kuliah 4 fluida komplesi ah

Upload: ghea-tiarasani-sondakh

Post on 06-Jul-2018

247 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    1/99

    u au a - - 

     (2 SKS)

     

    . ,Universitas Trisakti - Jakarta

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    2/99

    Objective/ Objective/SasaranSasaran

    Memahami konsep-konsep fluida yang

    di unakan untuk Kom lesi sumur dan ker a

    ulang sumur  Memahami enis- enis fluida en elesaian sumur 

    Memahami penerapannya di dunia Perminyakan

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    3/99

    Daftar Daftar PustakaPustaka

     Allen S.O. and Robert A.P. ”Production Operation”, Vol. I Oil andGas Consultant International Inc.

    ” “  , ,

    2004

    Peter E. Clark,”Well Completions : Stimulation and Work Over”.

    Pertamina Hulu,” Teknik Produksi”, Jakarta, 2003

    H.K. Van Poolen,”Well Completion and Stimulations Program”.

    Peter E. Clark ”Well Com letions : Stimulation and Work Over”.

    Jonathan Billary,”Well Completions Design”, PetroleumElsevier,2009

    Semua buku erihal Kom lesi dan u i Sumur 

    Semua Jurnal tentang Komplesi dan uji Sumur 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    4/99

    Com letion Fluids

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    5/99

    Completion Fluids: Description & ScopeCompletion Fluids: Description & Scope

    Description:

    This section of the completions training course coverstopics related to completion fluids and their applications.Important properties of clear completion brines and oil- 

    ase u s are scusse , as we as ssues re a e oformation damage control and safety and the environment.

    Participants will become familiar with the compositions,characteristics and uses of a variety of completion fluid

    systems.

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    6/99

    Completion Fluids: ObjectivesCompletion Fluids: Objectives

     At the end of this section, you should have areasonable understandin of:

    • The composition, properties and uses of completion fluids

     completion fluids

    • Methods of calculating completion fluid densities undervar ous con t ons

    • Special considerations when using completion fluids indeepwater applications

    • How to work more effectively with vendors in the selectionand utilization of completion fluids

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    7/99

    Completion Fluids: AgendaCompletion Fluids: Agenda

    During the next few hours, we will cover the following:

    • Fluid Types and Selection Criteria ..…………………. 35 minutes• Crystallization Point and Other Brine Properties …. 45 minutes

    • Wellbore Displacement ………..………………..……... 35 minutes

    • Fluid Filtration ……….………………………………….. 40 minutes• Fluid Loss Control …….………………………………… 35 minutes

    • Formation Damage & Acidizing ………..…………….. 35 minutes

    • Safety and Environmental Concerns ………………... 15 minutes

    • Total ……………………………………………………….. 4 hours

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    8/99

    Completion Fluids: PracticesCompletion Fluids: Practices

    We will describe preferred practices for:

    • Completion fluid selection

    •  completion fluids

    • Methods of filtration and maintenance of fluid quality 

    • Effective control of completion fluid leak-off 

    • Formation damage control when completing wells and

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    9/99

    Completion Fluids: Key LearningsCompletion Fluids: Key Learnings

    We will describe key learnings and best practices for selecting andusin com letion fluids. Im rovements will be made in our:

    •  Awareness of the strengths and limitations of variouscompletion fluids

    • Knowledge of the important characteristics of completion

    fluids under a variety of well conditions•  Ability to select completion fluids in a cost-effective manner 

    • Knowledge of methods to improve the properties of heavy,clear brines

    • Knowledge of several practical aspects of handling andmodifying completion fluids

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    10/99

    Completion Fluids: ProblemsCompletion Fluids: Problems

    We will work through problems to ensure that you understandthe fundamentals of this technolo area includin :

    • Evaluation of factors affecting fluid density 

     

    • Calculation of fluid properties required for well control 

    • Determination of filtration requirements for removing

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    11/99

    Fluid Types and Selection CriteriaFluid Types and Selection Criteria

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    12/99

    Completion Fluids & Their Functions

     A completion fluid is any fluid pumped downhole

    to conduct post-drilling well operations.

