bab i mekanika kuantum

16
7/30/2019 Bab I Mekanika Kuantum http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 1/16 Chapter 1 Thermal radiation and Planck’s postulate FUNDAMENTAL CONCEPTS OF QUANTUM PHYSICS  Thermal radiation: The radiation emitted by a body as a result of temperature.  Blackbody : A body that surface absorbs all the thermal radiation incident on them.  Spectral radiancy : The spectral distribution of blackbody radiation. ) ( : ) ( represents the emitted energy from a unit area per unit time between and at absolute temperature T.   1899 by Lummer and Pringsheim

Upload: pramita-sylvia-dewi

Post on 14-Apr-2018

245 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 1/16

Chapter 1 Thermal radiation and Planck’s postulate 

FUNDAMENTAL CONCEPTS OF QUANTUM

PHYSICS Thermal radiation: The radiation emitted by a body as a result of temperature.

 Blackbody : A body that surface absorbs all the thermal radiation incident on

them.

 Spectral radiancy : The spectral distribution of blackbody radiation.)(T  R :)( d R 

T  represents the emitted energy from a unit area per unit time

between and at absolute temperature T.  d 

1899 by Lummer and

Pringsheim

Page 2: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 2/16

Chapter 1 Thermal radiation and Planck’s postulate 

 The spectral radiancy of blackbody radiation shows that:

(1) little power radiation at very low frequency

(2) the power radiation increases rapidly as ν increases from very 

small value.

(3) the power radiation is most intense at certain for particular

temperature.

(4) drops slowly, but continuously as ν increases

, and

(5) increases linearly with increasing temperature.

(6) the total radiation for all ν ( radiancy )

increases less rapidly than linearly with increasing temperature.

max

)(,max T  

.0)( T  

max 

d R R T  T  )(

0

Page 3: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 3/16

Chapter 1 Thermal radiation and Planck’s postulate 

 Stefan’s law (1879): 4284

/1067.5, K  m W  T  R o 

T  

Stefan-Boltzmann constant

 Wien’s displacement (1894):  T  max

1.3 Classical theory of cavity radiation 

 Rayleigh and Jeans (1900):

(1) standing wave with nodes at the metallic surface

(2) geometrical arguments count the number of standing waves

(3) average total energy depends only on the temperature

 one-dimensional cavity:

one-dimensional electromagnetic standing wave

)2sin()

2

sin(),( 0 t 

E t x E 

Page 4: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 4/16

Chapter 1 Thermal radiation and Planck’s postulate 

for all time t, nodes at .......3,2,1,0,/2 n n x 

ancnanaa x

 x

2//2/2

0

     

standing wave

:)( d N  the number of allowed standing wave between ν and ν+dν 

d c a dn d N 

d c a dn c a n 

)/4(2)(

)/2()/2(

two polarization states

n 0

))(/2( d c a d 

)/2( c a d 

Page 5: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 5/16

Chapter 1 Thermal radiation and Planck’s postulate 

 for three-dimensional cavity

d c a dr  c a r   )/2()/2(

the volume of concentric shell dr r r 

d c 

V  d 

a dr r d N 

d c 

a d 

a v 

a dr r 

2

3

2

3

32

23222

8848

12)(

)2(4)

2()

2(44

The number of allowed electromagnetic standing wave in 3D

Proof:

nodal

planes

)2sin()/2sin(),(

)2sin()/2sin(),(

)2sin()/2sin(),(

2/cos)2/(

2/cos)2/(

2/cos)2/(

0

0

0

t z E t z E 

t y E t y E 

t x E t x E 

z z 

y y 

x x 

propagation

direction

λ/2 

λ/2 

Page 6: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 6/16

Chapter 1 Thermal radiation and Planck’s postulate 

 for nodes:

.....3,2,1,/2,,0

.....3,2,1,/2,,0

.....3,2,1,/2,,0

z z z 

y y y 

x x x 

n n z a z 

n n y a y 

n n x a x 

222

2222222

/2

)coscos(cos)/2(

cos)/2(,cos)/2(,cos)/2(

z y x 

z y x 

z y x 

n n n a 

n n n a 

n a n a n a 

d c a dr c a n n n r 

r a c n n n a c c 

z y x 

z y x 

)/2()/2(

)2/()2/(/

222

222

d c a d c a d N 

d N dr r dr r dr r N 

2323

22

)/(4)/2)(2/()(

)(2/4)8/1()(

considering two polarization state

d c V  d N 23)/1(42/)(

:/8)( 32 c N  Density of states per unit volume per unit frequency

Page 7: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 7/16

Chapter 1 Thermal radiation and Planck’s postulate 

 the law of equipartition energy:

For a system of gas molecules in thermal equilibrium at temperature T,

the average kinetic energy of a molecules per degree of freedom is kT/2,

is Boltzmann constant.K   joule k o /1038.1

23

 average total energy of each standing wave :KT  KT  

2/2 the energy density between ν and ν+dν: 

kTd c 

d T   3

28

)( Rayleigh-Jeans blackbody radiation 

ultraviolet catastrophe 

Page 8: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 8/16

Chapter 1 Thermal radiation and Planck’s postulate 

1.4 Planck’s theory of cavity radiation 

),( T   Planck’s assumption: and 0,0

kT  

 the origin of equipartition of energy:

