229972709-tugas-polimer

8
Progr ess in Organi c Coatin gs 77 (2014) 725–732 Con tents lists available at ScienceDirect ProgressinOrganicCoatings  j ourna l h ome p a g e : www.elsevier.com/locate/porgcoat Novelwaterbasedcoatingscontainingsomeconductingpolymers nanoparticles(CPNs)ascorrosioninhibitors NohaElhalawany a,,Michael A.Mossad b ,MagdyK.Zahran c a Polymers and Pigmen ts Depart ment, Natio nal Resea rch Center , Cairo, Egypt b Eagle Chemi cals Compa ny, 6th Octo ber, Egypt c Helwa n Univer sity, Cairo, Egypt art icleinfo  Article history: Rec eived 10 Mar ch 2013 Rec eived in rev ise d for m 26 Decemb er 2013 Acc ept ed 27 Dec emb er 2013 Keywords: Antic orro sive water -base d paints Condu cting polymers nano parti cles Paint formulations and minie mulsi on polymerization abstract Anewtypeof anticorrosivewater-basedpaintscontainingsomeconductingpolymersnanoparticles (CPNs)suchaspolyanisidine(PAns),poly toluid ine(PTol)andtheircopolymer (CCPNs)havebeenpre- paredand evalua ted. TheCPNsandCCPNshavebeensynthesizedviaminiemulsionpolymerization.The preparedmaterialshavebeencharacterizedbyGPC,FTIR,TEMandDSC.ThepreparedCPNsandCCPNsof differentweightpercentages(wt.%)havebeenincorporatedintopaint formulations.Ithasbeenfoundthat thepresenceof thepreparedCPNsand CCPNsinthepaintformulationshighlyenhancedtheresistance of theformedpaintlmsagainstwashability,weatheringandcorrosion. © 2014 Elsevier B.V. All r ights reserved. 1. Intr oduc ti on Cor ro s io n i s c on si de re d as t he si le nt e ne my w hi c h th re at e ns th e en dura n ce of s te el an d in fr a st r uc tu res in al l c ou n tr ies wi th - ou t e xc e pti on , l ead ing to pl a nt sh utd owns , wast e of val uab le r es ou rc es, l os s or co n ta mi na ti on of p ro du ct s , r ed uc ti on i n ef - ciency, cost ly main tena nce, and expensive over desig n. In addi tion , it also jeopar dizes saf ety and inhibits tec hnolo gic al pro gre ss, and th is involves annual losses of bi ll ion doll ars worl dwide. The con- ven tio na l ant icorrosive coati ngs which are bas ed on hea vy metals such as chromium, zinc and copper are toxi c to the envi ronment. S o t he re h as be en a need to nd s ui ta bl e c oa ti n gs w hi c h ar e e nv i- ronmenta ll y friend ly and ef fective to inhibi t corr osion of st eels. Env iron ment ally frien dly nature and hig h effec tive ness make con- duc tin g pol ymers a suitable rep lac ement of conventional coati ngs to comba t corros ion in dif fer ent env ironment s. Con duc tin g pol y- me rs can in ter ac t wi t h th e met al su bs tr at e and fo rm a pa s si ve oxide la yer to inhibit corr osion pr oc ess due to th ei r redox proper- ti es. Among these polymers is polyanil in e wh ic h ha s been wi dely stu die d due to itslowcost,ease of pro ces s, hig h con duc tiv ity , envi- ronmental stability and redox properties [1,2]. Polymericcoatings containi ng pol yan ili ne, pol ypyrro le and pol yth iop hen e hav e bee n used to prot ect steel agai nstcorrosion[3,4]. Corr osionprotect ion of Cor res pon din g aut hor . Tel .: +20 2 3337149 9; fax: +20 2 33370931. E-mail addresses: [email protected], [email protected] (N. Elha lawany ). steels using coating containingpolypyrrole/clay nanocomposi te [5] and alk yd coa tin gs con tai nin g pol yan ili ne [6] has be en we ll st ud - ied. The for mation of coatin g on act ive metals is ren der ed dif c ult by th e genera l lack of solubi li ty of cond uc ti ng polymers. Though a po pul ar r ou te , th e e le ct ro d epo si ti on of co n du ct i ng po ly me rs is a dif cu lt pr oc es s in vo l vi ng a comp li c at ed mec ha ni sm [7]. Th e mec han ism of pr ot e cti on of st ee ls us in g co n duc tin g pol y- mers ha s been well desc ri bed [8,9]. One of the import ant fa ct ors is th e ho m og en eo us di st ri bu ti on of co nd uc ti ng po lym er s in th e coating materi al. In order to obta in the homogeneous di sper sion of condu c ti n g pol yme rs i n si de of pa in t, a subs tit ue nt is i ncor - po r at ed t o f ac il i ta te th e s ol ub il i ty of th e c on du c ti ng po ly m er s [10]. The present stu dy reports the syn thesi s and cha racter iza tio n of some CPNs based on poly tolui dine, poly anisi dine and their copo ly- mer(CC PNs ) usi ng min iemuls ion pol yme riz ati on tec hnique. The prepar edCPNs and CCP Nsdispersed inan aqu eou s med iahavebeen incorporated into water ba sed pa int. The basic properti es as well as an ti co r ro s io n st ud ies of th e bl an k pa in t l ms an d pa in t l ms containi ng the pr epar ed CPNs and CCPNs have been invest igated an d ev a lu at ed . No l it e rature is avai la bl e o n t he s yn th es i s of Po ly tol uid ine, pol y anisi din e and their copol yme r via min iemuls ion or thei r use as anticorrosive inhi bitors in wa ter based pa ints . Henc e an at te mp t ha s be en ma de to s yn t he si ze th em an d to st ud y th ei r ant icorrosion pro per ties. Thu s, this pap er sho uld pav e the way for the development of new coat ing techno logi es based on th e in tro- du c ti o n of po ly to luid in e, po ly an is id in e an d th ei r co po ly me r as anticorrosive additives. 0300-9 440/ $ seefrontmatter © 2014 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.porgcoat.2013.12.017