    Primary Functions

    • Effective control of reservoir pressure while performing well work 

    • Prevention of permanent formation damage

    during completion and workover operations

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    13/99

    The Completion Fluids Family 

    •  –

    • Drill-in Fluids – for drilling and completing fluid- sensitive a intervals

    • Packer Fluids – for filling annular volume above a

     production packer 

    • Workover Fluids – for remedial operations

    •  –fluid loss to the formation

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    14/99

    Completion Fluid Types (& Examples)

    • Clear BrinesKCl, NaBr, CaCl 2 , CaCl 2  /CaBr 2 

    ZnBr 2  /CaCl 2  /CaBr 2 

    • Solids-Laden Fluids

    Sized CaCO 3 in NaCl 

    Organosoluble Resin in KCl 

    • Brine-in-Oil Emulsions

    CaCl 2 Brine in Diesel 

    • Weighted “All-Oil” Fluids

    Hi h Densit Or anics in Diesel 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    15/99

    Important Completion Fluid CharacteristicsImportant Completion Fluid Characteristics

    • Easil wei hted or diluted for well control 

    • Non-damaging to the reservoir and wellbore

    • a e a sur ace an own o e con ons

    • Easily viscosified for solids transport • Safe to handle and environmentally friendly 

    • Readil available economical and otentiall

    recyclable

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    16/99

    Physical and Chemical Propertiesof Completion & Workover Fluids

    • Density 

    • Viscosity 

    • Thermal Stability 

    • Chemical Composition

    • Corrosiveness•  Additive Compatibility 

    • Formation Compatibility 

    • Solids Transport Capability 

    • Environmental Compatibility 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    17/99

    Uses of Clear Brine Completion Fluids

    •  

    • Perforating 

    • e ng

    • Wellbore Washing • Fishing 

    • Gravel Packing 

    • Packer Fluids

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    18/99

    Clear Brine Completion FluidsClear Brine Completion Fluids

    Brine Type Common Density Range (ppg) Fluid Cost ($USD/bbl)

    NaCl (sodium chloride) 8.4 – 10.0 3.00 – 9.00

    KCl (potassium chloride) 8.4 – 9.7 3.00 – 31.00

    NH4Cl (ammonium chloride) 8.4 – 8.9 10.00 – 19.00

    NaBr (sodium bromide) 10.0 – 12.7 67.00 – 180.00

    NaCl/NaBr 10.0 – 12.5 10.00 – 170.00

    NaHCO2 (sodium formate) 9.0 – 11.1 35.00 – 165.00

    KHCO2 (potassium formate) 10.8 – 13.3 335.00 – 356.00

    NaHCO2 / KHCO2 8.4 – 13.1 157.00 – 338.00

    CsHCO2 (cesium formate) 13.0 – 19.2 Obtain Quote

    CaCl 2 (calcium chloride) 9.0 – 11.8 4.00 – 25.00

    CaBr 2 (Calcium bromide) 12.0 – 14.2 30.00 – 191.00

    CaCl 2  / CaBr 2  11.7 – 15.1 22.00 – 160.00

    ZnBr 2 (zinc bromide) 19.2 – 21.0 538.00 – 671.00

    ZnBr 2  / CaBr 2  14.2 – 19.2 30.00 - 538.00

    ZnBr 2  / CaBr 2  / CaCl 2  14.2 – 19.2 30.00 – 538.00

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    19/99

    Periodic Table of the Elements

    • • 

    •  Alkali metal carbonates and sulfates are soluble

    •  Alkaline earth metal carbonates are insoluble; calcium sulfate has limited solubility 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    20/99

    Brine Density Ranges

    Sodium Formate

    Sodium ChloridePotassium Chloride

     

    Potassium Formate

    Sodium Bromide

    Calcium Chloride

    Zinc Bromide

    Cesium Formate

    Calcium Bromide

    8.4 9.4 10.4 11.4 12.4 13.4 14.4 15.4 16.4 17.4 18.4 19.4

    Maximum Density (ppg)

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    21/99

    Maximum Solubility of Salt in Water (RT)Maximum Solubility of Salt in Water (RT)

    Salt Sol Maximum

    Density

    Specific

    Gravity

    lbs/bbl

    (ppg) 

    Sodium Chloride 26 10.0 1.200 109 311

      . .

    Sodium Bromide 46 12.7 1.525 245 288

    Calcium Chloride 40 11.8 1.417 198 298

    Calcium Bromide 57 15.3 1.837 366 277

    Zinc Bromide 78 21.0 2.521 688 194

    Sodium Formate 50 11.1 1.333 231 235

    Potassium Formate 78 13.3 1.597 434 125

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    22/99

    Practical Aspects of Common Brines

    Brine/Salt Properties & Precautions

    • 

    Potassium

    Based

      , ,

    conditions

    • Dissolving dry KCl or KBr in water affords noticeable cooling

    (endothermic)

    •   ,

    crystalline salts behind

    Calcium and

    Zinc Based

    •  Anhydrous chloride and bromide salts are hygroscopic (will

    absorb water from air 

    • Dissolving bromide and chloride salts in water gives off heat

    (exothermic)

    • Salts wi ll not crystallize from solution under normal conditions

    • Solutions will absorb moisture from the air 

    • Brines are slippery and cannot be “ wiped” up; spills must beflushed with water 

    • pH elevation may cause precipitation reactions

    •  Avoid contact with skin or e es as severe irritation can occur 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    23/99

    Completion Brines and pH 

    Typical completion brine pH values:

    • KCl, NaBr, CaCl 2 (pH = 6 to 8)• ZnBr 2 (19.2 ppg, pH = 1 to 1.5)

    • ZnBr 2  /CaBr 2 (17.2 ppg, pH = 3.5)

    • Formates (NaHCO 2 , KHCO 2  ), pH >9.5 

    •  pH is a measure of the chemical activity of the H + in solution.

