metode analisis geofisika.doc

9
Punya dhee2 a=input('masukkan nilai a:'); fprintf('nilai a adalah %g',a); f=input('masukkan nilai f:'); fprintf('nilai f adalah %g',f); t=input('masukkan nilai t:'); fprintf('nilai t adalah %g',t) fase=input('masukkan nilai fase:'); phase=(fase*pi)/180; T=0:.1:t; y=a*(sin((2*pi*f*T)+phase)); n=t; for i=1:n s(i)=1 end subplot(311); plot(T,y); subplot(312); stem(s); subplot(313); stem(T,y); punya astha %---------------------------------- %Program Digitalisasi Fungsi Sinus %Oleh : Astha Dandari (11792) %---------------------------------- clear all; clc; disp('-------------------------------'); disp('Program Fungsi Sinus'); disp('-------------------------------'); a = input('Nilai Amplitudo (a) = '); %input amplitudo f = input('Nilai Frekuensi (f) = '); %input frekuensi t = input('Time (t) = '); %input waktu Q = input('Fase (Q) = '); %input fase phase=(Q*pi)/180; T = 0:.1:t; %waktu dari 0 sampai t y = a*sin((2*pi*f*T)+phase); %fungsi sinus n=t; for i=1:n s(i)=1 end subplot(3,1,1); plot(T,y); %penggambaran grafik fungsi sinus title('Grafik Fungsi Sinus'); xlabel('t'); ylabel('y(t)'); subplot(3,1,2); stem(s); subplot(3,1,3); stem(T,y); %penggambaran nilai fungsi waktu diskrit title('Grafik Hasil Digitalisasi'); xlabel('t'); ylabel('yi'); grid on PROGRAM FILTER %FILTERING f1=20; a1=1.0; f2=35; a2=0.75; f3=15; a3=1.25; f4=40; a4=0.60; f5=50; a5=1.5; f6=25; a6=1.15; %waktu sampling, frek cut off, jumlah data sampling dt=0.001; n=512; FL=15; FH=45; %jumlahan fungsi sinus for i=1:n; s1(i)=a1*sin(2*pi*f1*dt*(i-1)); s2(i)=a2*sin(2*pi*f2*dt*(i-1));

Upload: farhan-binar-sentanu

Post on 28-Dec-2015

32 views

Category:

Documents


0 download

DESCRIPTION

responsi mag

TRANSCRIPT

Page 1: metode analisis geofisika.doc

Punya dhee2a=input('masukkan nilai a:');fprintf('nilai a adalah %g',a);f=input('masukkan nilai f:');fprintf('nilai f adalah %g',f);t=input('masukkan nilai t:');fprintf('nilai t adalah %g',t)fase=input('masukkan nilai fase:');phase=(fase*pi)/180;T=0:.1:t;y=a*(sin((2*pi*f*T)+phase));n=t;for i=1:n s(i)=1endsubplot(311);plot(T,y);subplot(312);stem(s);subplot(313);stem(T,y);

punya astha%----------------------------------%Program Digitalisasi Fungsi Sinus%Oleh : Astha Dandari (11792)%---------------------------------- clear all;clc; disp('-------------------------------');disp('Program Fungsi Sinus');disp('-------------------------------'); a = input('Nilai Amplitudo (a) = '); %input amplitudof = input('Nilai Frekuensi (f) = '); %input frekuensit = input('Time (t) = '); %input waktuQ = input('Fase (Q) = '); %input fase phase=(Q*pi)/180;T = 0:.1:t; %waktu dari 0 sampai ty = a*sin((2*pi*f*T)+phase); %fungsi sinusn=t;for i=1:n s(i)=1end

subplot(3,1,1);plot(T,y); %penggambaran grafik fungsi sinustitle('Grafik Fungsi Sinus');xlabel('t');ylabel('y(t)');subplot(3,1,2);stem(s);subplot(3,1,3);stem(T,y); %penggambaran nilai fungsi waktu diskrittitle('Grafik Hasil Digitalisasi');xlabel('t');ylabel('yi');grid on