Boltzmann distribution kT  e P kT  /)(

/

:)( d P  probability of finding a system with energy between ε and ε+dε 

kT  

kT  e kT  e kT  kT  

d kT  

e d P 

e kT  kT  

d kT  

e d P 

d P 

d P 

kT  kT  

kT  

kT  

kT  

])(|)([1

)(

1|)(1

)(

)(

)(

0

/

0

/

0 0

/

0

/

0

/

0

0

0

Page 9: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 9/16

Chapter 1 Thermal radiation and Planck’s postulate 

 Planck’s assumption:  ..............4,3,2,,0 kT  kT   ,

kT  kT   ,

kT  kT   ,

kT  0(1) small ν 

(2) large large ν 0

s  joul h 

34

1063.6

Planck constant

Using Planck’s discrete energy to find 

kT  h 

e n kT  

e kT  

e kT  

nh 

n nh 

kT  nh 

kT  nh 

/

1)(

)(

......3,2,1,0,

0

0

0

/

0

/

0

0

Page 10: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 10/16

Chapter 1 Thermal radiation and Planck’s postulate 

0

0

0

0

0

0

0

ln

e n 

e d d 

00

ln]ln[n 

n e 

d h e 

d kT  

1132

32

0

)1()1(.......1

.....1

e X X X X 

e e e e 

e X 

11)

1

1(

)]1ln([)()1ln(

/

1

kT  h e 

h e 

e h 

e d 

d h e 

d h 

01

/1

/

/

h e kT  h 

kT  kT  h e kT  h 

kT  h 

kT  h 

Page 11: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 11/16

Chapter 1 Thermal radiation and Planck’s postulate 

 energy density between ν and ν+dν:1

8)(

/3

2

kT  h T  

1

18)()()(

)()(

/52

kT  hc T  T  T  

T  T  

hc c 

d d 

Ex: Show )()/4()( T  T  

R c 

dA

dV  

224

cos

4

ˆ

dA

r Ad 

solid angle expanded by dA is

spectral radiancy:

)(4

sin4

cos)(

)/()4cos()()(

22

20

2/

0

2

0

2

T  

t c 

T  

T  T  

dr r t r 

d d 

t dAr 

dAdV  R 

Page 12: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 12/16

Chapter 1 Thermal radiation and Planck’s postulate 

Ex: Use the relation between spectral radiancy

and energy density, together with Planck’s radiation law, to derive 

Stefan’s law

d c d R T  T  )()/4()(

3245415/2, h c k T  R 

T  

4

4

3

4

2

0

3

3

4

2

0 /

3

200

15

)(2

1

)(21

2)(

4

)(

T  h 

kT  

dx e 

kT  

d c 

d R R 

kT  h T  T  T  

15/)1/(

/

4

0

3

dx e x 

kT  h x 

32

45

152

h c 

Page 13: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 13/16

Chapter 1 Thermal radiation and Planck’s postulate 

Ex: Show that  15/)1(41

0

3

dx e x x 

dy e y n dx e x dx e e x I 

e e e e 

dx e e x dx e x I 

n n 

x n 

nx x 

nx x x x 

x x x 

0

3

04

00

)1(3

00

3

0

21

1

0

31

0

3

)1(

1

.....1)1(

)1()1(

Sety x n 

e e n y x n dy dx x n y )1(33

,)1/()1/()1(

1 40 4

0

3

16

)1(

16

6

n n 

n n I 

dy e y  by consecutive partial integration

?1

14

n  n 

90

1148

18

5)(

6

1)(

4

1

4

1

4

1

2

2

4

44

2

1

2

2

n n n 

n n n x F 

n x F  :F   Fourier series expansion 

Page 14: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 14/16

Chapter 1 Thermal radiation and Planck’s postulate 

Ex: Derive the Wien displacement law ( ),T  max ./2014.0max k hc T  

15

0)1(

50)(

1

8)(

2/

/

/

/5

kT  hc 

kT  hc 

kT  hc 

T  

kT  hc T  

e x 

kT  

hc 

e d 

hc 

kT  hc x  /

x e y 

x y 

21 ,51

Solve by plotting: find the intersection point for two functions

5/11 x y 

x e y 

2

T  max

5

Y

X

intersection points:

965.4,0 x x 

k hc T   /2014.0max

Page 15: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 15/16

Chapter 1 Thermal radiation and Planck’s postulate 

1.5 The use of Planck’s radiation law in

thermometry 

(1) For monochromatic radiation of wave length λ the ratio of the spectral

intensities emitted by sources at and is given byK  T  o 

1 K  T  o 

2

1

1

2

1

/

/

kT  hc 

kT  hc 

:

:

2

1

T  

T   standard temperature ( Au )

unknown temperature

C T  o 

melting 1068

(2) blackbody radiation supports the big-bang theory. K o3

optical pyrometer

Page 16: Bab I Mekanika Kuantum

7/30/2019 Bab I Mekanika Kuantum

http://slidepdf.com/reader/full/bab-i-mekanika-kuantum 16/16

Chapter 1 Thermal radiation and Planck’s postulate 

1.6 Planck’s Postulate and its implication 

Planck’s postulate: Any physical entity with one degree of freedom whose

“coordinate” is a sinusoidal function of time

(i.e., simple harmonic oscillation can posses

only total energy

nh 

Ex: Find the discrete energy for a pendulum of mass 0.01 Kg suspended

by a string 0.01 m in length and extreme position at an angle 0.1 rad.

29

5

33

3334

5

102105

10)(106.11063.6

)(105)1.0cos1(1.08.901.0)cos1(

sec)/1(6.11.08.9

21

21

E J h E 

J mg mgh 

l g 

The discreteness in the energy is not so valid.