    • H = -lo H +   or H +  = 10 -pH H ran es from 0 to 14

    • Due to the ionic strength of high-density completion brines, pHmeasurements provide only an indication of the acidity (orbasicity) of the fluid.

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    24/99

    Brine Availability 

    • Stock fluids manufactured as clear liquids

    - =. .

    - 12.5 ppg (SG = 1.50) [45%] NaBr - 14.2 ppg (SG = 1.70) [52%] CaBr 2 

    - 13.1 ppg (SG = 1.57) [78%] KHCO 2 

    - 19.2 ppg (SG =2.30) [53%/23%] ZnBr 2 / CaBr 2 

    • Dr stock salts

    - NaCl, NaBr, KCl, NH4Cl, CaCl2, NaHCO2, KHCO2 

    • Fluids prepared from dry salts

    - 3-8% NaCl - 3-8% KCl 

    - 3-8% NH4Cl 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    25/99

    Important Clear Brine Properties

    • Density 

    •  pH 

    • True crystallization temperature (TCT)• Pressure crystallization temperature (PCT)

    • Eutectic point (lowest crystallization temp)

    • Brine / formation water compatibility • Brine / crude oil emulsion potential 

    • Brine / formation mineral compatibility 

    • Chemical compatibility •  Availability 

    • os s

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    26/99

    Completion Brine Selection GuideCompletion Brine Selection Guide

    •  Assure Compatibility with Formation Brine

    - vo seawa er n orma ons w g a , r or a eve s

    -  Avoid Ca2+ in formations with high HCO 3- or SO 42-  levels- Conduct fluid-fluid compatibility testing in the laboratory 

    •  Assure Compatibility with Formation Minerals

    - Protective brines for sandstones typically include-   ≥  1% CaCl2; ≥  2% KCl; ≥  3% NH4Cl 

    - Unocal’s “go-to” fluid remains 6% KCl (8.65 ppg)

    - Maintain salinities ≥  that of the formation brine

    - High clay formations generally require higher salinities- Review formation mineralogy (XRD, SEM & Thin Section Data)

    - Conduct core flow studies for sensitive formations

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    27/99

    Completion Type Log for UIC’s Attaka Field 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    28/99

    Completion Type Log for UIC’s Santan Field 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    29/99

    Completion Type Log for UTL’s Surat Field 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    30/99

    Compatibility Flow ChartCompatibility Flow Chart – – MI SwacoMI Swaco

    Spacers v. Mud 

    Spacers v. Brine

    Formation

    Crude v. Brine

    Formation Water FP/GP Gel v.

    FLC Pills v.

    Brine

    FLC Pills v.Formation

    Brine v. Control

    Lines

    Hydraulic Fluid

    Displacem

    ent 

    Perforation FP/GP  Remove

    Tools

    Run

    Tubing S acers v. Cement 

    .

    Brine v. Mud & Formation v.

    Fluids

    FLC Pills v.

    .

    Inhibitor v.

    Brine v. Mud 

    Mud Filtrate

    Brine v.Formation Clays

    Pre-Pack Acid 

    Formation v.FP/GP Gel 

    Formation

    FLC Pills v.Sand Control

    Hardware

    Tubulars

    Brine v.Tubulars

    Brine v. ChargeFluids

    Brine v.Elastomers

    Insulating Fluidv. Tubulars

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    31/99

     Advantages of Formate Brines Advantages of Formate Brines

    M +O 

    CH -  M + = Na+, K +, Cs+

    • Practical alternative to intermediate-density divalent brines

    •  

    • Highest densities among all monovalent brines (up to 13.3 ppg for

     potassium formate; 19.2 ppg for cesium formate)• When viscosified with XC polymer, transition temperatures are

    retained (i.e., viscosities are maintained at higher temperatures)

    •  

    •  Above 8.7 ppg, bacterial growth is inhibited; upon dilution,formates biodegrade

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    32/99

    Completion Brine Additives

    • Biocides – to control bacteria, especially sulfate-reducing bacteria

    • H Buffers – to maintain o timum H ran e for s ecific fluidsystem

    • Sulfide Scavengers – to minimize time effects of sulfide

    • Oxygen Scavengers – to retard oxidation

    • Corrosion Inhibitors – to protect pipe from chlorides

    • Surfactants – to prevent secondary emulsions, improve wellrecovery after workover, minimize fluid retention, etc.

