kuliah-5 mekflu1

59
FLUI D ST A TI CS

Upload: brain-choirul-ichsan

Post on 02-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 1/59

FLUID STATICS

Page 2: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 2/59

Outline of Chapter 3

The Basic Equation of Fluid Statics

Types of Pressures

Pressure Variation in a Static Fluid

Example Problem

Hydrostatic Force on Submerged Surfaces

Example Problems

Page 3: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 3/59

Page 4: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 4/59

Page 5: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 5/59

Page 6: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 6/59

Page 7: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 7/59

Page 8: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 8/59

Hydrostatic forces

Energy conversion

Bernoulli equation

Turbine

Hydrostatic uplift

Page 9: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 9/59

What does Static Fluid mean? 

Statics means that the fluid is not moving, i.e., its

velocity =0; and its acceleration = 0.

Fluid velocity = 0 means that it does not flow.

If a static fluid does not flow, how much shear

stress the fluid is exposed to?

The word “statics” is derived from Greek word“statikos”= motionless 

Page 10: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 10/59

What does Static Fluid mean? 

In this case, fluid can be exposed to only

normal forces and behaves as

“a rigid body” –  no deformation

Page 11: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 11/59

The Basic Equations

of Fluid Statics

Newton’s 2nd law:

Divide both sides d∀ by gives:

Page 12: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 12/59

The Basic Equations of Fluid Statics

• Surface Force

 x

 y

z

Page 13: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 13/59

The Basic Equations of Fluid Statics 

• Body Force

Page 14: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 14/59

• Surface Force

Page 15: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 15/59

Page 16: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 16/59

• Total Force

Page 17: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 17/59

• Newton’s Second Law 

Page 18: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 18/59

Page 19: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 19/59

Page 20: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 20/59

Page 21: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 21/59

Page 22: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 22/59

Fluid statics Chee 223 2.22

Pascal’s Laws 

Pascals’ laws: 

 – Pressure acts uniformly in all directions on a small

volume (point) of a fluid – In a fluid confined by solid boundaries, pressure

acts perpendicular to the boundary – it is a normal  

force.

Page 23: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 23/59

Direction of fluid pressure on boundaries

Furnace duct Pipe or tube

Heat exchanger

Dam

Pressure is a Normal Force

(acts perpendicular to

surfaces)

It is also called a Surface

Force

Page 24: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 24/59

Page 25: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 25/59

Absolute and Gauge Pressure

• Absolute pressure: The pressure of a fluid is expressed relative

to that of vacuum (=0)

• Gauge pressure: Pressure expressed as the difference

between the pressure of the fluid and that of the surroundingatmosphere.

Usual pressure guages record guage pressure. To calculate

absolute pressure:

 gaugeatmabs   P  P  P   

Page 26: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 26/59

Units for Pressure

Unit Definition orRelationship

1 pascal (Pa) 1 kg m-1 s-2

1 bar 1 x 105 Pa

1 atmosphere (atm) 101,325 Pa

1 torr 1 / 760 atm

760 mm Hg 1 atm

14.696 pounds per

sq. in. (psi)

1 atm

Page 27: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 27/59

Pressure Variation in a Static Fluid 

Reference

level and

pressure

Location and

pressure of

interest

Page 28: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 28/59

Measurement of Pressure

Manometers are devices in which one or more

columns of a liquid are used to determine the

pressure difference between two points.

 – U-tube manometer

 – Inclined-tube manometer

Page 29: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 29/59

Page 30: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 30/59

Measurement of Pressure Differences

mambb

mmba

 gR Z  g  P  P 

 R Z  g  P  P 

    

  

)(

)(

3

2

 Apply the basic equation of static fluids to

both legs of manometer, realizing that

P2=P3.

)( bamba   gR P  P         

Page 31: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 31/59

Inclined Manometer

•To measure small pressure differences need to magnify Rm some way.

        sin)(1   baba   gR P  P   

Page 32: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 32/59

Page 33: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 33/59

Hydrostatic Force on Submerged Surfaces 

In order to fully determine the force on a surface

submerged in a liquid, we must determine the

following:

1. The magnitude of the force;

2. The direction of the force; and

3. The line of action of the force.

Page 34: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 34/59

1. Direction of the Force on a

Plane Submerged Surface Since fluid is not moving (static), there is no

shear, i.e., only normal forces might exist.

Since this force is caused by pressure of fluid,

it will always be normal to the surface.

This determines the direction of the force.

Page 35: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 35/59

Page 36: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 36/59

Page 37: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 37/59

Page 38: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 38/59

3- Line of Action of the Force on a

Plane Submerged Surface 

Page 39: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 39/59

Page 40: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 40/59

Hydrostatic Force on Submerged Surfaces

• Plane Submerged Surface

We can find F R , and y ́  and x ́ ,

by integrating, or … 

Page 41: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 41/59

Hydrostatic Force on Submerged Surfaces

• Plane Submerged Surface

 – Algebraic Equations – Total Pressure Force

Page 42: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 42/59

Hydrostatic Force on Submerged Surfaces

• Plane Submerged Surface

 – Algebraic Equations – Net Pressure Force

Page 43: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 43/59

Fluid statics Chee 223 2.43

Centroid Location for Common Shapes

Page 44: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 44/59

Hydrostatic Force on Submerged Surfaces

• Curved Submerged Surface

Page 45: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 45/59

Hydrostatic Force on Submerged Surfaces

• Curved Submerged Surface

 – Horizontal Force = Equivalent Vertical Plane Force

 – Vertical Force = Weight of Fluid Directly Above(+ Free Surface Pressure Force)