Upload: meiimeii-puri-iqbalballz

Post on 12-Oct-2015

13 views

Category:

Documents


0 download

TRANSCRIPT

  • 5/22/2018 229972709-tugas-polimer

    1/8

    Progress in Organic Coatings 77 (2014) 725732

    Contents lists available at ScienceDirect

    Progress in Organic Coatings

    j ournal homepage : www.elsevier .com/ locate /porgcoat

    Novel water based coatings containing some conducting polymersnanoparticles (CPNs) as corrosion inhibitors

    Noha Elhalawany a,, Michael A. Mossad b, Magdy K. Zahran c

    a Polymers and Pigments Department, National Research Center, Cairo, Egyptb EagleChemicals Company, 6th October, Egyptc Helwan University, Cairo, Egypt

    a r t i c l e i n f o

    Article history:

    Received 10 March 2013

    Received in revised form

    26 December 2013

    Accepted 27 December 2013

    Keywords:

    Anticorrosive water-based paints

    Conducting polymers nanoparticles

    Paint formulations and miniemulsion

    polymerization

    a b s t r a c t

    A new type of anticorrosive water-based paints containing some conducting polymers nanoparticle

    (CPNs) such as poly anisidine (PAns), poly toluidine (PTol) and their copolymer (CCPNs) have been pre

    pared and evaluated. The CPNs and CCPNs have been synthesized via miniemulsion polymerization. Th

    prepared materials have been characterized by GPC, FTIR, TEM and DSC. The prepared CPNs and CCPNs o

    different weight percentages (wt.%) have been incorporated into paint formulations. Ithasbeen found tha

    the presence ofthe prepared CPNs and CCPNs in the paint formulations highly enhanced the resistanc

    ofthe formed paint films against washability, weathering and corrosion.

    2014 Elsevier B.V. All rights reserved

    1. Introduction

    Corrosion is considered as the silent enemy which threatens

    the endurance of steel and infrastructures in all countries with-

    out exception, leading to plant shutdowns, waste of valuable

    resources, loss or contamination of products, reduction in effi-

    ciency, costly maintenance, and expensive over design. In addition,

    it also jeopardizes safety and inhibits technological progress, and

    this involves annual losses of billion dollars worldwide. The con-

    ventional anticorrosive coatings which are based on heavy metals

    such as chromium, zinc and copper are toxic to the environment.

    So there has been a need to find suitable coatings which are envi-

    ronmentally friendly and effective to inhibit corrosion of steels.

    Environmentally friendly nature and high effectiveness make con-

    ducting polymers a suitable replacement of conventional coatings

    to combat corrosion in different environments. Conducting poly-

    mers can interact with the metal substrate and form a passive

    oxide layer to inhibit corrosion process due to their redox proper-

    ties. Among these polymers is polyaniline which has been widely

    studied due to its lowcost, ease of process, high conductivity, envi-

    ronmental stability and redox properties [1,2]. Polymeric coatings

    containing polyaniline, polypyrrole and polythiophene have been

    used to protect steel against corrosion[3,4]. Corrosionprotection of

    Corresponding author. Tel.: +20 2 33371499; fax: +20 2 33370931.

    E-mail addresses:[email protected], [email protected]

    (N. Elhalawany).

    steels using coating containingpolypyrrole/clay nanocomposite [5

    and alkyd coatings containing polyaniline [6] has been well studied. The formation of coating on active metals is rendered difficul

    by the general lack of solubility of conducting polymers. Thoug

    a popular route, the electrodeposition of conducting polymer

    is a difficult process involving a complicated mechanism [7

    The mechanism of protection of steels using conducting poly

    mers has been well described [8,9]. One of the important factor

    is the homogeneous distribution of conducting polymers in th

    coating material. In order to obtain the homogeneous dispersion

    of conducting polymers inside of paint, a substituent is incor

    porated to facilitate the solubility of the conducting polymer

    [10].

