap energi kalor

(panas).

Energi yang dipancarkan oleh suatu benda tidak tergantung pada jenis bendanya. Akan tetapi

tergantung pada suhu benda itu dan sifat permukaan benda. Benda yang mudah menyerap

panas sekaligus merupakan benda yang memancarkan panas dengan baik. Makin tinggi suhu

benda semakin besar energi yang dipancarkan. Berdasarkan hasil eksperimen ditemukan

hubungan antara suhu benda dengan warna benda, seperti tabel berikut.

Sumber: BSE

Secara umum bentuk terperinci dari spektrum radiasi panas yang dipancarkan oleh suatu

benda panas bergantung pada komposisi benda itu. Walaupun demikian, hasil eksperimen

menunjukkan bahwa ada satu kelas benda panas yang memancarkan spektra panas dengan

karakter universal. Benda ini adalahbenda hitam atau black body. Apa itu benda hitam

atau black body?

Benda hitam atau black body didefinisikan sebagai sebuah benda yang mampu menyerap

semua radiasi yang datang padanya. Dengan kata lain, tidak ada radiasi yang dipantulkan

keluar dari benda hitam. Jadi, benda hitam mempunyai harga absorptansi (daya

serap) dan emisivitas (daya pancar) yang besarnya sama dengan satu.

Kita ketahui, bahwa emisivitas (daya pancar) merupakan karakteristik suatu materi, yang

menunjukkan perbandingan daya yang dipancarkan per satuan luas oleh suatu permukaan

terhadap daya yang dipancarkan benda hitam pada temperatur yang sama. Sementara itu,

absorptansi (daya serap) merupakan perbandingan fluks pancaran atau fluks cahaya yang

diserap oleh suatu benda terhadap fluks yang tiba pada benda itu.

Idealnya benda hitam digambarkan oleh suatu rongga hitam dengan lubang kecil, seperti

gambar di bawah ini.

Contoh benda hitam idealSumber: BSE

Sekali suatu cahaya memasuki rongga itu melalui lubang tersebut, berkas itu akan

dipantulkan berkali-kali di dalam rongga tanpa sempat keluar lagi dari lubang tadi. Setiap

kali dipantulkan, sinar akan diserap dinding-dinding berwarna hitam. Benda hitam akan

menyerap cahaya sekitarnya jika suhunya lebih rendah daripada suhu sekitarnya dan akan

memancarkan cahaya ke sekitarnya jika suhunya lebih tinggi daripada suhu sekitarnya.

Benda hitam yang dipanasi sampai suhu yang cukup tinggi akan tampak membara. Lubang

hitam (black hole) merupakan contoh benda hitam yang ideal dalam kehidupan sehari-hari.

Intensitas Radiasi

Gustav Kirchoff (1859) mengemukakan teorema termodinamika sebagai berikut ini “ Jika suatu benda berada dalam kesetimbangan termal, maka daya radiasi yang dipancarkan akan sebanding dengan daya radiasi yang diserapnya”. Besarnya daya radiasi per satuan luas disebut intensitas radiasi, yang sesuai dengan pernyataan hukum Stefan Boltzman “daya total per satuan luas yang dipancarkan pada semua frekuensi oleh suatu benda adalah sebanding dengan pangkat empat dari suhu mutlaknya”. Berdasarkan hukum Stefan Boltzman tersebut maka dapat dirumuskan sebagai berikut.

Daya adalah energi kalor yang dipancarkan tiap satuan waktu P = Qt, sehingga besarnya daya radiasi atau energi radiasi kalor tiap satuan waktu adalah sebagai berikut.

Keterangan:I = Intensitas radiasi (W/m2);Q = Energi kalor yang diradiasikan (J);e = Koefisien emisivitas benda;σ = Tetapan Stefan Boltzman (5,67 x 10-8 W.m-2.K-4);P = daya radiasi (W atau J/s);t = waktu pemancaran (s);A = Luas permukaan benda (m2); danT = Suhu mutlak benda (K).

        Emisivitas benda adalah kemampuan benda untuk memancarkan energi (gelombang elektromagnetik). Harga koefisien emisivitas benda hitam sempurna adalah 1 karena benda hitam sempurna adalah pemancar dan penyerap kalor paling baik, sedangkan untuk benda putih sempurna emisivitasnya adalah 0 karena benda putih sempurna merupakan pemancar dan penyerap kalor paling buruk.

Fenomena di awal menunjukkan bahwa, warna hitam memiliki emisivitas yang lebih besar dibandingkan warna putih, sehingga daya radiasi yang diserap oleh warna hitam akan bernilai lebih besar. Berdasarkan teori tersebut, jika kita menjemur pakaian berwarna hitam, maka akan lebih cepat kering dibandingkan baju berwarna putih.

Radiasi Panas dan Radiasi Benda Hitam

Benda hitam didefinisikan sebagai sebuah benda yang menyerap semua radiasi yang datang

padanya. Dengan kata lain, tidak ada radiasi yang dipantulkan keluar dari benda hitam. Jadi,

benda hitam mempunyai harga absorptansi dan emisivitas yang besarnya sama dengan satu.

Seperti yang telah kalian ketahui, bahwa emisivitas (daya pancar) merupakan arakteristik suatu

materi, yang menunjukkan perbandingan daya yang dipancarkan per satuan luas oleh suatu

permukaan terhadap daya yang dipancarkan benda hitam pada temperatur yang sama. Sementara

itu, absorptansi (daya serap) merupakan perbandingan fluks pancaran atau fluks cahaya yang

diserap oleh suatu benda terhadap fluks yang tiba pada benda itu.