PROGRAM FILTER%FILTERINGf1=20; a1=1.0;f2=35; a2=0.75;f3=15; a3=1.25;f4=40; a4=0.60;f5=50; a5=1.5;f6=25; a6=1.15;%waktu sampling, frek cut off, jumlah data samplingdt=0.001; n=512;FL=15;FH=45;%jumlahan fungsi sinusfor i=1:n; s1(i)=a1*sin(2*pi*f1*dt*(i-1)); s2(i)=a2*sin(2*pi*f2*dt*(i-1)); s3(i)=a3*sin(2*pi*f3*dt*(i-1)); s4(i)=a4*sin(2*pi*f4*dt*(i-1)); s5(i)=a5*sin(2*pi*f5*dt*(i-1)); s6(i)=a6*sin(2*pi*f6*dt*(i-1)); s=s1+s2+s3+s4+s5+s6;endsubplot (7,1,1); plot(s1);subplot (7,1,2); plot(s2);subplot (7,1,3); plot(s3);subplot (7,1,4); plot(s4);subplot (7,1,5); plot(s5);subplot (7,1,6); plot(s6);subplot (7,1,7); plot(s);title('Hasil Jumlahan Gelombang Sinus');xlabel('Time (s)');ylabel('Amplitudo');

Page 2: metode analisis geofisika.doc

%filteringFN=1/(2*dt);WN=2*pi*FN;WL=2*pi*FL;WH=2*pi*FH;m=512;%low pass filter%tanggap impulsewo=WL/WN;LP(1)=2*wo;for i=2:m; LP(i)=2*wo*sin(pi*wo*(i-1))/(pi*wo*(i-1));endfor i=1:m; HL(i)=LP(m-i+1); HL(m+i)=LP(i);endfiguresubplot(3,2,1); plot(HL,'b');title('Tanggap Impulse Low Pass Filter');xlabel('m'); ylabel('h(n)');%zerophase responseLPF=abs(fft(HL,128));subplot(3,2,2); plot(LPF,'r');title('Zero Phase Response'); xlabel('Frekuensi Hz'); ylabel('H(F)');%Filtering dengan LPFL= conv(HL,s);subplot(3,2,3); plot(L,'r');title('Filtering Gelombang dengan LPF'); xlabel('Time'); ylabel('Amplitudo');%Band Passw2=WH/WN;w3=WL/WN;BP(1)=(WH-WL)/WN;for i=2:m; BP(i)=2/(pi*i)*(sin((i-1)*pi*w2)-sin((i-1)*pi*w3));endfor i=1:m; hB(i)=BP(m-i+1); hB(m+i)=BP(i);endfiguresubplot (3,3,1); plot(hB,'b');title('Tanggap Impulse BP Filter');xlabel('n'); ylabel('h(n)');%Zero Phase%zerophase response

LPF=abs(fft(hB,128));subplot(3,3,2); plot(LPF,'r');title('Zero Phase Response'); xlabel('Frekuensi Hz'); ylabel('H(F)');%Filtering dengan LPFL= conv(hB,s);subplot(3,3,3); plot(L,'r');title('Filtering Gelombang dengan LPF'); xlabel('Time'); ylabel('Amplitudo');%HPFw1=WH/WN;HP(1)=(WN-WH)/WN;for i=2:m; HP(i)=-2*w1*(sin((i-1)*pi*w1)/((i-1)*pi*w1));endfor i=1:m; hH(i)=HP(m-i+1); hH(m+i)=HP(i);endfiguresubplot(1,1,1); plot(hH);title('High Pass Filter');dst

LPFclear all;dt=0.001; fl=30; fn=1/(2*dt);wl=2*3.14*fl; wn=2*3.14*fn;w0=wl/wn; w(1)=2*(wl/wn); n=128;for i=2:n; w(i)=2*(wl/wn)*(sin((i-1)*3.14*(wl/wn))/((i-1)*3.14*(wl/wn)));end;for i=1:n; h(i)=w(n-i+1); h(n+i)=w(i);end;figure; %1%subplot(1,3,1);plot(w); title('Tanggapan Impulse Satu Sisi LPF-FIR'); xlabel('Waktu (mSec)');pause; figure; %2%subplot(1,3,1);plot(h(1:256)); title('Tanggapan Impulse LPF-FIR'); xlabel('Waktu (mSec)');pause;H = fft(h,256);