Page 46: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 46/59

Buoyancy

Page 47: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 47/59

Buoyancy

Page 48: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 48/59

Buoyancy•  A body immersed in a fluid experiences a vertical buoyant

force equal to the weight of the fluid it displaces•  A floating body displaces its own weight in the fluid in

which it floatsFree liquid surface

The upper surface of

the body is subjected

to a smaller force than

the lower surface

 A net force is acting

upwards

F1

F2

h1

h2

H

Page 49: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 49/59

Buoyancy

The net force due to pressure in the vertical direction is:

FB = F2- F1 = (Pbottom - Ptop) (DxDy)

The pressure difference is:

Pbottom  – Ptop =  g (h2-h1) =  g H

Combining:

FB =  g H (DxDy)

Thus the buoyant force is:

FB =  g V

Page 50: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 50/59

Compressible fluid

• Gases are compressible i.e. their density varies with

temperature and pressure = P M /RT

 – For small elevation changes (as in engineering

applications, tanks, pipes etc) we can neglect the

effect of elevation on pressure – In the general case start from:

 

o

o

 RT 

 z  z  M  g  P  P 

T   for 

)(exp

 :constT

1212

 g 

dz 

dP   

Compressible

Page 51: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 51/59

CompressibleLinear Temperature Gradient

)( 00   z  z T T       

 

 z 

 z 

 p

 p  z  z T 

dz  R M  g 

 pdp

00)( 00    

 R

 M  g 

 z  z T  p z  p  

 

0

000

)()(

Page 52: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 52/59

Atmospheric Equations

• Assume linear

 R

 M  g 

 z  z T  p z  p

  

  0

000

)()(

•  Assume constant

0

0 )(

0)(  RT 

 z  z  M  g 

e p z  p

Temperature variation with altitude

for the U.S. standard atmosphere

Page 53: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 53/59

Compressible Isentropic

v

 pC C 

 P constant 

 P 

  

          

1

1   y

 P 

 P 

T 1

11

 

  

 

  

  

     D

  

    

  

     D

  

    

1

12

1

1

121111

 RT  z  gM T T 

 RT  z  gM  P  P 

  

  

  

  

    

Page 54: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 54/59

Vocabulary List

1. Static fluid

2. Manometer.

3. Hydrostatic pressure.

4. Gauge pressure.

5. Vacuum.

6. Hydrostatic force on a submerged surface.

Page 55: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 55/59

The nd

Terima kasih

Dam Design

Page 56: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 56/59

Dam Design

Design concern: (Hydrostatic Uplift) Hydrostatic pressure

above the heel (upstream edge) of the dam may causeseepage with resultant uplift beneath the dam base (depends

largely on the supporting material of the dam). This reduces the

dams stability to sliding and overturning by effectively reducing

the weight of the dam structure. (Question: What prevents the

dam from sliding?)

Determine the minimum compressive stresses in the base of a

concrete gravity dam as given below. It is important that this

value should be greater than zero because (1) concrete has

poor tensile strength. Damage might occur near the heel of thedam. (2) The lifting of the dam structure will accelerate the

seeping rate of the water underneath the dam and further

increase hydrostatic uplift and generate more instability.

Page 57: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 57/59

30 m40 m

20 m

concrete=2.5 water  

First, calculate the weight of the dam (per unit width):

W=Vg=(2.5)(1000)(20)(40)(1)(9.8)=19.6106 (N)

The static pressure at a depth of y: P(y)=wgy

y

Free surface

30 22 6

w w

0

The total resultant force acting on the dam by the water pressure is:

R= P(y)dy= (1000)(9.8)(1/ 2)(30) 4.4 10 ( )2

hh

 gydy g N    

Page 58: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 58/59

3

30 3 w2

w w w0

The resultant force, R, is acting at a depth h below the free surface so that

23

Rh= P(y)ydy= ( ) , 20( )3 3

Assume the load distribution under the dam is linear (it mig

hh

 g h h

 gy ydy g y dy g h m R

  

   

max minmin

ht not be linear if the soil

distribution is not uniform)

Therefore, the stress distribution can be written as

(x)=20

 x  

 

R

W

20 m x dam,x

20

y , max min

0

In order to reach equilibrium, both the sum of forces and

the sum of moments have to balance to zero

F 0, R=F (frictional force and the air drag force)

F 0, ( ) 10( )

1.96 1

dam yW F x dx  

 

6

max min0 ( ) N      min 

max

Free surface

Example (cont.)

Page 59: Kuliah-5 MekFlu1

8/10/2019 Kuliah-5 MekFlu1

http://slidepdf.com/reader/full/kuliah-5-mekflu1 59/59

20

O

0

20 20

6 6 2max minmax

0 0

6

max min

The sum of moments has to be zero also: Taking moment w.r.t. the heel of the dam

M 0, (10) (10) ( ) 0

(10)(4.4 10 19.6 10 )20

240 10 133.3 66.7

Solve:

 R W x xdx

 xdx x dx

 

  

 

 

 

6 6

max min1.64 10 ( ), 0.32 10 ( )

The minimum compressive stress is significantly lower than the maximum stress

The hydrostatic lift under the dam (as a result of the buoyancy induced by water seeping

un

 N N  

lift

der the dam structure) can induce as high as one half of the maximum

hydrostatic head at the heel of the dam and gradually decrease to zero at the other end.1

That is ( ) (0.5)(1000)(9.8)(302

  w gh   6

6

) 0.147 10 ( )

Therefore, the effective compressive stress will only be 0.173(=0.32-0.147) 10 ( ).

 N 

 N