Benda hitam ideal digambarkan oleh suatu rongga hitam dengan lubang kecil. Sekali suatu

cahaya memasuki rongga itu melalui lubang tersebut, berkas itu akan dipantulkan berkali-kali di

dalam rongga tanpa sempat keluar lagi dari lubang tadi. Setiap kali dipantulkan, sinar akan

diserap dinding-dinding berwarna hitam. Benda hitam akan menyerap cahaya sekitarnya jika

suhunya lebih rendah daripada suhu sekitarnya dan akan memancarkan cahaya ke sekitarnya jika

suhunya lebih tinggi daripada suhu sekitarnya. Hal ini ditunjukkan pada gambar dibawah. Benda

hitam yang dipanasi sampai suhu yang cukup tinggi akan tampak membara.

Gambar 1.1 Benda hitam yang dipanasi sampai suhu yang cukup tinggi akan tampak membara.

INTENSITAS RADIASI BENDA HITAM

Radiasi benda hitam adalah radiasi elektromagnetik yang dipancarkan oleh sebuah benda

hitam. Radiasi ini menjangkau seluruh daerah panjang gelombang. Distribusi energi pada daerah

panjang gelombang ini memiliki ciri khusus, yaitu suatu nilai maksimum pada panjang

gelombang tertentu. Letak nilai maksimum tergantung pada temperatur, yang akan bergeser ke

arah panjang gelombang pendek seiring dengan meningkatnya temperatur. Pada tahun 1879

seorang ahli fisika dari Austria, Josef Stefan melakukan eksperimen untuk mengetahui karakter

universal dari radiasi benda hitam. Ia menemukan bahwa daya total per satuan luas yang

dipancarkan pada semua frekuensi oleh suatu benda hitam panas (intensitas total) adalah

sebanding dengan pangkat empat dari suhu mutlaknya. Sehingga dapat dirumuskan:

I total = σ . T4 ....................................................... (1)

dengan I menyatakan intensitas radiasi pada permukaan benda hitam pada semua frekuensi, T adalah suhu mutlak benda, dan σ adalah tetapan Stefan-Boltzman, yang bernilai 5,67 × 10-8 Wm-

2K-4.

Untuk kasus benda panas yang bukan benda hitam, akan memenuhi hukum yang sama, hanya diberi tambahan koefisien emisivitas yang lebih kecil daripada 1 sehingga:

I total = e.σ.T4 ............................................................ (2)

Intensitas merupakan daya per satuan luas, maka persamaan (2) dapat ditulis sebagai:

P/A = = e. σ. T4 ...................................................... (3)

dengan:

P = daya radiasi (W)

A = luas permukaan benda (m2)

e = koefisien emisivitas

T = suhu mutlak (K)

Beberapa tahun kemudian, berdasarkan teori gelombang elektromagnetik cahaya, Ludwig Boltzmann (1844 - 1906) secara teoritis menurunkan hukum yang diungkapkan oleh Joseph Stefan (1853 - 1893) dari gabungan termodinamika dan persamaan-persamaan Maxwell. Oleh karena itu, persamaan (2) dikenal juga sebagai Hukum Stefan- Boltzmann, yang berbunyi:

“Jumlah energi yang dipancarkan per satuan permukaan sebuah benda hitam dalam satuan waktu akan berbanding lurus dengan pangkat empat temperatur termodinamikanya”.

Contoh Soal 1 :

Lampu pijar dapat dianggap berbentuk bola. Jari-jari lampu pijar pertama 3 kali jari-jari lampu pijar kedua. Suhu lampu pijar pertama 67 oC dan suhu lampu pijar kedua 407 oC. Tentukan perbandingan daya radiasi lampu pertama terhadap lampu kedua!

Besaran yang diketahui:

T1 = (67 + 273) K = 340 K

T2 = (407 + 273) K = 680 K

R1 = 3 R2

Perbandingan daya radiasi lampu pertama terhadap lampu kedua:

 

1. Hukum Stefan-Boltzmann

Pada tahun 1879 seorang ahli fisika dari Austria, Josef Stefan melakukan

eksperimen untuk mengetahui karakter universal dari radiasi benda hitam. Ia menemukan

bahwa daya total per satuan luas yang dipancarkan pada semua frekuensi oleh suatu

benda hitam panas (intensitas total) adalah sebanding dengan pangkat empat dari suhu

mutlaknya. Sehingga dapat dirumuskan :

I=σ T 4 (1)

dengan

I = intensitas radiasi pada permukaan benda hitam pada semua frekuensi

T = suhu mutlak benda (K)

σ = tetapan Stefan-Boltzman, yang bernilai 5,67 × 10-8 Wm-2K-4.

Total energi tiap satuan volume suatu lingkungan tertutup dengan temperatur tetap

diperoleh dengan melakukan integrasi .

E=∫0

E ( λ ) dλ=∫0

∞ 8 πhc dλλ5(ehc / λkT−1)

(2)

¿ 8 πhc3 ( kT

h )4

∫0

∞ t 3dtet−1

=( 8 π5 k4

15 h3c3 )T 4

(3)

∫0

∞ t 3 dte t−1

=6∑n=1

∞ 1n4 =

π4

15

(4)

Erad=c4

E=σ T 4

(5)

σ= 2 π5 k4

15 h3c2

(6)

Hukum Stefan Boltzman dalam persamaan (5) menggambarkan bagaimana kalor

dirambatkan secara radiatif tanpa penghantar medium, sebagaimana medium

diperlakukan pada peristiwa konduksi atau konveksi.

Gambar 2.1 Grafik antara intensitas radiasi yang dipancarkan oleh suatu benda hitam

terhadap panjang gelombang pada berbagai suhu.