    The present study reports the synthesis and characterization o

    some CPNs based on polytoluidine, polyanisidine and their copoly

    mer (CCPNs) using miniemulsion polymerization technique. Th

    preparedCPNs and CCPNsdispersed inan aqueous mediahavebeen

    incorporated into water based paint. The basic properties as wel

    as anticorrosion studies of the blank paint films and paint film

    containing the prepared CPNs and CCPNs have been investigated

    and evaluated. No literature is available on the synthesis of Pol

    toluidine, poly anisidine and their copolymer via miniemulsion o

    their use as anticorrosive inhibitors in water based paints. Henc

    an attempt has been made to synthesize them and to study thei

    anticorrosion properties. Thus, this paper should pave the way fo

    the development of new coating technologies based on the intro

    duction of polytoluidine, poly anisidine and their copolymer a

    anticorrosive additives.

    0300-9440/$ seefrontmatter 2014 Elsevier B.V. All rights reserved.

    http://dx.doi.org/10.1016/j.porgcoat.2013.12.017

    http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.porgcoat.2013.12.017http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.porgcoat.2013.12.017http://www.sciencedirect.com/science/journal/03009440http://www.elsevier.com/locate/porgcoatmailto:[email protected]:[email protected]://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.porgcoat.2013.12.017http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.porgcoat.2013.12.017mailto:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.porgcoat.2013.12.017&domain=pdfhttp://www.elsevier.com/locate/porgcoathttp://www.sciencedirect.com/science/journal/03009440http://localhost/var/www/apps/conversion/tmp/scratch_2/dx.doi.org/10.1016/j.porgcoat.2013.12.017
  • 5/22/2018 229972709-tugas-polimer

    2/8

    726 N. Elhalawany et al. / Progress in Organic Coatings 77 (2014) 725732

    2. Experimental

    2.1. Materials

    O-toluidine (99.5%) (Tol) and dodecyl benzene sulfonic acid

    (DBSA) have been supplied from SigmaAldrich Company, USA. O-

    anisidine (99.5%) (Ans) has been supplied from MERCK, Germany.

    Styrene (St) has been supplied from (ARKEMA CANADA Inc.) and

    used as essential monomer. Butyl acrylate monomer (BA), Sodiummetabisulfite (SMBS) and Plurafac LF 901 (nonionic fatty acid

    alkoxylate surfactant) have been supplied from BASF Company,

    Germany. Emulsogen EPA 073 (Sodium alkyl ether sulfate surfac-

    tant) has been supplied from Clariant International Ltd., Muttenz,

    Switzerland. Ammoniumpersulphate (APS, 99%)has been supplied

    from AKKIM Company, Turkey. Calcium carbonate filler has been

    supplied from Al-Faltas Company, Cairo, Egypt. Titanium dioxide

    (under the trade name rutile R-902), has been supplied from Du-

    pont Company, Wilmington, USA and used as the main pigment.

    Ammonia has been used as pH stabilizers andsupplied from CHIMI

    ART Chemicals Company, Cairo, Egypt. Tylose (under the trade

    name Tylose H 30000YP2) has been used as thickening agent and

    supplied from GmbH & Co.KG Company, Kapfenberg, Austria. Tex-

    anol, WD-EAGLE (AS 40/40) and Tetra potassium pyrophosphate

    has been supplied from Eastman Chemical Company, Melbourne,

    Australia, Eagle Chemicals Company,6th October,Egypt andEnergy

    Chemical Company, China respectively. Anti-foaming agent and

    antibacterial agent (Acticide HF) have been purchased from Mnz-

    ing Chemie, Germany and Clariant International Ltd., Muttenz,

    Switzerland respectively.

    2.2. Preparation of the CPs

    2.2.1. Synthesis of poly toluidine (PTol)

    Tol and DBSA of ratio (1:1) have been mixed in water and iso-

    propanol (IPA) mixture of ratio (3:1) respectively under continuous

    vigorous stirring using a homogenizer at 10,000rpm for 5 min to

    form theminiemulsion.A 25ml of (1%)ammonium persulfate(APS)solution has been added dropwisely to the former miniemulsion

    under continuous vigorous stirringat 10,000 rpm for further 10 min

    at room temperature. A color change from white to brownish red

    then to dark pink has been observed. At the final stage of polymer-

    ization, a dark pink stable PTol/DBSA dispersion has been obtained

    as shown in Fig. 1. The produced stable dispersion of PTol has been

    cooled below 25 C and then kept for further use.

    2.2.2. Synthesis of polyanisidine (PAns)

    The same procedure as previously mentioned has been made to

    prepare a stable dark green colloidal dispersion of PAns. A color

    change from white to pale green then to dark green has been

    observed. Finally, a dark green stable PAns/DBSA dispersion has

    been obtained as shown in Fig. 2. The produced stable dispersionof PAns has been cooled below 25C and then kept for further use.

    2.2.3. Synthesis of the conducting copolymer nanoparticles

    (CCPNs)

    (Tol) and (Ans) monomers of feed composition (1:1) have been

    mixed in 1% DBSA surfactant dissolved in water and isopropanol

    (IPA) mixture of ratio (3:1) respectively under continuous vigor-

    ous stirring at 10,000rpm for 5min using a homogenizer to form

    the miniemulsion. A 25ml of (1%) APS solution has been added

    dropwisely to the former miniemulsion under continuous vigor-

    ous stirring at 10,000rpm for further 10min at room temperature.

