kompendium ketahanan energi

163

Click here to load reader

Upload: edi-suryadi

Post on 30-Oct-2014

161 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Kompendium Ketahanan Energi

KOMPENDIUM KAJIAN LINGKUNGAN DAN PEMBANGUNAN

KETAHANAN ENERGI

Dikoleksi oleh Prof Dr Ir Soemarno, MS 30 March 2012

PPSUB - MALANG

Page 2: Kompendium Ketahanan Energi

KETAHANAN NASIONAL

PENGERTIAN KETAHANAN NASIONAL INDONESIA

Kondisi dinamik bangsa Indonesia yang melingkupi seluruh aspek kehidupan nasional yang terintegrasi, berisi keuletan dan ketangguhan yang mengandung kemampuan

mengembangkan kekuatan nasional dalam menghadapi dan mengatasi segala tantangan ancaman hambatan dan gangguan baik yang datang dari luar maupun dari dalam. Untuk menjamin identitas, integritas kelangsungan hidup bangsa dan negara serta perjuangan

mencapai tujuan nasionalnya.

Konsepsi ketahanan nasional Indonesia adalah konsepsi pengembangan kekuatan nasional melalui pengaturan dan penyelenggaraan kesejahteraan dan keamanan yang seimbang

serasi dalam seluruh aspek kehidupan secara utuh dan menyeluruh berlandaskan Pancasila, UUD 45 dan Wasantara.

Kesejahteraan = Kemampuan bangsa dalam menumbuhkan dan mengembangkan nilai-nilai nasionalnya demi sebesar-besarnya kemakmuran yang adil dan merata rohani dan

jasmani.

Sumber: umi_k.staff.gunadarma.ac.id/.../Bab+3_ketahanan……… diunduh 30/3/2012

Keamanan = Kemampuan bangsa

Indonesia melindungi nilai-nilai nasionalnya

terhadap ancaman dari luar maupun dari

dalam.

Page 3: Kompendium Ketahanan Energi

KETAHANAN NASIONAL

Sumber: umi_k.staff.gunadarma.ac.id/.../Bab+3_ketahanan……… diunduh 30/3/2012

. HAKEKAT KETAHANAN NASIONAL DAN KONSEPSI KETAHANAN NASIONAL INDONESIA Hakekat Ketahanan Nasional Indonesia = Keuletan dan ketangguhan yang mengandung kemampuan mengembangkan kekuatan nasional untuk dapat menjamin kelangsungan hidup dan tujuan negara.Hakekat Konsepsi Ketahanan Nasional Indonesia = Pengaturan dan penyelenggaraan kesejahteraan dan keamanan secara seimbang, serasi dan selaras dalam seluruh aspek kehidupan nasional.

ASAS-ASAS KETAHANAN NASIONAL

INDONESIAKesejahteraan dan keamanan

Komprehensif Integral (Menyeluruh Terpadu)Mawas kedalam dan keluar

Kekeluargaan

SIFAT KETAHANAN NASIONAL INDONESIAMandiri = Percaya pada kemampuan dan kekuatan sendiri bertumpu pada identitas, integritas dan kepribadian. Kemandirian merupakan

prasyarat menjalin kerjasama yang saling menguntungkanDinamis = Berubah tergantung pada situasi dan kondisi bangsa dan

negara serta kondisi lingkungan strategis.Wibawa = Pembinaan ketahanan nasional yang berhasil akan meningkatkan kemampuan bangsa dan menjadi faktor yang

diperhatikan pihak lain.Konsultasi dan Kerjasama = Sikap konsultatif dan kerjasama serta saling

menghargai dengan mengandalkan pada kekuatan moral dan kepribadian bangsa.

Page 4: Kompendium Ketahanan Energi

KETAHANAN NASIONAL

Sumber: http://wartawarga.gunadarma.ac.id/2010/03/pengertian-ketahanan-nasional-indonesia/ …… diunduh 30/3/2012

SIFAT-SIFAT KETAHANAN NASIONAL

1. Manunggal . Aspek kehidupan bangsa Indonesia dikelompokkan ke dalam delapan gatra atau astagatra.

2. Mawas ke dalam dan Mawas ke luar. Ketahanan nasional terutama diarahkan pada diri bangsa dan negara sendiri.

3. Kewibawaan. Semakin meningkatnya pembangunan nasional, akan meningkatkan ketahanan nasional.

4. Berubah menurut Waktu. Ketahanan nasional, sebagai kondisi bangsa tidak selalu tetap, tergantung dari upaya bangsa dalam pembangunan nasional dari waktu ke waktu dan ketangguhannya menghadapi ancaman, tantangan, hambatan dan gangguan.