Total energi kalor radiasi yang dipancarkan adalah sebanding dengan luas di

bawah grafik. Tampak bahwa total energi kalor radiasi radiasi meningkat dengan

meningkatnya suhu ( menurut Hukum Stefan- Bolztman). Energi kalor sebanding dengan

pangkat empat suhu mutlak.

Untuk kasus benda panas yang bukan benda hitam, akan memenuhi hukum yang sama,

hanya diberi tambahan koefisien emisivitas yang lebih kecil daripada 1, sehingga :

I total=e . σ .T 4

(7)

Intensitas merupakan daya per satuan luas, maka persamaan diatas dapat ditulis sebagai:

PA

=eσ T 4

(8)

dengan:

P = daya radiasi (W)

A = luas permukaan benda (m2)

e = koefisien emisivitas

T = suhu mutlak (K)

Beberapa tahun kemudian, berdasarkan teori gelombang elektromagnetik cahaya, Ludwig

Boltzmann (1844 – 1906) secara teoritis menurunkan hukum yang diungkapkan oleh

Joseph Stefan (1853 – 1893) dari gabungan termodinamika dan persamaan-persamaan

Maxwell. Oleh karena itu, persamaan diatas dikenal juga sebagai Hukum Stefan-

Boltzmann, yang berbunyi:

“Jumlah energi yang dipancarkan per satuan permukaan sebuah benda hitam dalam

satuan waktu akan berbanding lurus dengan pangkat empat temperatur

termodinamikanya”.

2. TEORI MAX PLANCK

Max Planck menjelaskan bahwa radiasi elektromagnetik hanya dapat merambat

dalam bentuk paket-paket energi atau kuanta yang dinamakan foton. Gagasan Planck ini

kemudian berkembang menjadi teori baru dalam fisika yang disebut Teori Kuantum.

Pada tahun 1900, Planck memulai pekerjaannya dengan membuat suatu anggapan baru

tentang sifat dasar dari getaran molekul-molekul. Dalam dinding-dinding rongga benda

hitam (pada saat itu elektron belum ditemukan). Anggapan baru ini sangat radikal dan

bertentangan dengan fisika klasik, yaitu sebagai berikut:

1. Radiasi yang dipancarkan oleh getaran molekul-molekul tidaklah kontinu tetapi

dalam paket-paket energi diskret, yang disebut kuantum (sekarang disebut foton).

Besar energi yang berkaitan dengan tiap foton adalah

E=hv

(17)

sehingga untuk n buah foton maka energinya dinyatakan oleh

En=nhv

(18)

Dengan n = 1, 2, 3, ... (bilangan asli), v adalah frekuensi getaran molekul-

molekul. Energi dari molekul-molekul dikatakan terkuantisasi dan energi yang

diperkenankan disebut tingkat energi. Ini berarti bahwa tingkat energi bisa hv,

2hv, 3hv, ... sedang h disebut tetapan Planck, dengan h = 6,6 × 10-34 J s (dalam 2

angka penting)

2. Molekul-molekul memancarkan atau menyerap energi dalam satuan diskret dari

energi cahaya, disebut kuantum (sekarang disebut foton). Molekul-molekul

melakukan itu dengan “melompat” dari satu tingkat energi ke tingkat energi

lainnya. Jika bilangan kuantum n berubah dengan satu satuan, persamaan

menunjukkan bahwa jumlah energi yang dipancarkan atau diserap oleh molekul-

molekul sama dengan hv. Jadi, beda energi antara dua tingkat energi yang

berdekatan adalah hv. Molekul akan memancarkan atau menyerap energi hanya

ketika molekul mengubah tingkat energinya. Jika molekul tetap tinggal dalam

satu tingkat energi tertentu, maka tidak ada energi yang diserap atau dipancarkan

molekul. Berdasarkan teori kuantum di atas, Planck dapat menyatakan hukum

radiasi Wien dan hukum radiasi Rayleigh-Jeans, dan menyatakan hukum radiasi

benda hitamnya yang akan berlaku untuk semua panjang gelombang.

Energi rata-rata per osilator dengan frekuensi v adalah

u (v )=∑n=0

εn exp(−εn/k BT )

∑n=0

exp(−εn/k BT )

(18)

E (v )=8 π v2

c3hv

ehv / kBT−1

(19)

dengan h = 6,6 × 10-34 J s adalah tetapan Planck, c = 3,0 × 108 m/s adalah cepat

rambat cahaya, kB = 1,38 × 10-23 J/K adalah tetapan Boltzman, dan T adalah suhu

mutlak benda hitam

Efek Fotolistrik

Efek Fotolistrik adalah peristiwa terpancarnya electron dari logam, saat permukaan logam tersebut disinari cahaya. Laju pancaran electron diukur sebagai arus listrik pada rangkaian luar menggunakan ammeter sedangkan energy kinetiknya ditentukan dengan menghubungkan potensial penghambat pada anoda sehingga electron tidak mempunyai energy yang cukup melawan potensial yang terpasang. Tegangan penghambat terus diperbesar, sehingga pembacaan arus pada ammeter terus menurun ke nol, hal ini disebut dengan stopping potensial/ potensial henti. Sehingga untuk menentukan energy maksimal ( EKm ) yaitu :

EK m ¿12

m v2=eVo

Dimana:

EKm= energy kinetic electron foton ( J atau eV )

m = massa electron ( Kg )

v = kecepatan electron ( m/s)

e = muatan electron ( C )

Vo= potensial henti ( volt )