    A color change from white to pale brown then to dark brown has

    been observed. At the final stage of copolymerization, a brown sta-

    ble P(Tol-co-Ans)/DBSA dispersion has been obtained as shown in

    Fig. 1. Stable dark pink PTol/DBSA colloidal dispersion.

    Fig. 3. The produced stable dispersion has been cooled below 25C

    and kept for further use.

    2.2.4. Synthesis of (St/BA) emulsion

    Semi-continuous emulsion copolymerization has been carried

    out on a semi-pilot scale at Research and development depart-

    ment, Eagle chemicals company, Egypt, in three Liters stainless

    steel reactor equipped with a reflux condenser, a thermometer,

    threedropping funnels anda mechanical stirrer. Only8% of thetotal

    monomermixture hasbeen introduced at thebeginning of thereac-

    tion at 65C and the remaining monomer mixture has been added

    dropwisely at 802 during the remaining time. Redox system of

    Tetra butyl hydroperoxide and Sodium metabisulfite (SMBS) have

    been added after 30min from addition of monomers at 65C. Emul-

    sion copolymerization has been carried out for 4 h under nitrogen

    gas conditions according to the recipe shown in Table 1. The pro-

    duced latex has been filtered, cooled below 30C and then keptfor

    further use.

    Fig. 2. Stabledark green PAns/DBSA colloidal dispersion.

  • 5/22/2018 229972709-tugas-polimer

    3/8

    N. Elhalawany et al. / Progress in OrganicCoatings77 (2014) 725732 72

    Fig. 3. Stable dark brown P(Ans-co-Tol) DBSA colloidal dispersion.

    2.3. Characterization of the prepared materials

    FT-IR analysis of the prepared materials has been carried out

    at Infra-Red unit, Central service labs, National Research Center

    (NRC) using FT-IR-6100, Japan. The molecular weight determi-

    nation has been made using GPC, Agilent 1100 series, Germany.

    Thermal analysis for the prepared materials has been carried outat

    Thermal Analysis unit, Central service labs, (NRC) using Diamond

    DSC Perkin Elmer, USA. Samples have been measured using trans-

    mission electron microscope TEM + DEM Joel-JEM 1230, Japan at

    Electron Microscope Lab, Physics Department (NRC).

    2.4. Paint film testing

    Paint film testing has been used to confirm some basic physical

    properties of thecoatings afterit is applied anddried. The resistance

    of the paint films to corrosion has been also examined.

    2.4.1. Physical properties

    The gloss, whiteness, and opacity of paint films have been

    measured in accordance with ASTM D 523-89 (1999) using

    Spectromatch Gloss 45/0 from Sheen-Instruments Company.

    Mandrel-Bending tester from BYK-Gardner Company has been

    used to measure a range of elongation of a dry paint film

    in accordance with AST M D 522-93a (2001). The hardness of

    Table 1

    Raw materials of emulsion copolymerization.

    Raw materials Wt. in grams

    Initial reactor charge

    De-ionized water 600

    Plurafac LF901 10

    Emulsogen EPA 073 4

    Monomer mixture

    Water 350

    Plurafac LF901 35

    Emulsogen EPA 073 32

    Styrene 620

    Butylacrylate 530

    Initiator mixture

    Tetra butyl hydroperoxide 0.7

    Sodium metabisulphite 0.5

    paint has been evaluated in accordance with ASTM D 4366-9

    with Pendulum Hardness Rocker tester; model 707 KONIG from

    Sheen-Instruments. The adhesion power of paint film to the bas

    substrates has been tested in accordance with ASTM D 3359-9

    using the cross-cut test instrument-Sheen Company. CHOC Vari

    able Impact Tester from Braive Instruments has been used t

    measure resistance of organic coatings to theeffects of rapid defor

    mation (Impact) in accordance with ASTM D 2794 93 (1999).

    2.4.2. Weathering resistance test

    Weathering-resistance and light stability test has been mea

    sured in accordance with ISO 4892-3 by Accelerated Weatherin

    Tester, Model QUV/Spray with solar eye Irradiance control from Q

    Lab Corporation, USA. To simulate outdoor weathering, the QUV

    tester exposes materials to alternating cycles of UV light and mois

    ture at controlled elevated temperatures. It simulates the effects o

    sunlight using special fluorescent UV lamps(Type: UVA 340)which

    give the best simulation of sunlight in thecritical short wavelength

    regionfrom365nm down tothe solarcut-offof 295 nm. Itsimulate

    dew and rain with condensing humidity and/or water spray.

    2.5. Corrosion studies

    The corrosion study has been carried out with hand-mad

    equipment developed in Research and Development Department

    Eagle Chemical Company, Egypt. Air bubbles have been allowed

    to go through an aggressive solution medium which consists o

    an aqueous solution of NaCl (3.5wt.%). The painted steel panel

    have been scratched with a sharp blade to obtain X-cut through

    thecoatingunder test.The panelshavebeen immersed inthe abov

    solutionmedium (artificial seawater)for 28 days. At thistime, thes

    panels have been washed with distilled water and dried.

