perhitungan ipal 1000 kubik per hari

Upload: krisna-sijabat

Post on 05-Jul-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/15/2019 Perhitungan IPAL 1000 Kubik Per Hari

    1/8

    5.2 Design Criteria and Parameter

    For general design purpose, kinetic expressions used for design were summarized in Table 5.2.

    Because reported organic removal and nitrification kinetics cover a wide range, bench scale or 

    in-plant testing should be undertaken to evaluate site-specific organic removal and nitrification

    kinetics value. Higher maximum specific growth rates than indicated in Table 5.2 could be found

    or testing could reveal reaction rates and a significant nitrification inhibition problem. Aeration

    tank volume and sludge residence time values are directl related to nitrification  µm values. All

    kinetics parameter in the table are adapted from !chobanoglous et al. "#$$%&.

    Table 5.2. Activated sludge nitrification kinetic coefficients

    Coefficient Unit Range Typical value

     µmn g '(()g '((.d $.#$-$.*$ $.+K n g NH4-N/m

    3 $.-.$ $.+

    Y n g VSS/g NH4-N $.$-$. $.#k dn g '(()g '((.d $.$-$. $.$/K o g/m

    3 $.$-$.0$ $.$

    Ɵvalue µn unitless .$0-.#% .$+K n unitless .$%-.#% .$%k dn unitless .$%-.$/ .$

    !he computation approach used in the design of the activated sludge process for B12 removal

    and nitrification "ammonia-nitrogen& are as follows "!chobanoglous et al., #$$%&3

    a& 1btain influent wastewater characterization data

     b& 2etermine the effluent re4uirements in terms of 5H-5, !(( and B12 concentrations

    c& (elect an appropriate nitrification safet factor for the design (6! based on expected

     peak)average !75 loading. (afet factor ma var from .% to #.$

    d& (elect the minimum 21 concentration for the aeration basin mixed li4uor. A minimum

    21 concentration of #.$ mg)l is recommended for nitrification

    e& 2etermine the nitrification maximum specific growth rate " µm& based on the aeration

     basin temperature and 21 concentration and determine  K n

    f& 2etermine the net specific growth rate 8 and (6! at this growth rate, to meet the effluent

     5H-5 concentration

  • 8/15/2019 Perhitungan IPAL 1000 Kubik Per Hari

    2/8

    g& 1btain the design (6! b appling the safet factor to step f 

    h& 2etermine the biomass production

    i& 9erform a nitrogen balance to determine 51x, the concentration of 5H-5 oxidized

     :& ;alculate the '(( mass and !(( mass for the aeration basin

    k& (elect a design

  • 8/15/2019 Perhitungan IPAL 1000 Kubik Per Hari

    3/8

    %& !he point of air release for the diffusers is $. m above the tank bottom

    & 21 in aeration basin ? #.$ mg)l

    & Aeration ? $.$ for B12 removal onl and $.0 for nitrification C ? $.* for both

    conditions, and diffuser fouling factor  F  ? $.*$

    0& Dse kinetics coefficients given in !able .

    +& 2esign

  • 8/15/2019 Perhitungan IPAL 1000 Kubik Per Hari

    4/8

     μn=(1.28 g

    g.day .10g /m3

    1.12  g

    m3+10g /m3 )(   2g /m30.50   gm3 +2g /m3 )−0.1095

    8n ? $.%+# g)g.da

    'tep 2.2etermine the theoritical and design (6!

    a& Find theoritical (6!

    (6! ?

    1

     μn=

      1

    0.372 g

    g . day

    =2.7day

     b& 2etermine the design (6!

    F( ? !75 peak)!75 average ? .

    2esign (6! ? "F(& "theoretical (6!& ? . "#.+ da& ? da

    'tep $. 2etermine biomass production

     P x , bio=QY  (So−S)1+( k d ) SRT 

    + ( f d )( k d )Q (Y ) (So−S ) SRT 1+(k d ) SRT 

    + Q Y n( NO x)1+( k dn ) SRT 

    ............................"e4. ii&

    a& 2etermine input data for "e4. ii&

    Q ? $$$ m%)da

    Y  ? $.$ '(()g b;12

    S o ? .0 "B12& ? .0 "#$$ mg)l& ? %#$ g)m

    %

     K d  ? k #$.E!-#$ ? $.# ".$/-#$ ? $.0 g)g.da

    8m! ? 8m.E!-#$ ? 0.$ g)g.da ".$+/-#$ ? $.% g)g.da

  • 8/15/2019 Perhitungan IPAL 1000 Kubik Per Hari

    5/8

    S= K s [1+( k d ) SRT  ]SRT  ( μm−k d )−1

     ?