       –

    the completion fluid 

    • Polymeric Clay Stabilizers – to further protect against clay

    s ur ances

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    33/99

    Oil Based Fluids - Advantages

    Oil External Emulsions and “All-Oil” Fluids

    • Inhibitive to shales and clays

    • Excellent lubricity 

    •  

    • Wide range of densities possible

    • ompa e w many o -pro uc ng orma ons

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    34/99

    Oil Based Fluids - Limitations

    • Disposal. Oil based fluids present significant disposalchallenges; toxic halogenated densifiers in “all-oil” fluidsfurther complicate after-use handling.

    • Halogenated Organics. Halogenated densifiers in “all-oil”

    high temperatures; halogens can also poison refinerycatalysts.

    • ur actants an mu s ons. mu s ers n r ne- n-oemulsions may afford wettability changes and emulsification offormation water; emulsions may block pore throats.

    • Low Baseline Density. Oil based fluids require significantamounts of weighting agent to build density from a baselinedensit of 6.5 .

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    35/99

    Packer Fluids

    Packer fluids represent a special class ofcompletion fluids designed to provide:

    • Weight and pressure on production packers andseals

    • Pressure support for the production tubing 

    • Pressure support for the casing -- to offset formation

    forces

    • Thermal conduction or insulation for the productiontubing flowing fluids

    • n on aga ns corros on an po en a ac c gasseepage from production hardware

    • Ease of re-entry and hardware recovery in workoveroperations

    Baro

    id 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    36/99

     Additional Packer Fluid Issues

    • In addition to providing the necessary properties cited previously, packer fluids should be simple to formulate

    and economical.

    temperature range (e.g., deepwater applications) and fora prolonged period of time.

    • Must accommodate a range of additives without showingsigns of incompatibility.

    •  during a workover operation.

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    37/99

    Packer Fluid Components

    Packer Fluid System Typical Additives / Adjustments

    (Not Recommended)

      . .

    Sulfide inhibitor 

    Biocide

    Oxygen scavenger 

    Fresh Water / Salt Water 

    (including gelled fluids)

    Sulfide inhibitor 

    Biocide

    Oxygen scavenger 

    Oil

    (including gelled fluids)

    Corrosion inhibitor 

    Biocide

    Oil Based Mud   Surfactant stabil izer 

    (Not Recommended)   Biocide

    Heavy Brine (CaCl2, CaBr 2, ZnBr 2,

    or combinations thereof)

    Corrosion inhibitor 

    Oxygen Scavenger Baro

    id 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    38/99

     Other Brine Properties

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    39/99

    Crystallization Point 

    The Cr stallization Point is the tem erature atwhich crystals begin to fall out of solution, givensufficient time and proper nucleating * conditions.

    * Nucleation is the process by which insoluble

    crystals can form. Dust, silty particles, andsuspended fines are potential nucleating agents.

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    40/99

    TCT v. PCT 

    TCT = True Crystallization Temperature

    PCT = Pressure Crystallization Temperature

    Effects of Crystallization

    • Brine densit chan es

    • Flow line restrictions can develop

    • May cause difficulties in re-establishing desired density 

    • Physical properties will change (viscosity, etc.)

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    41/99

    Idealized Crystallization Point Curve

    FCTA – First-Cr stal-to-A ear u oncooling of completion fluid 

    TCT  – True Crystallization Temperature

    LCTD – Last-Crystal-to-Disappearupon re-heating fluid 

    Cool Heat 

        r    a     t   u    r    e

    TCT  LCTD     T    e    m    p

    FCTA

    Time

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    42/99

    Ocean TemperatureOcean Temperature -- Depth ProfileDepth Profile

    (www.windows.ucar.edu)

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    43/99

    Clear Brines – The Eutectic Point 

    The Eutectic Point is thelowest freezing point of a solution.

    • The addition of fresh water to a brine whose density is abovethe Eutectic Point lowers the density and lowers the TCT.

    • The addition of fresh water to a brine whose density is belowthe Eutectic Point lowers the density and elevates the TCT.

    Eutectic Point 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    44/99

    TCT Curves for Various BrinesTCT Curves for Various Brines

    Sodiumchloride

    Potassiumchloride

    Calcium

    Density 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    45/99

    Crystallization Temperature CurveCrystallization Temperature Curve

    Pressure Increases

    PCT Region

    Crystallization

    TemperaturePressure DecreasesCrystallization

    Hydrate Region

    Ice and Brine Salt and Brine

    Density 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    46/99

    Effects of Pressure on TCT 

    • In High Pressure, Low Temperature (HPLT) conditions(e.g., deepwater), higher pressure can elevate TCT.