    3. Results and discussion

    The prepared (CPNs) and their copolymer (CCPNs) should b

    dissolved in water/alcohol mixture to be compatible and suitabl

    for use in waterborne systems. Solubility of conducting polymer(CPs) has gained special importance, both scientifically and com

    mercially. Cao et al. [11] in 1992 used functionalized protoni

    acids to convert polyaniline (PANI) into the metallic form and

    simultaneously, render the resulting PANI complex soluble in com

    mon organic solvents. The functionalized counter ion acts like

    surfactant in that the charged head group is ionically bound t

    the oppositely charged protonated PANI chain, and the tail i

    chosen to be compatible with nonpolar or weakly polar organi

    liquids [1214]. This approach is also known as counter-ion

    induced processability. In this manuscript, the polymerization o

    aniline derivatives (toluidine and anisidine) and their copolyme

    in presence of protonic acid such as DBSA has been described i

    Schemes 1 and 2, respectively.

    The molecular weight (M.wt) determination of the prepare(CPNs)and their copolymer(CCPNs) hasbeen done using GPC tech

    nique. It has been found that the prepared PTol, Pans and thei

    copolymer (CCPNs) have low molecular weight of (7307, 6878 an

    8195) and a polydispersity index (Dw/Dn) of (1.9, 1.3 and 1.5)

    respectively. WhereDwis the weight average particle diameter and

    Dnis the number average particle diameter.

    3.1. Characterization of the prepared materials

    3.1.1. FT-IR spectra of the prepared CPs

    Fig. 4 shows the FT-IR of the prepared CPNs and their CCPNs

    It shows the main peaks characteristic of PTol and PAns as thos

    described in literature for poly aniline [15,16]. The peaks charac

    teristic of PTol and PAns can be assigned as follows: C C stretchin

  • 5/22/2018 229972709-tugas-polimer

    4/8

    728 N. Elhalawany et al. / Progress in Organic Coatings 77 (2014) 725732

    Scheme 1. Polymerizationof toluidine and/oranisidine in presence of DBSA.

    of benzene rings at 1400 and 1440cm1, C N stretching of aro-

    matic amines at 1255cm1 and the bands at 1660 and 1661cm1

    assigned to the non-symmetric benzene ring stretching mode (the

    ring stretching in quinoid unit and ring stretching in benzenoid

    one). The bands at 2926 and 1497cm1 are assigned to CH3 and

    OCH3groups of PTol and PAns, respectively. FT-IR spectrum of the

    copolymer has shown the same characteristic peaks as previously

    mentioned but they are slightly shifted due to copolymerization.

    3.1.2. Transmission electron microscope (TEM) of the prepared

    CPs and their copolymer

    Fig. 5ac shows the TEM micrograph of the prepared PTol, Pans

    and their copolymer, respectively. It is clearly seen from themicro-graphs 5a and 5b that the morphology of the prepared PTol has

    nano-sphere structure in the size ranging from 62nm to 115nm

    and the morphology of the prepared PAns has nano-rod structure

    in the size ranging from 96nm to 114nm. Finally, micrograph 5chas confirmed that the morphology of the prepared copolymer has

    both the nanosphere and nano-rod structures at the same time

    indicating the formation of the copolymer.

    Fig. 4. FT-IR spectra of thepreparedCPNs and their copolymer.

    3.1.3. Differential scanning calorimetric analysis (DSC)

    Fig. 6 shows the DSC analysis of CE containing the preparedCCPNs.It is well knownfrom the literature that theDSC exothermic

    peak corresponding to decomposition temperature of the tradi-

    tional styrene/butylacrylate copolymer is low [17]. As a result of

    the presence of the conducting copolymer nanoparticles (CCNs)

    higher decompositiontemperaturehas beenobtained. The DSC dia-

    gram shows one exothermic peak indicating the compatibility of

    the St/BA emulsion with the present CCPNs.

    Scheme 2. Copolymerization of toluidine (Tol) and anisidine(Ans) in presence of DBSA.

  • 5/22/2018 229972709-tugas-polimer

    5/8

    N. Elhalawany et al. / Progress in OrganicCoatings77 (2014) 725732 72

    Fig. 5. TIM of thestable colloidal dispersions of (a)PToL, (b)PAns and (c) P(Ans-co-ToI).

    Fig. 6. DSC diagram of CE containing CCPNs.

    3.2. Water based paint formulations

    The binder used here is the St/BA emulsion (solid content

    50%). St/BA latex specification is shown in Table 2. St/BA emulsion

    has been simply blended with the prepared PTol, PAns and their

    copolymer (1:1 composition) to give the corresponding compos-

    ite emulsions CE1, CE2 and CE3, respectively. Blank, CE1, CE2 and

    CE3 samples have been incorporated into paint formulations. Each

    composite emulsion consists of four different samples having four

    different concentrations (1.5%, 3%, 6% & 9%) of total paint formula-

    tion respectively. The detailed paint formulationsof the blank,CE1

    ,

    Table 2

    St/BA latex specifications.

