ppc9

21
Departemen Teknik Industri FTI-ITB TI-3003 Perencanaan dan Pengendalian Produksi Keseimbangan Lintasan Perakitan (Assembly Line Balancing – Chapter 8.10) Laboratorium Sistem Produksi www.lspitb.org ©2013 Departemen Teknik Industri FTI-ITB 2 Hasil Pembelajaran Umum Mahasiswa mampu menerapkan model matematik, heuristik dan teknik statistik untuk menganalisis dan merancang suatu sistem perencanaan dan pengendalian produksi Khusus Memahami konsep keseimbangan lintasan

Upload: priscarine-priz

Post on 19-Feb-2016

224 views

Category:

Documents


6 download

DESCRIPTION

cscsa

TRANSCRIPT

Departemen Teknik Industri FTI-ITB

TI-3003 Perencanaan dan Pengendalian Produksi

Keseimbangan Lintasan Perakitan(Assembly Line Balancing – Chapter 8.10)

Laboratorium Sistem Produksiwww.lspitb.org

©2013

Departemen Teknik Industri FTI-ITB

2

Hasil Pembelajaran

• Umum

� Mahasiswa mampu menerapkan model matematik, heuristik dan teknik statistik untuk menganalisis dan merancang suatu sistem perencanaan dan pengendalian produksi

• Khusus

� Memahami konsep keseimbangan lintasan

Departemen Teknik Industri FTI-ITB

3

Various Objects

• Part: is composed of a single material and is an individual part of the product

• Component: ranges from a part to a combination of parts which are included in the product

• Building block: a composite part of the product which because of assembly requirements represents a sub-assembly

• Base component: a (larger) component onto which others are assembled

• Formless material: e.g. viscose components such as glue, paint, liquids

• Sub-assembly: one component is assembled with another component, a base component or building block

• Final assembly: describes the construction of a building block or the finished product

Departemen Teknik Industri FTI-ITB

4

Assembly Example

Departemen Teknik Industri FTI-ITB

5

Exploded Assembly

Departemen Teknik Industri FTI-ITB

6

The assembly of a joint

Departemen Teknik Industri FTI-ITB

7

The concept of sub and final assembly

Departemen Teknik Industri FTI-ITB

8

Step by step assembly

Departemen Teknik Industri FTI-ITB

9

An integrated approach

Departemen Teknik Industri FTI-ITB

10

Fabrication/Assembly Line

Departemen Teknik Industri FTI-ITB

11

Fabrication/Assembly Line

• A production/fabrication line builds components on a series of machines

• An assembly line puts the fabricated parts together at a series of workstations

• Both are repetitive processes and in both cases, the line must be balanced

• Fabrication lines tend to be machine-paced and require mechanical and engineering changes to facilitate balancing

• Assembly lines tend to be paced by work tasks assigned to individuals or workstations

• Assembly lines therefore can be balanced by moving task form one individual or workstation to another. In this manner, the amount of time required by each individual or workstation is equalized

Departemen Teknik Industri FTI-ITB

12

Assembly Line Balancing

• Assembly line is a production line in which material moves continuously at a uniform average rate through a sequence of workstations where assembly work is performed

• Assembly accounts for between 40-60% of the total production time

• Down time of an assembly line costs a major car manufacturer $98,000 per minute

• Line balancing is usually done to minimize imbalance between individual/machine/workstation while meeting a required output from the line

• Problems in assembly lines: balancing the workstations and keeping the assembly line in continuous production

Departemen Teknik Industri FTI-ITB

13

Types of assembly line balancing problems

• Simple assembly line balancing type I (SALB-I): is to determine the minimal number of workstations necessary to maintain the production rate (1/CT) while observing the precedence constraints

• Simple assembly line balancing type II (SALB-II): is to assign task to a fixed number of workstations to maximize the production rate while observing the precedence constraints

• SALB-I is a more common problem than SALB-II

Departemen Teknik Industri FTI-ITB

14

Definitions(1)

• Assembled product: the product that passes through a sequence of workstations where tasks are performed on the product until it is completed at the final workstation. The throughput of the assembly line is measured by the number of assembled products per unit time

• Work element: a part of the total work content in an assembly process.

• N: The total number of work elements required to complete the assembly

• i: the work element number in the process (1≤i≤ N)

• Workstation (WS): a location on the assembly line where a work element or elements are performed on the product.