    • Based on SPE 58729 (Freeman, et. al.), PCT (Pressure*  

    = . ,

    * Relationship applies to a variety of calcium chloride,, .

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    47/99

    Clear Brines and Gas Hydrates

    What are Gas Hydrates? 

    • Gas hydrates are solid assemblages of cage

    complexes composed of water molecules surroundingsmall hydrocarbon molecules or other light gases.The t icall form when li uid water coexists withnatural gas under high pressures and lowtemperatures (HPLT).

    • Gas hydrate formation is a special concern for deep“ ”   .may completely block fluid flow.

    • Variations in P, T, salinity, free water content and gascomposition present operational challenges forcontrolling and removing gas hydrates.

    • Take care to prevent gas hydrate formation in the first place (work with flow assurance specialists and the

    http://geology.usgs.g ov/.../

    .  _ e.htm

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    48/99

    Hydrate Inhibition with CaCl 2 at 40° F 

    Hydrate Region

    9%MEG 

    Hydrate Free Region

     MEG 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    49/99

    Gas Hydrate Curves (CaCl 2  /CaBr 2  )

    0.725 

    10.4 ppg CaCl 2

    12.0 ppg CaBr 2 

    Hydrate Region

    Hydrate Free Region

    B i D i

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    50/99

    Brine Density 

    Brine density varies with temperature and pressure:

    •  As temperature increases, density decreases

    • s pressure ncreases, ens y ncreases

    Deepwater Gulf of Mexico

    Water Depth = 7,100’ 

    Mudline Temp = 38 deg F 

    MD = 14,000’ 

    SBHP = 6,550 psi 

    =

    Completion Fluid 

    200 psi Ubal = 9.24 ppg 

    Th T D it f Cl B i

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    51/99

    The True Density of a Clear Brine

     

    • Temperature Expansion Factor 

    • Pressure Compression Factor 

     

    • Compensated Column Density @ TVD

    C id ti f D W t W ll

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    52/99

    Considerations for Deep Water Wells

    • Riser Compensated Column Density(inverse function of temperature gradient –surface to mud line)

    • Sub-Sea Compensated Column Density

    Mud Line

    Fluid Cooling Down

    Fluid Heating Up

    St t C l l t th A Fl id D it

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    53/99

    Steps to Calculate the Average Fluid Density 

    1. Calculate the average well temperature.

    2. Calculate the average temperature increase overthe API standard measurement temperature.

    3. Calculate the density loss due to temperature.

    4. Calculate the avera e h drostatic ressure.

    5. Calculate the density gain due to pressure.

    . .

    Example Problem:

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    54/99

    Example Problem:

     A 12.0 ppg NaBr brine (70 o F) is to be

    used as a completion fluid for a wellw per ora ons a , - , . eBHT is 230 o F. What will be the average

    wellbore density of the NaBr brine at the perforations? 

    Solution to Example

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    55/99

    Solution to Example

    The following steps are necessary to calculate 

    1. Calculate the average well temperature (AT).

    . a cu a e e average empera ure ncrease overthe API standard measurement temperature (ATI).

    . .

    4. Calculate the average hydrostatic pressure (AH).

    5. Calculate the density gain due to pressure (DG).6. Calculate the average wellbore density (AD).

    Solution to Example Step #1

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    56/99

    Solution to Example – Step #1

     

     AT = (BHT + ST)/2 

    BHT = Bottom Hole Temperature, o F 

    ST = Surface Tem erature of Fluid, o F 

     AT = (230 + 70)/2 = 150 ° F

    Solution to Example Step #2

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    57/99

    Solution to Example – Step #2 

    . API standard measurement temperature (ATI):

     ATI = AT – 70 F 

    = ° -  °  = °  

    Solution to Example – Step #3

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    58/99

    Solution to Example – Step #3

    3. Calculate the density loss due to temperature (DL):

    DL = ATI x Cf 

     ATI = Average temperature increase over the API standard, ° F 

    = °   ,

    Table 1

    Temperature Correction Factors (ppg/o F)

     

    NaCl or KCl 0.0024

    CaCl2 0.0027

    DL = ATI x Cft 

    DL = (80 ° F x 0.0033) = 0.264 ppg   .

    CaBr 2 or CaBr 2 / CaCl2 0.0033

    ZnBr 2/ CaBr 2/ CaBr 2 (  . .