    Latex specification

    State Liquid

    Color Milky white

    Av. (M.wt.) 289,360 g/mol

    Non-volatile content by weight (%) 50% 1

    Viscosity (Brookfield) Spindle4 at 23 C ( C Ps) 1000-5000

    pH 7-8

    MFFT, (C) (minimum film forming temperature) 18

    Specific gravity (g/ml) 1.06

    Particle size (m) 0.1

    Water solidification temperature 0 C

    Water vapor temperature 100 C

    Table 3Blank paint formulation.

    Composition Weight (g)

    Water 200

    Tetra potassium pyrophosphate 2

    WD-EAGLE (AS4/40) 3

    Texanol 4

    Antifoaming agent 6

    Tylose H30,000 3

    Ammonia 2

    Titanium dioxide 150

    CaCo3 25

    Binder 50% 600

    HF antibacterial agent 5

    Total 1000

    CE2 and CE3 samples are represented in Tables 36, respectively

    Each paint has been applied on steel, tin and glass panels and dried

    at room temperature for 1 week before the measurements.

    3.3. Physico-mechanical tests

    The physico-mechanical test results of the paint films of blank

    CE1, CE2 and CE3samples after one week from dryness have been

    measured and tabulatedin Tables 79. The data shownin thetable

    indicate that the presence of CPNs and CCPNs in the film paint

    has not affected too much the basic properties of the resultan

    Table 4

    Emulsion paint formulationsof CE1samples.

    Composition CE1

    A1 A2 A3 A4

    Water 185 170 140 110

    Tetra potassium pyrophosphate 2 2 2 2

    WD-EAGLE (AS4/40) 3 3 3 3

    Texanol 4 4 4 4

    Antifoaming agent 6 6 6 6

    Tylose H30,000 3 3 3 3

    Ammonia 2 2 2 2

    Titanium dioxide 150 150 150 150

    CaCo3 25 25 25 25

    St/BA emulsion 600 600 600 600

    HF antibacterial 5 5 5 5

    Poly toluidine (PTol) 15 30 60 90

    Total 1000 g 1000 g 1000 g 1000 g

  • 5/22/2018 229972709-tugas-polimer

    6/8

    730 N. Elhalawany et al. / Progress in Organic Coatings 77 (2014) 725732

    Table 5

    Emulsion paint formulationsof CE2 samples.

    Composition CE2

    B1 B2 B3 B4

    Water 185 170 140 110

    Tetra potassium pyrophosphate 2 2 2 2

    WD-EAGLE (AS4/40) 3 3 3 3

    Texanol 4 4 4 4

    Antifoaming agent 6 6 6 6

    Tylose H30,000 3 3 3 3

    Ammonia 2 2 2 2

    Titanium dioxide 150 150 150 150

    CaCo3 25 25 25 25

    St/BA emulsion 600 600 600 600

    HF antibacterial agent 5 5 5 5

    Poly anisidine (PAns) 15 30 60 90

    Total 1000 g 1000 g 1000 g 1000 g

    Table 6

    Emulsion paint formulationsof CE3 samples.

    Composition CE3

    C1 C2 C3 C4

    Water 185 170 140 110

    Tetra potassium pyrophosphate 2 2 2 2

    WD-EAGLE (AS4/40) 3 3 3 3

    Texanol 4 4 4 4

    Antifoaming agent 6 6 6 6

    Tylose H30,000 3 3 3 3

    Ammonia 2 2 2 2

    Titanium dioxide 150 150 150 150

    CaCo3 25 25 25 25

    St/BA emulsion 600 600 600 600

    HF antibacterial agent 5 5 5 5

    Poly(toludiene-co-anisidine) (1:1) 15 30 60 90

    Total 1000 g 1000 g 1000 g 1000 g

    Table 7

    Physico-mechanical properties of paint films of theblank and CE1samples.

    Test Blank A1 A2 A3 A4

    Adhesion 4B 5B 5B 5B 5BHardness 60 65 73 76 79

    Bending Pass Pass Pass Pass Pass

    Impact 100/15 100/15 100/15 100/15 100/15

    Gloss 51.3 50.5 49 51.8 50

    Opacity 93.8% 95.3 96% 98% 98.1%

    Whiteness 79.3 70.1 66.9 64.5 62.1

    Washability 1100 1350 2500 3500 3450

    Table 8

    Physico-mechanical properties of paint films of CE2samples.

    Test B1 B2 B3 B4

    Adhesion 5B 5B 5B 5B

    Hardness 68 77 82 80

    Bending Pass Pass Pass Pass

    Impact 100/15 100/15 100/15 90/9

    Gloss 49 47 47 45Opacity 94% 94% 95% 96.2%

    Whiteness 75.6 68.7 67.2 66.7

    Washability 1750 3000 3700 3750

    Table 9

    Physico-mechanical properties of paint films of CE3samples.

    Test C1 C2 C3 C4

    Adhesion 5B 5B 5B 5B

    Hardness 75 78 80 80

    Bending Pass Pass Pass Pass

    Impact 100/15 100/15 100/15 100/15

    Gloss 49 48 49 47

    Opacity 94% 95.2% 94.5% 95.2%

    Whiteness 70.7 62.1 61 60.2

    Washability 2100 2800 3500 3300

    Table 10

    Weathering test results of thetested film paints.