    20 g/m3 [1+(0.164  gg .day )4day ]4day (10.31 gg .day−0.164  gg .day )−1

    =0.836 g bCOD

    m3

    Y n? $.# g '(()g 51x

     K dn? $.$* g)g.da

     51x ? $./ "!75& ? $./ "%$$ mg)l& ? #$ g)m%

     b& (ubstitute the value and solve for  P  x,bio

     P x , bio=

    (1000m3

    d  )(0.4

      gVSS

    gbCOD )(320

      g

    m3−0.836

      g

    m3)

    1+(0.164 gg . d)4 d +(0.15 ) (0.164 )1000

    m3

    d (0.4   gVSSgbCOD )(320  m1+(0.164 gg . d)4 d

    'tep (. 2etermine the amount of nitrogen oxidized to nitrate.

    !he amount of nitrogen oxidized to nitrate can be found b performing a nitrogen balance

    using "e4. iii&.

     NO x ? !75  N e  $.#  P  x,bio)G ...........................................................................e4. iii

     NO x=300  g

    m3−10

      g

    m3−0.12( 99000

      g

    day

    1000 m3

    day )=278.12   gm3

    'tep 5. 2etermine the concentration and mass of '(( and !(( in the aeration basin

  • 8/15/2019 Perhitungan IPAL 1000 Kubik Per Hari

    6/8

     P x ,TSS= P x , bio0.85

    +Q (nbVSS )+Q (TSS0−VSS0 )=99kg

    VSS

    day

    0.85+1000

     m 3

    day (16.8   gm3 )+1000  m3day (10   gm3 b& ;alculate the mass of '(( and !(( in the aeration basin

  • 8/15/2019 Perhitungan IPAL 1000 Kubik Per Hari

    7/8

     ? %*.0 kg)da

    a& 1bserved ield based on !((

    Y obs,TSS=  P

     x , TSSbCOD "'mo('d=

    143.27  kg

    day319.16

      kg

    day

    =0.45   kgTSSkgbCOD=0.45   gTSSgbCOD x (1.6 g bCODg%OD )

    =0.

     b& 1bserved ield based on '((

    Y obs,VSS=  P x ,TSS

    bCOD "'mo('d=

    143.27  kg

    day

    319.16  kg

    day

    =0.45  kgTSS

    kgbCOD=0.45

      gTSS

    gbCOD x(0.8 gVSSgTSS )=0.36

    'tep ,. ;alculate the oxgen demand using "e4. iv&

     R0=Q ( S0−S )−1.42 P x , bio+4.33Q ( NO x ) .........................................................."e4. iv&

     R0=1000

     m3

    day (320−0.836 )

      g

    m3−1.42(99   kgday )+4.33 (1000 m 3day )( 278.12   gm3 )(10−3 kgg )=57.618   ko

    'tep 1-. 2etermine air flowrate at average design flowrate

    a& 2etermine the (1!6 

    SOTR= )OTR [   C s , 20* # ( + C ́s ,T , −C ) ] (1.02420−T )=57.618 [  9.08

      g

    m3

    0.65(0.9)(0.95 .(11.93   gm3 )−2.0   gm b& 2etermine the air flowrate

    0.270 kg O2m3

    ai"

    (0.35)(60  min

    o!")¿

    ¿¿

     )i" f-o"at' , m3

    min=

    SOTR¿

  • 8/15/2019 Perhitungan IPAL 1000 Kubik Per Hari

    8/8

    'tep 11. 2esign review summar

    Table 5.(. 2esign review summar

    Design Parameter Unit alue

    >astewater flow m3/d $$$

    Average B12 load kg)d #$$

    Aerobic (6! 2

    Aeration tank volume m3 $

    Hdraulic detention time H $./