Untuk mengeluarkan sebuah electron dari permukaan, kita harus memasok energy sekurang-kurangnya sebesar W ( fungsi kerja atau energy ambang ). Jika f < W electron akan terpental keluar, dan kelebihan energy yang dipasok berubah menjadi energy kinetic. Sehingga dapat dinyatakan dalam persamaan

E=Wo+Ek atau Ek=E−Wo Sehingga

Ek=hf −h f o=h (f −f o)

Dimana :

Ek = energy kinetic maksimum electron foton fo = frekuensi ambang

h = konstanta Planck

f = frekuensi foton

Efek Compton

Efek Compton merupakan gejala hamburan dari penembakan suatu materi dengan sinar-X. Efek ini ditemukan oleh Arthur Holly Compton pada tahun 1923. Jika sejumlah elektron yang dipancarkan ditembak dengan sinar-X, maka sinar-X ini akan terhambur. Hamburan sinar-X ini memiliki frekuensi yang lebih kecil daripada frekuensi semula.

Hubungan antara panjang gelombang antara sinar datang dan sinar hambur dinyatakan sebagai :

Dimana :𝜆1 = panjang gelombang berkas sinar datang𝜆2 = panjang gelombang berkas sinar hamburh

m.c=¿panjang gelombang Compton

Sifat Gelombang dalam Partikel

Menurut Louise de Broglie, partikel dapat bersifat seperti gelombang dengan panjang gelombang:

dimana : h = 6,6 x 10–34 Js p = momentum partikel (kg m/s)

m = massa partikel (kg) v = kecepatan partikel (m/s)

Contoh Penerapan Radiasi Benda Hitam

1. Pakaian

λ= hp= h

mv

Baju berwarna hitam akan terasa panas jika dipakai pada siang hari karena merupakan penyerap kalor yang baik sedangkan pada malam hari akan terasa sejuk karena juga merupakan pemancar kalor yang baik. Sebaliknya, Baju berwarna putih akan terasa sejuk dipakai pada siang hari dan terasa panas jika dipakai pada malam hari karena merupakan penyerap dan pemancar kalor yang buruk

Panel Surya

Panel surya adalah suatu perangkat yang digunakan untuk menyerap radiasi dari matahari. Panel surya terdiri dari wadah logam berongga yang di cat hitam dengan panel depan terbuat dari kaca. Kalor radiasi dari matahari diserap oleh permukaan hitam dan dihantarkan secara konduksi melalui logam. Bagian dalam panel dijaga tetap hangat oleh efek rumah kaca, kemudian sirkulasi air melalui wadah logam akan membawa kalor menjauh untuk dimanfaatkan pada sistem pamanas air domestik dan untuk memanasi kolam renang.

Ketika gas berada dalam keseimbangan termodinamika (KT), laju penyerapan dan pemancaran gas itu seimbang. Nah, situasi ini dapat dibuat dengan memakai kotak yang memiliki dinding dalam bersuhu tetap, katakanlah suhunya T. Kalau gak ada materi atau radiasi atau materi yang keluar dari kotak, maka partikel gas, dan semua radiasi di dalamnya, ujung-ujungnya akan nyampe ke kondisi keseimbangan dalam suhu ini. Gak peduli apa jenis bahan pembuat kotak atau kayak apa bentuknya. Bisa ditunjukkan kalau medan radiasi yang dihasilkan akan bersifat isotropik dan kalau spektrumnya (pancaran yang merupakan fungsi dari frekuensi atau panjang gelombang) hanya tergantung pada T. Radiasi demikian disebut radiasi benda hitam (bisa juga disebut ‘radiasi rongga’ soalnya sejarah penelitian radiasi ini memakai ‘pemandian termal’ dalam sebuah rongga). Intensitas (kekuatan) khas yang dihasilkan dinyatakan oleh fungsi khusus yang disebut fungsi Planck atau Kurva Planck. Fungsi ini dapat dinyatakan dalam bentuk fungsi pada frekuensi dan panjang gelombang, lewat persamaan sebagai berikut:

Dimana satuan yang digunakan adalah cgs. Plot dari Bv(T) dalam berbagai suhu ditunjukkan dalam gambar berikut.

Gambar 1. Kurva Planck untuk suhu dari 2 ribu hingga 10 ribu Kelvin. Sumbu tegak dalam satuan erg/(detik.cm persegi. Hz. sr). Perhatikan kalau puncak kurvanya bergeser ke frekuensi yang tinggi (panjang gelombang pendek) saat suhu meningkat, dan juga kalau benda yang lebih panas memiliki intensitas khas yang lebih tinggi daripada benda dingin dalam semua frekuensi.

Kedua rumus di atas itu saling berhubungan lewat persamaan :

Jadi, integral kedua kurva tersebut, dari nol hingga tak hingga, itu sama. Tapi, fungsinya sendiri beda. Mereka punya maksima berbeda, dan juga ada aturan yang dipakai untuk mengkonversi satu bentuk ke bentuk lainnya.

Karena T dalam persamaan pertama dan kedua adalah nilai yang memberikan intensitas khas radiasi, dia bisa disebut ‘suhu radiasi’. Tapi, perlu diingat kalau suhu radiasi itu sama dengan suhu kinetik gas. Jadi, T dalam persamaan di atas bila ditulis tanpa indeks, akan menyajikan suhu kinetik. Karena harus ada interaksi yang cukup antara radiasi dan materi supaya suhu keseimbangan tercapai, maka gas tersebut harus buram.. Coba lihat gambar berikut

Gambar 2. Dalam kedua gambar ini, sebuah sumber cahaya berada di balik awan gas bersuhu T dan diamati oleh observer. Di gambar atas, jejak bebas rata-rata sebuah foton, l bar, lebih besar daripada ketebalan, x, dari awan ini. akibatnya, observer dapat melihat tembus dari ketebalan awan. Dalam gambar bawah sebaliknya, jalur bebas rata-rata foton lebih kecil dari ketebalan awan. Foton berdifusi ke sisi lain, dan mencapai keseimbangan dengan suhu awan. Observer akibatnya hanya dapat melihat sejauh jalur bebas rata-rata tersebut, alias kulit luar awannya saja. Tapi observer juga akan menemukan spektrum Planck pada suhu kulit ini.