    Sample After 250 h After 500 h

    E E

    Blank 2.44 7.73

    A1 4.1 6.84

    A2 1.36 4.84

    A3 1.65 3.9

    A4 1.9 6.84

    B1 3.87 7.2B2 0.84 2.3

    B3 0.64 1.82

    B4 0.75 3.12

    C1 1.69 2.87

    C2 1.19 2.66

    C3 1.03 1.92

    C4 1.75 3.45

    final paint. In addition, washability is highly increased due to the

    presence of the prepared CPNs and CCPNs.

    3.4. Weathering resistance test

    Most weathering damage is caused by three factors: light, high

    temperatureandmoisture.Anyoneofthesefactorsmay causedete-rioration. Together, they often work synergistically to cause more

    damage than any one factor alone.

    Weathering test results of the paint films of blank, CE1, CE2and

    CE3samples are shown in Table 10. It is obvious from Table 10 that

    the color differencesEincrease as thetime of exposure increases.

    It is also obvious that the best results are for the paint formu-

    lations of samples A3, B3 and C3 where the color differences E

    between the tested sample and the standard sample are the least.

    This confirms that incorporationof theprepared CPNs and CCPNs in

    the blank paint formulation makes the paint films acquire higher

    weathering resistance than those of paint formulations based on

    St/BA emulsion alone.

    3.5. Corrosion resistance test

    To examine the corrosion resistance, different steel panels have

    been painted with different paint formulations based on the blank,

    CE1, CE2 and CE3 samples. After drying for one week, they have

    been immersed in artificial seawater for 28 days. The results are

    given in Table 11. The painted metal plates have been detected for

    blistering resistance of coating films and degree of rusting of metal

    surface under paint films. Corrosion progress on metal plates under

    paint films of the blank, CE1, CE2 and CE3 samples is represented

    photographically in Figs.711, respectively.As shown from the fig-

    ures and data given in Table 11, the corrosionresistance of thesteel

    panels painted with all the tested samples increases as the concen-

    tration of the CPNs and CCPNs in the paint increases up to (6%)

    and after that the corrosion resistance starts to decrease. Coatingscontaining the CPNS and CCPNs function as both a barrier and an

    oxidant for the steel substrate, i.e. formation of passive oxide film

    on the steel surface results from redox reaction at the steel and

    polymer interface [18].

    When theconcentrations of theCPNs andCCPNs reach themax-

    imum of 9%, the anticorrosion properties decrease and this may be

    attributed to the formation of intermolecular crosslinks between

    thepolymeric chains which hinder the flowof electrons and conse-

    quently the redox reaction at the steeland polymer interface. When

    thepaint contains 6% of thepreparedCPNs and/orCCPNscorrosion,

    resistance maximizes. This explains why the steel panels have lit-

    tle tarnished surface, while the other paint formulations especially

    with lower concentrations (1.5, 3%) of CPNs and CCPNs show weak

    corrosion resistance as shown in Figs. 8 and 9. Maximum failure is

  • 5/22/2018 229972709-tugas-polimer

    7/8

    N. Elhalawany et al. / Progress in OrganicCoatings77 (2014) 725732 73

    Table 11

    Corrosion resistance tests of thepainted steel panels.

    Test Blank Group CE1 Group CE2 Group CE3

    A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4

    Degreeof rustinga 2.5 5.5 6 9.8 9 6.5 7.5 9.8 8 6.5 8 9.9 9.5

    Degree of blisteringb D MD 4MD 9F MD 7F 9F 9F 7F 6MD 8F 9F 8.5F

    Total anticorrosion efficiency (%) 25 55 60 98 90 65 75 98 80 65 80 99 95

    a It is rating of rust as area percentage; it is graded on a scale from 10 to 0, where 10< 0.01% and 0, 100% according to ASTM D 610(2001).

    b Itis gradedon a scale from10 to0, where 10 noblistering and 0 for largest blistersand frequently denoted byF, M, MD, andD (few, medium, medium dense and denseaccording to ASTM D 714-87 (2000).

    Fig. 7. Corrosion test of steel panel painted with blank paint sample.

    obviously obtained with the blank paint sample, where severe cor

    rosion (rating 2.5) and D blisters have been observed as seen from

    Fig. 7 and Table 11.

    With respect to the panels painted with A3, B3and C3samples

    theresults show that maximum corrosion resistance is forthe pan

    els painted with sample C3. They have very little tarnished surfac

    (rating9) withnegligibleblistersof 9F degree, as shown fromFig.10

    and data in Table 11.

    It is worth mentioning that all panels painted with the sam

    ples containing the CCPNs have much better corrosion resistanc

    than those painted with samples containing the neat PAns or neaPTol nanoparticles. The enhanced corrosion protection effect of th

    CCPNs in the form of coating on steel surface is attributed to th

    greater barrier performance and the more involvement of CCPN

    in the oxide formation due to combination of the redox catalyti

    property of PAns and PTol at the same time. The porosity of th

    coating is another important factor that affects the initiation and

    progress of corrosion under the coating [19]. The enhanced barrie

    performance of the CCPNs coatings is attributed to the dense film

    of the CCPNs coating on the steel substrate.