    Solution to Example – Step #4

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    59/99

    Solution to Example – Step #4

    4. Calculate the average hydrostatic pressure (AH):

     AH = (SD – DL) x 0.052 x TVD

    SD = Surface density at 70 ° F, ppg 

    DL = Density Loss due to Temperature, ppg 

    0.052 = Constant = 12 in/ft x 7.48 gal/ft 3 x1 ft 3 /1728 in3, in gal/in2 -ft 

    TVD = Well depth to mid-perf, ft 

     AH = (12.0 – 0.264) x 0.052 x 10,000 = 6,102 psi 

    Solution to Example – Step #5

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    60/99

    Solution to Example – Step #5 

    5. Calculate the density gain due to Pressure (DG):

      = x  p

     AH = Average hydrostatic pressure, psi 

    Cf = Pressure correction factor / si 

    Table 2

    Pressure Correction Factors

     

    NaCl or KCl 0.000019

    CaCl2 0.000017

    DG = AH x Cfp = (6,102 x 0.000021)

    =  .

    CaBr 2 or CaBr 2 / CaCl2 0.000022

    ZnBr 2/ CaBr 2/ CaBr 2 (

     

    . .

    Solution to Example – Step #6

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    61/99

    Solution to Example Step #6 

    6. Calculate the average wellbore density (AD):

     AD = SD – DL + DG 

     AD = (12.0 – 0.264 + 0.128) = 11.864 ppg 

    So, the NaBr brine with a surface density (SD) of 12.0would have an avera e wellbore densit of 11.864 

     ppg at 10,000 ft (BHT = 230 o F)

    JENIS FLUIDA C/WO JENIS FLUIDA C/WO 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    62/99

    --

    SolidsSolids--Laden FluidsLaden Fluids

    •• Dri ing F ui sDri ing F ui s•• Lease Water or SeawaterLease Water or Seawater

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    63/99

    ==maupun tinggi)maupun tinggi)

    Hi h densit brines meru akan fluida C WO anHi h densit brines meru akan fluida C WO an paling aman (tidak mengakibatkan banyakpaling aman (tidak mengakibatkan banyakkerusakan formasi)kerusakan formasi)

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    64/99

    --

    Terdapat dua jenis brines: monovalent dan divalentTerdapat dua jenis brines: monovalent dan divalent

    -- Monovalent : NaCl, KCl, NaBrMonovalent : NaCl, KCl, NaBr

    -- Divalent : CaClDivalent : CaCl22, CaBr, CaBr22

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    65/99

    Walaupun ZnClWalaupun ZnCl22 dan ZnBrdan ZnBr22 keduanya secara tekniskeduanya secara teknis--

    salt brine akan tetapi tidak praktis dan tidaksalt brine akan tetapi tidak praktis dan tidakekonomisekonomis

    ZnClZnCl22 dikenal sangat korosif sedangkan ZnBrdikenal sangat korosif sedangkan ZnBr22 sulitsulitditangani karena sangat hygroscopic.ditangani karena sangat hygroscopic.

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    66/99

    NaCl dan KCl brines biasanya dibuat denganme arut an r sta garam er ng engan a r arena

    densitas maximum yang dapat dicapai relatif rendah;bila dijual dalam bentuk larutan biaya angkutanmenja i ma a arena a anya tam a an erat air.

    NaBr biasanya dibuat dari garam kering atau tersedia

    dari su lier dalam bentuk larutan ekat den an densitas sesuai dengan kebutuhan.

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    67/99

    Jika diperlukan, concentrated NaBr diencerkan dilokasi dengan manambah air untuk menurunkan

    densitas. Pengenceran pada umumnya dilakukan

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    68/99

    CaCl2 dan CaBr2 brines tersedia dalam bentuklarutan. Pembuatan brines di lapangan dari garam

    - bubuk CaCl2 dan CaBr2 merupakan,

    - pelarutan bersifat eksotermik dan

    atas titik didih air sehingga

    dianggap hazardous operation

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    69/99

    Garam kering CaCl2 dan CaBr2 biasanya digunakan

    hanya untuk mengatur harga densitas (density.

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    70/99

    Multiple salt brines:

    Dibuat dari aram monovalent aram divalent atau campuran dari keduanya

    Formulasi yang umum digunakan adalah CaCl2 /CaBr2,CaBr2 /ZnBr2, dan CaCl2 /CaBr2 /ZnBr2

    Multiple salt brines dari garam mono-valent secara

    ,karena tidak ekonomis

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    71/99

    Keuntungan multiple salt brines: dapatormu as an un u memenu persyara an ens y

    dan temperatur kristalisasi.

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    72/99

    Pengujian kualitas brines

     relatif atau sering disebut nephelometric turbidity.nephelometric turbidity.