Untuk benda yang buram, jalur bebas rata-rata sebuah foton mestinya lebih kecil daripada ukuran benda. Pengamat yang melihat benda pada sebuah jarak yang kurang lebih sama dengan jarak bebas rata-rata. Kita dengan demikian tiba pada definisi benda hitam yang lebih formal, yaitu, benda hitam adalah benda yang merupakan penyerap sempurna. Kalau sebuah foton, tidak peduli frekuensinya, berada dalam benda hitam, ia tidak akan dipantulkan balik dan tidak juga akan melewatinya. Foton ini akan diserap, yang menunjukkan kalau jalur bebas rata-ratanya lebih kecil dari ukuran benda. Setiap benda buram non reflektif dalam satu suhu tertentu adalah benda hitam. Ini bisa jadi padatan, yaitu benda padat yang tidak memantulkan cahaya. Agar benda ini tetap berada dalam suhu yang sama, penyerapan dan pemancaran harus seimbang. Jadi, benda hitam pasti juga pemancar sempurna. Dan artinya, benda hitam bukanlah berwarna hitam dan bukan pula kata ‘hitam’ berarti tanpa pancaran. Sebaliknya, sebuah benda hitam memancarkan spektrum Planck yang bersinambung yang bentuknya ditentukan oleh suhunya.

Menemukan benda hitam sempurna di alam itu sulit. Namun ada contohnya, yaitu Latar Belakang Gelombang Mikro Kosmik (CMB). Spektrum Planck terukur di setiap posisi di peta

ini. Ada sedikit ingsutan dalam suhu pada posisi berbeda menghasilkan sedikit perbedaan kurva Planck dalam posisi berbeda. Kurva Planck rata-rata global diberikan dalam gambar berikut dan sesuai dengan suhu 2.73 Kelvin.

Latar Belakang Gelombang Mikro Kosmik

Gambar 3. Titik data dari kurva ini merupakan hasil pengukuran radiasi latar belakang gelombang mikro dari beragam sumber yang didaftarkan pada plot. Kurva padat yang ada di atas adalah yang paling sesuai dengan spektrum benda hitam, pada suhu 2.73 Kelvin. (Sumber: Hagiwara et al, 2002)

Bintang juga contoh benda hitam, walaupun beberapa ingsutan dari kurva sempurna memang ada, sebagai contoh matahari. Coba lihat gambar ini.

Gambar 4. Spektrum matahari, ditunjukkan sebagai panjang gelombang dalam plot logaritmik. Plot ini adalah kepadatan fluks yang diukur dari jauh di bumi. Spektrumnya (kurva hitam) sesuai dengan benda hitam pada suhu 5781 Kelvin (kurva abu-abu) namun mulai menyimpang dalam daerah sinar X dan radio karena aktivitas matahari. Data ini sesuai dengan tetapan matahari sebesar 1366,1 Watt per meter persegi.

Walaupun keseluruhan bintang tidaklah berada dalam satu suhu yang sama, bagian dalamnya lebih panas dari permukaan, kita tidak dapat melihat ke dalam tubuhnya, dan dalam kedalaman yang dapat dilihat, suhunya hampir seragam. Karena bintang memiliki suhu yang sesuai dengan kurva Planck yang berpuncak dekat dengan bagian optik spektrum, sebagian besar radiasi astrofisika yang kita lihat dengan mata kita, baik itu tanpa alat ataupun lewat teleskop optik, adalah karena bintangnya. Ini termasuk juga matahari, dan bukan kebetulan kalau mata kita memiliki sensitivitas terbesar pada bagian dimana kurva Planck matahari berpuncak. Coba lihat gambar berikut.

Gambar 5. Spektrum matahari (kurva tengah, skala kiri) yang dibuat berdasarkan data yang sama dengan gambar 4, kecuali jangkauan panjang gelombang yang lebih terbatas dan skalanya bersifat linier. Suhu kecemerlangan (kurva atas, skala kanan) juga ditunjukkan, diturunkan dari kepadatan fluks dan kemudian menggunakan rumus Planck. Kurva bawah adalah respons fluks siang hari dari mata manusia yang dimuluskan pada resolusi 30 nanometer. (Sumber: Fulton, 2005)

Saat kita melihat ke kedalaman ruang angkasa, yang kita lihat adalah cahaya bintang dari galaksi kita sendiri, galaksi yang dekat dengan kita, hingga kluster galaksi yang jauh. Radiasi benda hitam adalah yang paling relevan dengan apresiasi visual kita pada keindahan langit.