    Fig. 8. Corrosion test of the steel panelspainted with CE samples. ((a) Ai, (b) Bi and (c) Ci having thesame concentration of 1.5%.)

    Fig. 9. Corrosion test ofthe steel panels painted with the CE samples. ((a) A, (b) B and (c) C having the same concentration of 3%.)

  • 5/22/2018 229972709-tugas-polimer

    8/8

    732 N. Elhalawany et al. / Progress in Organic Coatings 77 (2014) 725732

    Fig. 10. Corrosion test ofthe steel panels painted with the CE samples. ((a) Ai, (b) B3 and (c) C3 having the sameconcentration of6%.)

    Fig. 11. Corrosion testof the steel panels painted with the CE samples.((a)A4, (b) 64 and (c) C4 having the same concentration of 9%.)

    4. Conclusion

    In this work, a new type of anticorrosive water-based paints

    has been prepared by incorporation of the prepared (CPNs)

    and their (CCPNs) in the blank paint formulation based on

    styrene/butylacrylate emulsion as a binder. It has been found from

    the data given in the tables and figures that incorporation of CPNs

    and their CCPNs in the blankpaintformulation make the paintfilms

    acquire higher resistance against washability, weathering and cor-

    rosion than those of paint formulation based on St/BA emulsion

    alone. The anticorrosion properties of the painted films containing

    the CCPNs have given the best results due to their enhanced bar-

    rier effect and greater involvement in oxide film formation which

    results from dual redox catalytic effect of the CCPNs. It is expected

    that such a newtype of emulsion paint containing CPNs andCCPNs

    is to be used as an architectural paint to reducethe consumption of

    the petroleum resources in the field of paint industry and to pave

    the way for the development of new coating technologies. As far

    as we know, none of the commercial paints developed up to date

    has achieved any of these characteristics and no applied usage of

    compositeemulsions containing PTolor PAnsnanoparticles or their

    CCPNs has been reported.

    Acknowledgement

    The authors wish to thank Research and development depart-

    ment, Eagle Chemicals Company, 6th October City, Egypt for

    generous and sincere assistance in carrying out some of the nec-

    essary investigations and analysis in this work.

    References

    [1] A. Tale, P. Passiniem i, O. Fo rs n , S . Ylsaar i, Sy nt he tic Met als 85 (1997)13331334.

    [2] W.S.Araujo,P. Margarit,M. IFerreira, O.R.Mattos,P.L. Neto,Electrochimica Acta46 (2001) 13071312.

    [3] E. Armelin, R. Pla, F. Liesa, X. Ramis, J.I. Iribarren, C. Alemn, Corrosion Science50 (2008) 721728.

    [4] C. Ocampo, E. Armelin, F. Liesa, C. Alemn, X. Ramis, J.I. Iribarren, Progress inOrganic Coatings 53 (2005) 217.

    [5] J.M. Yeh, C.P. Chin, S. Chang, Journal of Applied Polymer Science 88 (14) (2003)3264.

    [6] G.S. Goncalves, Synthetic Metals 161 (2011) 313323.[7] M.A. Lucio Garca, M.A. Smit, Journal of Power Sources 158 (2006)

    397402.[8] A. Cook, A. Gabriel, D. Siew, N. Laycock, Current Applied Physics 4 (2004)

    133136.[9] R.M. Torresi, S.D.Souza, J.E.P. Silva,S.I.C. Torresi, Electrochimica Acta 50 (2005)

    22132218.[10] L.G. Xu, S.C. Ng, H.S.O. Chan, Synthetic Metals 123 (2001) 403410.[11] Y. Cao, P. Smith,A.J. Heeger, Synthetic Metals 48 (1992) 9197.[12] A.J. He eger, Angewandte Chem ie In ter nation al E dition 40 (14) (2001)

    2591.[13] L. Shao, J. Qiu, M. Liu, H. Feng, L. Lei, G.Zhang, Y. Zhao, C. Gao,L. Qin,Synthetic

    Metals 161 (2011) 806811.[14] N.R. Elhalawany, Y. Maximenko, Z. Yamani, S.T. Yau, M.H. Nayfeh, Journal of

    Materials Research 28 (2) (2013) 28.[15] B.J. Kim, S.G. Oh, M.G. Han, S.S. Im, Synthetic Metals 122 (2001) 297.[16] S.T. Selvan, A. Mani, K. Athinarayanasamy, K.L. Phani, S. Pitchumani, Materials

    Research Bulletin 30 (1995) 699.[17] H.J. Nagash, A. Karimzadeh, A.R. Momeni, A. Reza, M.H. Alian, Turkish Journal

    ofChemistry31 (2007) 257269.[18] J. Alam, U. Riaz, S. Ahmad, Current Applied Physics 9 (2009) 8086.[19] N. Tanveer, M. Mobin,Journal of Minerals & MaterialsCharacterization & Engi-

    neering 10 (8) (2011) 735753.

    http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0095http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0090http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0085http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0080http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0075http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0070http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0065http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0060http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0055http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0050http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0045http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0040http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0035http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0030http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0025http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0020http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0015http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0010http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005http://refhub.elsevier.com/S0300-9440(13)00335-4/sbref0005