• K denotes the minimum number of workstations, K≥1

Departemen Teknik Industri FTI-ITB

15

Definitions(2)

• Cycle time (CT): the time between the completion of 2 successive assemblies, assumed constant for all assemblies for a given conveyor speed. Conveyors are the key material movers in most assembly lines: belt, chain, overhead, pneumatic, and screw conveyors

T= production time available per dayd= demand per day or production per day

• Station time (ST): the sum of the times of work elements that are performed at the same workstation. ST≤CT

• Delay/idle time of a workstation: the difference between the cycle time (CT) and the station time (ST). D=CT-ST

d

TCT =

Departemen Teknik Industri FTI-ITB

16

Definitions(3)

• The number of work statations

• Precedence diagram: a diagram that describes the ordering in which work elements should be performed. It shows that some jobs cannot be performed unless their predecessors are completed. The layout of workstations along the assembly line depends on the precedence diagram

CT

tK

m

ii∑

== 1m= the number of elementsti= the time for element i

Departemen Teknik Industri FTI-ITB

17

Definitions(4)

• Perfect balance means to combine the elements of work to be done in such a manner that at each station the sum of the elemental times just equals the cycle time (D=CT-ST=0)

• Line efficiency (LE): the ratio of total station time to the cycle time multiplied by the number of workstations

STi =the time for station i

• Smoothness index (SI): an index to indicate the relative smoothness of a given assembly line balance. A smoothness index of zero indicates a perfect balance

%100))((

1 xCTK

STLE

K

ii∑

==

Departemen Teknik Industri FTI-ITB

18

Definitions(5)

• SI is expressed as

• Restrictions in designing an assembly line:

� Precedence relationship

� The number of workstations cannot be greater than the number of work elements (operations). The minimum number of workstations is 1. (1≤i ≤ N)

� The cycle time is greater than or equal to the maximum time of any station time and of the time of any work element ti. The station time should not be exceed the cycle time. ti≤STi≤CT

2

1max )(∑

=

−=K

iiSTSTSI

Departemen Teknik Industri FTI-ITB

19

Contoh 1

• Diketahui precedence diagram berikut:

1

4 5

2 3

6 9

7 8

12

1110

5 1

2

63

4

5

3

44

6

7

Departemen Teknik Industri FTI-ITB

20

Kilbridge-Weston Heuristic(1)

1. Gambarkan precedence diagram. Bagi elemen-elemen kerja dalam diagram tersebut ke dalam kolom-kolom. Kolom I adalah elemen-elemen kerja yang tidak memiliki elemen kerja pendahulu (predecessor). Kolom II adalah elemen-elemen kerja dengan elemen kerja pendahulu di Kolom I. Kolom III adalah elemen-elemen kerja dengan elemen kerja pendahulu di Kolom II, dan seterusnya.

Departemen Teknik Industri FTI-ITB

21

Kilbridge-Weston Heuristic(2)

1

4 5

2 3

6 9

7 8

12

1110

5 1

2

63

4

5

3

44

6

7

I II III IV V VI VII

Departemen Teknik Industri FTI-ITB

22

Kilbridge-Weston Heuristic(3)

2. Tentukan waktu siklus (CT) dari bilangan prima waktu total elemen kerja , dan tentukan jumlah stasiun kerja

= 50

Bilangan prima untuk 50 adalah 2 x 5 x 5, sehingga alternatif waktu siklus adalah: 2, 5, 10, 25 dan 50.

Alternatif waktu siklus mana yang tidak mungkin?

∑=

m

iit

1

CT

tK

m

ii∑

== 1 ∑=

m

iit

1

CT=2 dan CT=5

Karena syarat: 7≤CT ≤ 50

Kenapa?

Bila dipilih CT=10, maka jumlah stasiun kerja minimum adalah 50/10 = 5

Departemen Teknik Industri FTI-ITB

23

Kilbridge-Weston Heuristic(4)

3. Tempatkan elemen-elemen kerja ke stasiun kerja sedemikian sehingga total waktu elemen kerja tidak melebihi waktu siklus. Hapus elemen kerja yang sudah ditempatkan dari daftar elemen kerja

4. Bila penempatan suatu elemen kerja mengakibatkan total waktu elemen kerja melebihi waktu siklus maka elemen kerja tersebut ditempatkan di stasiun kerja berikutnya

5. Ulangi Langkah 3 dan 4 sampai seluruh elemen kerja ditempatkan

Departemen Teknik Industri FTI-ITB

24

Kilbridge-Weston Heuristic(5)

Salah satu solusi feasible untuk Contoh 1 adalah:

Work Station Elemen Waktu stasiun (ST)

I 1 5

II 2 dan 4 6

III 3 dan 5 10

IV 6 5

V 7, 9, dan 10 7

VI 8 dan 11 10

VII 12 7

Departemen Teknik Industri FTI-ITB

25

Kilbridge-Weston Heuristic(6)

Untuk menjalankan Langkah 3 pada Metoda Kilbridge-Weston, hitung jumlah elemen kerja pendahulu untuk setiap elemen. Elemen dengan jumlah pendahulu terkecil ditempatkan terlebih dahulu.