    Diukur dengan nephelometernephelometer (alat yang mengukurntens tas ca aya yang e o an o o e a anyapadatan dalam suatu larutan). Makin besar intensitasyang dibelokkan berarti fluida makin keruh.

    SolidsSolids--Free Brine SystemsFree Brine Systems

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    73/99

    Pengujian kualitas brines (lanjutan) 

     

    voltage dalam suatu photocell dan diberi satuan yangdisebut nephelometric turbidity unit (NTU).

    Spesifikasi kejernihan single-salt brines berkisar antara3 – 10 NTU

    Nephelometry juga digunakan untuk menentukanefektifitas wellbore clean up dan filtrasi fluida

    Formate Formate Brines Brines 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    74/99

    Mulai diperkenalkan di awal 90-an dalam upayamencari high-density brines yang environmentallyfriendly.

    Jenis dan SG maximumnya:

    NaCOOH (SG 1,33), KCOOH (SG 1,60) dan CeCOOH(SG 2,37).

    - maupun low-solids C/WO fluid.

    Formate Formate Brines Brines 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    75/99

    Kelebihan formate brines:

    Non-hazardous dan biodegradable

    Dapat melindungi viscosifyer dan polymer dari degradasi

    termal hingga 150oC.

    Korosivitas lebih rendah dibandingkan alkali metal halides(klorida dan bromida).

     ion sulfat maupun carbonate (mengurangi kemungkinanpresipitasi).

    Formate Formate Brines Brines 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    76/99

    Kelebihan formate dari segi teknis dan HSE sangatterasa pada aplikasi sumur dalam yang memerlukandensitas tinggi. Saat ini untuk kasus yang demikian

    digunakan C/WO fluid yang mengandung ZnBr2. Namun

    korosif dan toxic. Untuk mengatasi hal ini dapatdigunakan caesium formate (SG 2,3) yang non-

      2

    Solids Solids- -Free Brine Systems Free Brine Systems 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    77/99

    SifatSifat--sifat brinessifat brines

    DensitasDensitas 

     Viskositas Viskositas

    Densitas Densitas Brines Brines 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    78/99

    Densitas Standard Brines

    CaBr2/ZnBr2

    ZnBr2

    NaBr 

    CaBr2

    a a r 

    NaCl

    CaCl2

    KBr 

    KCl

    8 10 12 14 16 18 20 22 24

    Density, ppg

    DENSITAS SINGLE DENSITAS SINGLE--SALT BRINES SALT BRINES 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    79/99

    Densitas, ppg Densitas, ppg 

    • Larutan KCl 8.4 - 9.7  

    • Larutan NaCl 8.4 - 9.8  

    • Larutan KBr 8.4 - 11.5  

      2  . - .• Larutan NaBr 8.4 - 12.4  

    • Larutan CaBr 2  14.2 - 15.5 • Larutan ZnBr 15.0 - 21.5  

    DENSITAS MULTIPLE DENSITAS MULTIPLE--SALT BRINES SALT BRINES 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    80/99

    Densitas Densitas, , ppg  ppg 

    • KCl/KBr 9.8 - 11.5  

    • NaCl/CaCl 2  10.1 - 11.1 

    • NaCl/NaBr 10.1 - 12.5  

    • CaCl 2 /CaBr 

    2 11.7 - 15.1 

    • CaCl 2 /ZnBr 2 /CaBr 2  15.1 - 19.2 

    • NaBr/ZnBr 12.5 - 20.5  

    • CaBr 2 /ZnBr2/NaBr 12.5 - 22.5  

    Efek Efek TT dan dan PP Pada Pada Densitas Densitas 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    81/99

       n   s    i    t   a   s

    60F

    1 F14,7 psi 

    100F10.000

     psi 

        D

        V   o    l   u   m

    14,7

     psi 

    60F

    10.000  psi 

    Perhitungan Perhitungan Densitas Densitas 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    82/99

    ⎤⎡   n

    ⎦⎣

    −−

    =i

    m

    1))()(())()((   Dg A Dg B T  pi   ∆−∆=∆ ρ 

     

    = average wellbore density,ppg

    m =surface fluid density, ppg 

     

    i =incremental density change n = number of intervals 

    Perhitungan Perhitungan Densitas Densitas 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    83/99

    ))()(())()((   Dg A Dg B T  pi   ∆−∆=∆ ρ 

     A = thermal expansion coefficient, ppg/oFB = pressure compressibility coeff., ppg/psi∆D =(Di-1- Di) =length of interval, ft

    = - =, -   ,gT =(Tbh-Tsurf )/D=temperature gradient, oF/ftD=total vertical depth (TVD), ft

     A dan B di eroleh dari tabel 

    ExpansibilityExpansibility dan dan Compressibility Compressibility 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    84/99

    A BBrine ppg

     

    NaCl 9.42 0.24 0.019. . .