Page 3: metode analisis geofisika.doc

HH=abs(H); mx=max(HH);PH = H.*conj(H)/256;f = 1000/256*(0:127);%subplot(1,3,2);figure; %3plot(f(1:25),PH(1:25)); title('Spektrum Amplitudo LPF-FIR'); xlabel('Frekuensi (Hz)');pause; DB=20*log(HH/mx);%subplot(1,3,3);figure; %4plot(f(1:25),DB(1:25)); title('Bode Plot LPF-FIR'); xlabel('Frekuensi (Hz)');pause; m=1000;for i=1:m; x(i)=5*sin(2*pi*5*(i-1)*dt)+2*sin(2*pi*20*(i-1)*dt); x(i)=x(i)+1.5*sin(2*pi*80*(i-1)*dt)+2*sin(2*pi*100*(i-1)*dt);end;figure; %4plot(x); title('Sinyal Input'); xlabel('Waktu (Det)');pause; X=fft(x,512);PX=X.*conj(X)/512;figure; %5plot(f(1:128),PX(1:128)); title('Spektrum Amplitudo Sinyal Input'); xlabel('Frekuensi (Hz)');pause; y=conv(x,h);Y=fft(y,512);PY=Y.*conj(Y)/512;figure; %6plot(f(1:128),PY(1:128)); title('Spektrum Amplitudo Hasil LPF'); xlabel('Frekuensi (Hz)');pause; figure %7plot(y); title('Sinyal Output Hasil LPF'); xlabel('Waktu (Det)');

BPFclear all;dt=0.001; fl=20; fh=80; fn=1/(2*dt);wh=2*3.14*fh; wl=2*3.14*fl; wn=2*3.14*fn;

w0=(wh-wl)/wn; n=128;w(1)=w0; %(2/3.14)*(sin(3.14*wh/wn)-sin(3.14*wl/wn));for i=2:n; w(i)=(2/(i-1)*3.14)*(sin((i-1)*3.14*wh/wn)-sin((i-1)*3.14*wl/wn));end;for i=1:n; h(i)=w(n-i+1); h(n+i)=w(i);end;figure;plot(w);pause;figure;plot(h);H = fft(h,256);HH=abs(H); mx=max(HH);PH = H.*conj(H)/256;f = 1000/256*(0:127);%subplot(1,3,2);figure; %3plot(f(1:25),PH(1:25)); title('Spektrum Amplitudo LPF-FIR'); xlabel('Frekuensi (Hz)');pause;

LPF DIDIt = 0:.002:10;f1=5; f2=20; f3=25; f4=30; f5=60;y=5*sin(2*pi*f1*t)+2.5*sin(2*pi*f2*t)+1.5*sin(2*pi*f3*t)+0.5*sin(2*pi*f4*t)+3*sin(2*pi*f5*t);Y=fft(y);m=abs(Y);subplot(2,1,1), plot(t,y);title('Grafik Sinyal')subplot(2,1,2), plot(t*50,m);axis ([0 100 0 15000])n=1:length(t)/2+1;L=0.04*sin(n*pi*0.02)./(n*pi*0.02);m=length(n);for i=1:m a(m+i-1)=L(i); a(i)=L(m-i+1);endq=-length(t)/2:length(t)/2-1;figure();plot(q,a); axis ([-1000 1000 -.04 .1])

Page 4: metode analisis geofisika.doc

title('Low Pass Filter')h=conv(L,y);d=fft(h); e=abs(d);s=1:length(h);figure();subplot(2,1,1), plot(s,h);axis ([0 10 -20 20])title('Grafik Sinyal setelah di LPF(20)')subplot(2,1,2), plot(s/15,e); axis ([0 100 0 30000])