Elemen Jumlah Elemen Jumlah

1 0 7 6

2 1 8 7

3 2 9 6

4 1 10 6

5 2 11 7

6 5 12 11

Tempatkan Elemen 1 di Stasiun 1, kemudian Elemen 2 atau 4. Bila dipilih Elemen 2 maka jumlah total waktu elemen adalah 8. Elemen 4 tidak bisa ditempatkan ke Statsiun 1 karena akan menyebabkan total waktu elemen 11, yang melebihi CT

Departemen Teknik Industri FTI-ITB

26

Kilbridge-Weston Heuristic(7)

Elemen 4 kemudian ditempatkan di Stasiun 2. Lanjutkan langkah ini untuk elemen dengan jumlah pendahulu terkecil berikutnya sampai seluruh elemen ditempatkan.

Stasiun Elemen ST CT-ST

I 1 dan 2 8 2

II 4 dan 5 9 1

III 3 dan 6 9 1

IV 7, 9 dan 10 7 3

V 8 dan 11 10 0

VI 12 7 3

LE= 50/(6x10)

= 83,3%

SI=

=4,89

24

Departemen Teknik Industri FTI-ITB

27

Kilbridge-Weston Heuristic(8)

Dengan coba-coba dapat diperoleh alternatif berikut:

Stasiun Elemen ST CT-ST

I 1 dan 2 8 1

II 4 dan 5 9 0

III 3 dan 6 9 0

IV 7 dan 8 8 1

V 10 dan 11 8 1

VI 9 dan 12 8 1

LE= 50/(6x9) = 92,6%

SI = =24

Departemen Teknik Industri FTI-ITB

28

Metoda Helgeson-Birnie(1)

• Metoda ini disebut juga Teknik Bobot Posisi.

• Gambarkan precedence diagram.

1. Hitung bobot posisi setiap elemen kerja. Bobot posisi suatu elemen adalah jumlah waktu elemen-elemen pada rantai terpanjang mulai elemen tersebut sampai elemen terakhir

2. Urut elemen-elemen menurut bobot posisi dari besar ke kecil

3. Tempatkan elemen kerja dengan bobot terbesar pada stasiun kerja sepanjang tidak melanggar hubungan precedence dan waktu stasiun tidak melebihi waktu siklus

4. Ulangi Langkah 3 sampai seluruh elemen ditempatkan

Departemen Teknik Industri FTI-ITB

29

Metoda Helgeson-Birnie(2)

• Contoh: perhitungan bobot Elemen 6 adalah:

Max{(5+2+6+7), (5+1+7), (5+4+4+7)}= 20

Elemen Jumlah Elemen Jumlah

1 34 7 15

2 27 8 13

3 24 9 8

4 29 10 15

5 25 11 11

6 20 12 7

Departemen Teknik Industri FTI-ITB

30

Metoda Helgeson-Birnie(3)

• Hasil pengurutan menurut bobot posisi dari besar ke kecil

Elemen Jumlah Elemen Jumlah

1 34 7 15

4 29 10 15

2 27 8 13

5 25 11 11

3 24 9 8

6 20 12 7

Departemen Teknik Industri FTI-ITB

31

Metoda Helgeson-Birnie(4)

Solusi dari metoda ini

Stasiun Elemen ST CT-ST

I 1 dan 4 8 2

II 2 dan 5 9 1

III 3 dan 6 9 1

IV 7 dan 10 6 4

V 8 dan 11 10 0

VI 9 dan 12 8 2

LE= 50/(6x10) = 83,3%

SI = =5,0926

Departemen Teknik Industri FTI-ITB

32

Mathematical model(1)

Departemen Teknik Industri FTI-ITB

33

Mathematical model(2)

Departemen Teknik Industri FTI-ITB

34

Mathematical model(3)

Departemen Teknik Industri FTI-ITB

35

Mathematical model(4)

Departemen Teknik Industri FTI-ITB

36

Mathematical model(5)

Departemen Teknik Industri FTI-ITB

37

Mathematical model(6)

Departemen Teknik Industri FTI-ITB

38

Mathematical model(7)

Departemen Teknik Industri FTI-ITB

39

Mathematical model(8)

Departemen Teknik Industri FTI-ITB

40

Mathematical model(9)

Departemen Teknik Industri FTI-ITB

41

Mathematical model(10)

Departemen Teknik Industri FTI-ITB

42

Mathematical model(11)