    NaBr 12.48 0.33 0.021

    . . .ZnBr2/CaBr2/CaCl2 16.01 0.36 0.022

    . . .

     A: from 76 to 198 F at 12000 psi  

    Perhitungan Perhitungan Densitas Densitas 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    85/99

     Aproksimasi dilakukan berdasarkan hargam po n , m sa nya pa a . apa

    digunakan densitas rata-rata yang dihitunger asar an an pa a . .

    Men in at efek P tidak be itu besar makaseringkali koreksi dilakukan hanya untuk efek tem eratur.

    Perhitungan Perhitungan Densitas Densitas 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    86/99

    • Dasar perhitungan: P hidrostatik 

    • Operasi dilakukan dengan overbalance:>

    terhadap T dan P).

     reservoir minyak dan 300 psi untuk

    .

    Perhitungan Perhitungan Densitas Densitas 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    87/99

    Tentukan P hidrostatik berikut overbalance-nya,misaln a P si ada kedalaman D ft.

    Tentukan density, ppg = P/(0.052 D)

    Tentukan temperatur rata-rata sumur:= dasar sumur+ permukaan

    Koreksi densitas brines berdasarkan temperatur rata-rata

    tersebut Konversikan densitas tersebut ke kondisi 60oF (brines

    biasanya dijual berdasarkan standar temperatur = 60oF)

    Contoh Contoh 

    S b i t h

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    88/99

    •Sebagai contoh,kalau perlu 10ppg engan s s m

    CaCl2 pada 130o

    F,

    dan ikut garismiring untuk

    men apa andensitas pada60oF dida at 10.2

    Gb.4.Densitas vs.T ppg.

    Untuk Sistim CaCl 2 

    Gb. 5. Densitas vs. T untuk Sistim CaBr Gb. 5. Densitas vs. T untuk Sistim CaBr 2 2 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    89/99

    Gb.6. Densitas vs. T sistim CaCl Gb.6. Densitas vs. T sistim CaCl 2 2 /CaBr /CaBr 2 2 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    90/99

    Gb. 7. Densitas vs. T Sistim CaCl Gb. 7. Densitas vs. T Sistim CaCl 2 2 /Zn/CaBr /Zn/CaBr 2 2 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    91/99

    Pembuatan Pembuatan C/WO BrinesC/WO Brines di di Lapangan Lapangan 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    92/99

    Dilakukan dengan cara:

    Mencampurkan serbuk garam dengan air

    MencampurkanMencampurkan larutanlarutan garamgaram dengandengan airair

    MencampurkanMencampurkan serbuk serbuk garamgaram dengandengan larutanlarutan garamgaramlainlain

    MencampurkanMencampurkan suatusuatu larutanlarutan garamgaram dengandengan larutanlarutangaramgaram lainlain

    Pembuatan Pembuatan Lar Lar.. NaBr NaBr dari dari Serbuk Serbuk NaBr NaBr + Air + Air 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    93/99

    Pembuatan Pembuatan Lar Lar. CaCl2/CaBr2. CaCl2/CaBr2 dari dari Serbuk Serbuk CaCl2CaCl2 dan dan CaBr2 + Air CaBr2 + Air 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    94/99

    Pembuatan Pembuatan Lar Lar.. NaBr NaBr dari dari NaBr NaBr 12,512,5 ppg  ppg + Air + Air 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    95/99

    Pembuatan Pembuatan Lar Lar. ZnBr2/CaBr2. ZnBr2/CaBr2 dari dari Lar Lar. ZnBr2 19,2. ZnBr2 19,2 ppg  ppg dan dan Lar Lar. CaBr2 14,2. CaBr2 14,2 ppg  ppg 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    96/99

    Pembuatan Pembuatan Lar Lar. CaCl2/CaBr2/ZnBr2. CaCl2/CaBr2/ZnBr2 dari dari Serbuk Serbuk CaCl2CaCl2 dengan dengan Lar Lar..CaBr2 14,2CaBr2 14,2 ppg  ppg dan dan Lar Lar. ZnBr2/CaBr2 19,2. ZnBr2/CaBr2 19,2 ppg  ppg 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    97/99

    19.2 ppg ZnBr2/CaBr2 

    14.2 ppg CaBr2 

    97% CaCl2 krist 

    QUESTIONS ? QUESTIONS ? 

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    98/99

    44

  • 8/16/2019 Kuliah 4 Fluida Komplesi AH

    99/99

    1. Sebutkan jenis –jenis fluida komplesi

    2.  Apa keuntungan dan kerugian fluida komplesi