Galaksi Trio Arp 286 di Virgo

Bila kita dapat mengukur intensitas khas sebuah benda dan tahu kalau ia adalah benda hitam, maka dengan kedua rumus Planck, kita bisa menentukan suhunya. Ingat kalau intensitas khas bersifat independen terhadap jarak bila tidak ada materi yang menghalangi, dan berarti kalau kita tidak perlu tahu apapun tentang benda itu, bahkan jaraknya sekalipun, untuk mengetahui suhunya. Lebih jauh, secara prinsip, hanya perlu satu kali pengukuran pada satu frekuensi saja untuk mendapatkan hasil ini, walaupun pada prakteknya, beberapa pengukuran dilakukan untuk memastikan kalau spektrumnya memang bersifat Planck. Sisi lain koin ini adalah, karena kurva Planck tergantung pada suhu semata, kita tidak tahu apapun mengenai jenis atau jumlah materi yang dipancarkan oleh radiasi ini bila hanya mempelajari kurva Planck semata. Entah benda hitam itu sebuah filamen lampu bohlam, cat super hitam buatan manusia yang memantulkan kurang dari 1 persen cahaya yang jatuh padanya, atau interior oven pemanggang setelah suhu keseimbangan tercapai, spektrum Planck yang diperoleh semata tergantung pada suhunya, akan diperoleh.

Benda terhitam di dunia (tengah) hasil penelitian Shawn yu lin 2008 yang memiliki tingkat pemantulan cahaya hanya 0.045 persen

Contoh-Contoh Soal

Rumus – Rumus Minimal

Daya Radiasi (Laju energi rata-rata) P = e Tσ

4A

Keterangan :P = daya radiasi (watt = joule/s)e = emisivitas benda e = 1 → benda hitam sempurnaA = luas permukaan benda (m2)T = suhu (Kelvin)= Konstanta Stefan-Boltzman = 5,67 x 10σ −8 W/mK 4

Hukum Pergeseran WienΛ maksT = CKeterangan :λ maks= panjang gelombang radiasi maksimum (m)C = Konstanta Wien = 2,898 x 10 −3 m.KT = suhu mutlak benda (Kelvin)

1. Sebuah benda memiliki suhu minimum 27 C dan suhu maksimum 227 C.Tentukan nilai perbandingan daya radiasi yang dipancarkan benda pada suhu maksimum dan minimumnya!PembahasanData :T1= 27 CC = 300 KT2= 227 CC = 500 KP2/P1= (T2/T1)4P2/P1= (500/300)4= (5/3)4= 625 : 81

2. buah bola sejenis tapi berbeda ukuran memancarkan energi radiasi yang sama besar ke sekitarnya. Jika bola A berjari-jari r bersuhu T, maka bola B yang berjari-jari 2 r akan bersuhu ….

a. 0,3 T

b. 0,5 T

c. 0,7 T

d. 0,9 T

e. 1,1 T

Jawaban : C

Bahasan :

3. Kemampuan sebuah benda untuk melepas radiasi sangat berdekatan dengan kemampuannya untuk menyerap radiasi. Pernyataan tersebut menggambarkan gejala fisis yang cocok dengan salah satu peristiwa berikutnya yaitu :

a. efek fotolistrik

b. efek Compton

c. produksi pasangan

d. produksi sinar-X

e. radiasi benda hitam

Jawaban : E

Bahasan : Kemampuan permukaan suatu benda terhadap melepas dan menyerap radiasi disebut emisivitas (e).

Pada radiasi benda hitam berlaku :

4. Lampu pijar dapat dianggap berbentuk bola. Jari-jari lampu pijar pertama 3 kali lampu pijar kedua. Suhu lampu pijar pertama 67 C dan suhu lampu pijar kedua 407 C. Tentukan perbandingan gaya radiasi lampu pertama terhadap lampu kedua.

Diketahui:

Jari-jari lampu pijar pertama r1 = 3r2

Suhu pijar pertama, T1 = 67 oC = (67+237)K = 340 K

Suhu lampu pijar kedua, T2 = 407oC = 680K

Perbandingan daya radiasi lampu pertama terhadap lampu kedua adalah P1/P2

5. Besarnya perbandingan energi radiasi yang dipancarkan oleh benda yang sama pada suhu 127 oC dan suhu 527 oC adalah ….a. 1:2b. 1:4c. 1:8d. 1:10e. 1:16

6. Permukaan benda pada suhu 37oC meradiasikan gelombang elektromagnetik . Bila nilai konstanta Wien = 2,898 x 10 −3 m.K, maka panjang gelombang maksimum radiasi permukaaan adalah....A. 8,898 x 10−6 mB. 9,348 x 10−6 mC. 9,752 x 10−6 mD. 10,222 x 10−6 mE.  1,212 x 10−6 m 

7. Perhatikan diagram pergeseran Wien berikut ini!

Jika suhu benda dinaikkan, maka yang terjadi adalah …A. Panjang gelombang tetapB. Panjang gelombang bertambahC. Panjang gelombang berkurangD. Frekuensi tetapE. frekuensi berkurang 

Pembahasan:Dari persamaan hukum pergeseran wien, diperoleh hubungan panjang gelombang dengan suhu yaitu berbanding terbalik. Ini artinya jika suhu naik berarti panjang gelombang berkurang.

Jawaban: C

8. Frekuensi cahaya tampak 6 . 1014 Hz. Jika h = 6,625 . 10-34 J.s, maka besar energi fotonnya adalah...A. 1,975 . 10-17 JouleB.  2,975 . 10-18 JouleC. 3,975 . 10-19 JouleD. 4,975 . 10-19 JouleE. 5,975 . 10-19 Joule

Pembahasan:Diketahui:f = 6 . 1014 Hzh = 6,625 . 10-34 J.sn = 1Ditanya: EJawab:E = n . h . f = 1 . 6,625 . 10-34 J.s . 6 . 1014 HzE = 3,975 . 10-19 joule

Jawaban: C

9. Intensitas radiasi yang diterima pada dinding dari tungku pemanas ruangan adalah 66,3 W.m−2 . Jika tungku ruangan dianggap benda hitam dan radiasi gelombang elektromagnetik pada panjang gelombang 600 nm, maka jumlah foton yang mengenai dinding persatuan luas persatuan waktu adalah…( h = 6,63 x 10− 34 J.s, c = 3 x 108 m.s−1)A. 1 x 1019 fotonB. 2 x 1019 fotonC. 2x 1020 fotonD. 5x 1020 fotonE. 5 x 1021 foton

Pembahasan:Diketahui:I = 66,3 W/m2

λ = 600 nm = 6 . 10-7 mh = 6,63 x 10− 34 J.sc = 3 x 108 m/s

Ditanya: n / A.t = ...