HPF DIDIt = 0:.002:10;f1=5; f2=20; f3=25; f4=30; f5=60;y=5*sin(2*pi*f1*t)+2.5*sin(2*pi*f2*t)+1.5*sin(2*pi*f3*t)+0.5*sin(2*pi*f4*t)+3*sin(2*pi*f5*t);Y=fft(y);m=abs(Y);subplot(2,1,1), plot(t,y);title('Grafik Sinyal')subplot(2,1,2), plot(t*50,m);axis ([0 100 0 15000])n=1:length(t)/2+1;L=-(0.04)./(n*pi*0.08).*sin(n*pi*0.08);m=length(n);for i=1:m a(m+i-1)=L(i); a(i)=L(m-i+1);endq=-length(t)/2:length(t)/2-1;figure();plot(q,a); axis ([-600 600 -.04 0.01])title('High Pass Filter')h=conv(L,y); d=fft(h); e=abs(d);s=1:length(h);figure();subplot(2,1,1), plot(s,h);axis ([0 10 -20 20])title('Grafik Sinyal setelah di HPF(20)')subplot(2,1,2), plot(s/15,e);axis ([0 100 0 10000])

BPF DIDIt = 0:.002:10;f1=5; f2=20; f3=25; f4=30; f5=60;y=5*sin(2*pi*f1*t)+2.5*sin(2*pi*f2*t)+1.5*sin(2*pi*f3*t)+0.5*sin(2*pi*f4*t)+3*sin(2*pi*f5*t);Y=fft(y);

m=abs(Y);subplot(2,1,1), plot(t,y);title('Grafik Sinyal')subplot(2,1,2), plot(t*50,m);axis ([0 100 0 15000])n=1:length(t)/2+1;L=(2./(n*pi)).*(sin(n*pi*0.12)-sin(n*pi*0.08));m=length(n);for i=1:m a(m+i-1)=L(i); a(i)=L(m-i+1);endq=-length(t)/2:length(t)/2-1;figure();plot(q,a); axis ([-1000 1000 -.05 0.05])title('Band Pass Filter')h=conv(L,y); d=fft(h); e=abs(d);s=1:length(h);figure();subplot(2,1,1), plot(s,h);axis ([0 10 -20 20])title('Grafik Sinyal setelah di BPF(20-30)')subplot(2,1,2), plot(s/15,e); axis ([0 100 0 10000])

AUTO KOREf=10;A=5;for i=1:1000 y(i)=A*sin(2*pi*f*0.001*(i-1));end;for i=1:1000 z(i)=A*sin(2*pi*f*0.001*(i-1));end; La=length(y);Lb=length(z);Lc=La+Lb-1;for i=1:Lc; c(i)=0.0;end; for i=1:La; for j=1:Lb; k=i+j-1; c(k)=c(k)+y(i)*z(j); end;end;subplot(121);plot(c);

Page 5: metode analisis geofisika.doc

title(['kross korelasi'])K=crosscorr(y,z);subplot(122);plot(K);title(['krosskorelasi matlab']);

AUTO KONVOa=[1,2,3]b=[1,2,3]La=length(a);Lb=length(b);Lc=La+Lb-1;for i=1:Lc i=i+1 c(i)=0.0; endfor j=1:Lb i=1:La k=i+j-1 c(k)=c(k)+a(i)*b(j)endplot(c)

RICKER WAVELET (tdomain??)n=75; f=30; dt=0.001;phi=3.14159;n1=(n+1)/2;b=1/(phi*f);for i=1:n1 t1=(i-1)*dt; t2=b; t3=t1/t2; t4=t3*t3; rc(i)=(1-2*t4)*exp(-t4);end;for i=1:n1 rick(n1+i)=rc(i); rick(i)=rc(n1-i+1);end;plot(rick);

RWAVELET%-------------------------------%PROGRAM PEMBUATAN RICKERWAVELET%-------------------------------function [R]=rickerwaveletn=25;dt=0.002;f=40;for i=1:n;

a=1-2*(pi*f*dt*(i-1))^2; b=exp(-(pi*f*dt*(i-1))^2); r(i)=a*b; t(i)=dt*(i); end; plot(t,r); title('WAVELET SATU SISI') grid on; for i=1:n R(n+i-1)=r(i); R(i)=r(n-i+1);endk=2*n-1for i=1:k T(i)=dt*(i);endfigure;plot(T-0.05,R);title('TWO SIDED WAVELET')grid on;