10. Perhatikan pernyataan berikut:

1) Lepas tidaknya elektron dari logam ditentukan oleh panjang gelombang cahaya yang datang. 

2) Intensitas cahaya yang datang tidak menjamin keluarnya elektron dari permukaan logam. 

3) Dibawah frekuensi ambang, elektron tetap keluar dari logamnya asal intensitas cahaya yang datang diperbesar. 

Pernyataan yang benar yang berkaitan dengan efek fotolistrik adalah... 

A. 1, 2, dan 3 

B. 1 dan 2 

C. 1 dan 3 

D. 2 dan 3

E.    3 saja

Pembahasan:

Keluar tidaknya elektron dari logam tergantung frekuensi cahaya yang datang.

Jawaban: B

11. Perhatikan pernyataan berikut:

1) Elektron dapat keluar dari logam saat permukaan logam disinari gelombang elektromagnetik.

2) Lepas tidaknya elektron dari logam ditentukan oleh frekuensi cahaya yang datang.

3) Fungsi kerja setiap logam selalu sama.

Pernyataan yang benar berkaitan dengan efek fotolistrik adalah...

A. 1, 2, dan 3

B. 1 dan 2

C. 1 dan 3

D. 1 saja

E. 3 saja

Pembahasan:

Keluar tidaknya elektron dari logam tergantung frekuensi cahaya yang datang. Fungsi kerja tergantung jenis logamnya.

Jawaban: B

12. Suatu permukaan logam yang fungsi kerjanya 4 . 10 -19 joule disinari cahaya yang panjang gelombangnya 3300 Ǻ. Tetapan Planck = 6,6 . 10-34 J.s dan cepat rambat cahaya = 3 . 108 m/s, energi kinetik maksimum elektron adalah...

A. 2,4 . 10-21 joule

B. 1,2 . 10-20 joule

C. 2,0 . 10-19 joule

D. 4,6 . 10-19 joule

E. 6. 10-18 joule

Pembahasan:

Diketahui:

hf0 = 4 . 10-19 joule

λ = 3300 Ǻ = 33 . 10-8 m

h = 6,6 . 10-34 J.s

c = 3 . 108 m/s

13. Elektron bermassa 9,0 x 10−31 kilogram bergerak dengan kecepatan 2,2 x 107 ms−1 (Tetapan Planck = 6,6 x 10−34 Js) memiliki panjang gelombang de Broglie sebesar.....

A. 3,3 x 10−11 m

B. 4,5 x 10−11 m

C. 5,2 x 10−11 m

D. 6,7 x 10−11 m

E. 8,0 x 10−11 m

14. Perhatikan pernyataan berikut:

1) Peristiwa fotolistrik dapat dijelaskan dengan menganggap cahaya terdiri dari paket-paket energi

2) Peristiwa efek fotolistrik dapat embuktikan bahwa cahaya dapat berperilaku sebagai gelombang

3) Energi elektron yang keluar dari permukaan logam bergantung pada frekuensi

15. Peristiwa efek fotolistrik terjadi pada sekitar daerah inframerah

Pernyataan yang benar tentang efek fotolistrik adalah

A. 1 dan 2

B. 1 dan 3

C. 1 dan 4

D. 2 dan 3

E. 2 dan 4

Jawaban: B

16. Grafik menyatakan hubungan intensitas gelombang (I) terhadap panjang gelombang, pada saat intensitas maksimum dari radiasi suatu benda hitam sempurna.

Jika konstanta Wien = 2,9 x 10−3 m.K maka panjang gelombang radiasi maksimum pada T1 adalah...

A. 5000 Å

B. 10.000 Å

C. 14.500 Å

D. 20.000 Å

E. 25.000 Å

Pembahasan;λm = 2,9 x 10−3 m.K / (1727 + 273)

λm = 2,9 x 10−3 m.K / 2000

λm = 14.500 Å

Jawaban: C

17. Pernyataan yang benar tentang efek fotolistik adalah...

A. Peristiwa dapat dijelaskan dengan menganggap cahaya sebagai gelombang

B. Elektron yang keluar dari permukaan logam akan berkurang jika frekuensi cahayanya diperbesar

C. Intensitas cahaya tidak mempengaruhi energi elektron yang keluar dari permukaan logam

D. Efek fotolistrik terjadi pada daerah inframerah

E. Efek fotolistrik akan terjadi asalka intensitas cahaya yang mengenai logam cukup besar

Jawaban: C

 

18. Permukaan benda pada suhu 37 C meradiasikan gelombang elektromagnetik . Bila nilai konstanta Wien = 2,898 x 10 −3 m.K, maka panjang gelombang maksimum radiasi permukaaan adalah....

A. 8,898 x 10−6 m

B. 9,348 x 10−6 m

C. 9,752 x 10−6 m

D. 10,222 x 10−6 m

E. 11,212 x 10−6 m

Pembahasan:

Diketahui:

T = 37oC = (37 + 273) K = 310 K

Ditanya: λmaks

Jawab:

2,898 . 10-3 m .K λmaks=

λmaks = 9,348 . 10-6 m = T 2,898 . 10-3 m.K 310 K

Jawaban: B

20. Frekuensi cahaya tampak 6 . 1014 Hz. Jika h = 6,625 . 10-34 J.s, maka besar energi fotonnya adalah...

A. 1,975 . 10-17 Joule

B. 2,975 . 10-18 Joule

C. 3,975 . 10-19 Joule

D. 4,975 . 10-19 Joule

E. 5,975 . 10-19 Joule

Pembahasan:

Diketahui:

f = 6 . 1014 Hz

h = 6,625 . 10-34 J.s

n = 1

Ditanya: E

Jawab:

E = n . h . f = 1 . 6,625 . 10-34 J.s . 6 . 1014

E = 3,975 . 10-19 joule

Jawaban: C

21. Intensitas radiasi yang diterima pada dinding dari tungku pemanas ruangan adalah 66,3 W.m−2 . Jika tungku ruangan dianggap benda hitam dan radiasi gelombang elektromagnetik pada panjang gelombang 600 nm, maka jumlah foton yang mengenai dinding persatuan luas persatuan waktu adalah...( h = 6,63 x 10− 34 J.s, c = 3 x 108 m.s)

A. 1 x 1019 foto

B. 2 x 1019 foton

C. 2 x 1020 foton

D. 5 x 1020 foton

E. 5 x 1021 foton

Pembahasan:

Diketahui:

I = 66,3 W/m2

λ = 600 nm = 6 . 10-7 m

h = 6,63 x 10− 34 J.s

c = 3 x 108 m/s

Ditanya: n / A.t = ...

Jawab:

a. Terlebih dahulu hitung f.

vf = λ

f = 0,5 . 1015 Hz

b. Menghitung n / A.t

PI = A

n= A.t

n= 2 . 1020 foton

A.t 3 x 108 m/s c

=

= 6 . 10-7 mλ

n . h . f

E=

= A.t

I= h . f

6,63 x 10- 34 J.s .0,5 . 1015 Hz A.t

66,3 W/m 2

Jawaban: C

22. Perhatikan pernyataan berikut:

1) Lepas tidaknya elektron dari logam ditentukan oleh panjang gelombang cahaya yang datang.

2) Intensitas cahaya yang datang tidak menjamin keluarnya elektron dari permukaan logam.

3) Dibawah frekuensi ambang, elektron tetap keluar dari logamnya asal intensitas cahaya yang datang diperbesar.

Pernyataan yang benar yang berkaitan dengan efek fotolistrik adalah...

A. 1, 2, dan 3

B. 1 dan 2

C. 1 dan 3

D. 2 dan 3

E. 3 saja

Pembahasan:

Keluar tidaknya elektron dari logam tergantung frekuensi cahaya yang datang.

Jawaban: B

23. Elektron bermassa 9,0 x 10−31kilogram bergerak dengan kecepatan 2,2 x 107 ms 10−34 Js) memiliki panjang gelombang de Broglie sebesar.....

A. 3,3 x 10−11

B. 4,5 x 10−11

C. 5,2 x 10−11

D. 6,7 x 10−11

E. 8,0 x 10−11

Pembahasan:

Diketahui:

m = 9,0 x 10−31 kg

v = 2,2 x 107 ms

h = 6,6 x 10−34 Js

Ditanya: λ = ...

Jawab:

h= m .v

λ = 3,3 . 10-11 m−1 (Tetapan Planck = 6,6 x mmmmm−16,6 x 10-34 Js9,0 x 10-31 kg . 2,2 x 107 ms-1

Jawaban: A

24. Perhatikan pernyataan berikut:

1) Elektron dapat keluar dari logam saat permukaan logam disinari gelombang elektromagnetik.

2) Lepas tidaknya elektron dari logam ditentukan oleh frekuensi cahaya yang datang.

3) Fungsi kerja setiap logam selalu sama.

Pernyataan yang benar berkaitan dengan efek fotolistrik adalah...

A. 1, 2, dan 3

B. 1 dan 2

C. 1 dan 3

D. 1 saja

E. 3 saja

Pembahasan:

Keluar tidaknya elektron dari logam tergantung frekuensi cahaya yang datang. Fungsi kerja tergantung jenis logamnya.

Jawaban: B

BAB III

PENUTUP

KESIMPULAN

Radiasi adalah pancaran energi melalui suatu materi atau ruang dalam bentuk panas,

partikel atau gelombang elektromagnetik/cahaya (foton) dari sumber radiasi. Ada beberapa

sumber radiasi yang kita kenal di sekitar kehidupan kita, contohnya adalah televisi, lampu

penerangan, alat pemanas makanan (microwave oven), komputer, dan lain-lain. 

Selain benda-benda tersebut ada sumber-sumber radiasi yang bersifat unsur alamiah dan

berada di udara, di dalam air atau berada di dalam lapisan bumi. Beberapa di antaranya adalah

Uranium dan Thorium di dalam lapisan bumi; Karbon dan Radon di udara serta Tritium dan

Deuterium yang ada di dalam air.

DAFTAR PUSTAKA

https://en.wikipedia.org/?title=Wilhelm_Wien https://www.academia.edu/6274892/RADIASI_BENDA_HITAM http://www.slideshare.net/HuryCanz/makalah-tentang-radiasi?related=1 http://www.slideshare.net/salsafariza1/makalah-fisika-rbh http://www.faktailmiah.com/2010/08/16/radiasi-benda-hitam.html http://www.rumus-fisika.com/2015/06/fenomena-radiasi-benda-hitam.html http://www.sridianti.com/soal-pembahasan-radiasi-benda-hitam.html