JEJAK SEISMIKlp=700;nr=199;fr=30.0;dt=0.002;np=(nr+1)/2; for i=1:lp x(i)=0.0; x(25)=0.5; x(50)=-0.75; x(75)=0.1; x(100)=0.3; x(200)=0.4; x(400)=-0.2; x(420)=-0.4; x(500)=-0.6; x(600)=0.6; x(650)=0.8; x(675)=-0.2;end for i=1:np t=(i-1)*dt; b=(pi*fr*t)^2;

Page 6: metode analisis geofisika.doc

rx(i)=(1-2*b)*exp(-b);end for i=1:np rc(np+i)=rx(i); rc(i)=rx(np-i+1);end y=conv(x,rc); subplot (3,1,1); plot(x,'b'); title('Koefisien Refleksi')subplot (3,1,2); plot(rc,'r'); title('Ricker Wavelet')subplot (3,1,3); plot(y); title('Trace Seismik')

KONVO FORTRAN dimension K(100), M(200), N(300) write(*,' (20x,A)')'Konvolusi' write(*,' (20x,A)')'Masukkan nilai m dan n' write(*,' (20x,A)')'Juga nilai a dan b' write(*,10) read(*,20)10 format(1x, 'Jumlah M :',M4,/)20 format (M3) write(*,30) read(*,40)30 format(1x,' Jumlah N :',N4,/)40 format(N3) do 100 I=1,M write(*,50)I read(*,70)A(I)50 format(1x,'data a ke-',M4,':')60 do 110 J=1,N write(*,60)Jformat(1,x'data b ke-',N4,':')100 format(F7.2,/)110 format(F7.2,/) jumlah data A = M jumlah data B = N K = N + M -1 do L=1,K c(L) = 0.0

continue do I=1,M do J=N,1,-1 L=I+J-1 C(L) = C(L) + A(I) * B(J) continue do L=1,K Write (*,*) C(L) stop end

SIGMA + SISIR DIRACb1=5;b2=1.5;f1=5;f2=20;dT=0.002;n=500;for i=1:n;a(i)=(b1*sin(2*pi*f1*dT*(i-1)))+(b2*sin(2*pi*f2*dT*(i-1)));end;fr=30;idT=4;n=500;for i=1:n;x(i)=0;end;j=1;for i=1:n;x(j)=1;j=j+idT;end;for i=1:n; y(i)=a(i)*x(i);end;subplot(3,1,1);plot(a(1:100));subplot(3,1,2);plot(x(1:100));subplot(3,1,3);plot(y(1:100));

PROGRAM SUM FORTRAN DIMENSION A(300) WRITE(*,'(20x,A)')'PROGRAM SUM'

write(*,50) read(*,100)N

Page 7: metode analisis geofisika.doc

50 format(1x, 'jumlah data:',I4,/)100 format (I3) DO 150 I=1,N write(*,60)I read(*,110)A(I)60 format (1x, 'data ke- ',I4,':')110 format(F7.2,/)150 continue s=0.0 do 200 I=1,N s=s+A(I)200 continue do 225 i=100,100 s=s*i225 continue write (*,250)s250 format (1x,'jumlah nilainya : ',F7.2,/) stop end

PROSES DIGITALISASIb1=5;b2=1.5;f1=5;f2=20;dT=0.004;n=500;for i=1:n;

a(i)=(b1*sin(2*pi*f1*dT*(i-1)))+(b2*sin(2*pi*f2*dT*(i-1)));endfor i=1:n; x(i)=0.0;endj=1; dd=4;for i=1:n; x(j)=1.0; j=j+dd;endfor i=1:n; y(i)=x(i)*a(i);endsubplot(3,1,1);plot(a); title('Proses Digitalisasi');subplot(3,1,2);plot(x(1:500));subplot(3,1,3);plot(y);