5. Tidak Membenarkan Adu Kekuatan dan Adu Kekuasaan. Konsep ketahanan nasional tidak hanya mengutamakan kekuasaan fisik tetapi juga kekuatan moral yang dimiliki suatu bangsa.

6. Percaya Pada Diri Sendiri. Ketahanan nasional ditingkatkan dan dikembangkan didasarkan atas kemampuan sumber daya yang ada pada bangsa dan sikap percaya kepada diri sendiri.

ASTA-GATRAModel Astagatra merupakan perangkat hubungan bidang kehidupan manusia

dan budaya yang berlangsung diatas bumi degan memanfaatkan segala kekayaan alam. Terdiri 8 aspek kehidupan nasional :

1). Tiga aspek (tri gatra) kehidupan alamiah, yaitu :a). Gatra letak dan kedudukan geografib). Gatra keadaan dan kekayaan alam

c). Gatra keadaan dan kemampuan penduduk

2). Lima aspek (panca gatra) kehidupan social, yaitu :a). Gatra ideologib). Gatra Politik

c). Gatra ekonomid). Gatra social budaya

e). Gatra pertahanan dan keamanan.

Terdapat hubungan korelatif dan interdependency diantara ke-8 gatra secara komprehensif dan integral.

Page 5: Kompendium Ketahanan Energi

KETAHANAN NASIONAL

Sumber: http://wartawarga.gunadarma.ac.id/2010/03/pengertian-ketahanan-nasional-indonesia/ …… diunduh 30/3/2012

KATA KUNCI DALAM KONSEP KETAHANAN NASIONAL

1. Keuletan merupakan kualitas diri.2. Ketangguhan adalah kualitas yang menunjukkan kekuatan atau kekokohan sebagaimana

dipersepsikan dari luar oleh pihak lain.3. Ancaman merupakan hal atau usaha yang bersifat mengubah kebijaksanaan dan dilaksanakan

secara konsepsional kriminal serta politis.4. Tantangan merupakan usaha yang bertujuan atau bersifat menggugah kemampuan.5. Hambatan merupakan usaha yang bertujuan melemahkan secara tidak konsepsional yang

berasal dari diri sendiri.6. Gangguan adalah hambatan yang berasal dari luar yang bertujuan melemahkan secara tidak

konsepsional.7. Identitas adalah ciri khas suatu bangsa dilihat secara keseluruhan yang membedakannya

dengan bangsa lain.8. Integritas adalah kesatuan yang menyeluruh dalam kehidupan nasional suatu bangsa, baik

aspek alamiah maupun aspek sosial.

Integritas (Integrity) adalah bertindak konsisten sesuai dengan nilai-nilai dan kebijakan organisasi serta kode etik profesi, walaupun dalam keadaan yang sulit untuk melakukan ini. Dengan kata lain, “satunya kata dengan perbuatan”. Mengkomunikasikan maksud, ide dan perasaan secara terbuka,

jujur dan langsung sekalipun dalam negosiasi yang sulit dengan pihak lain.

Indikator Perilaku:1. Memahami dan mengenali perilaku sesuai kode etik

a. Mengikuti kode etik profesi dan perusahaan. b. Jujur dalam menggunakan dan mengelola sumber daya di dalam lingkup atau otoritasnya. c. Meluangkan waktu untuk memastikan bahwa apa yang dilakukan itu tidak melanggar kode

etik.2. Melakukan tindakan yang konsisten dengan nilai (values) dan keyakinannya

d. Melakukan tindakan yang konsisten dengan nilai dan keyakinan.e. Berbicara tentang ketidaketisan meskipun hal itu akan menyakiti kolega atau teman dekat.f. Jujur dalam berhubungan dengan pelanggan.

3. Bertindak berdasarkan nilai (values) meskipun sulit untuk melakukan itu g. Secara terbuka mengakui telah melakukan kesalahan.h. Berterus terang walaupun dapat merusak hubungan baik.

4. Bertindak berdasarkan nilai (values) walaupun ada resiko atau biaya yang cukup besar i. Mengambil tindakan atas perilaku orang lain yang tidak etis, meskipun ada resiko yang

signifikan untuk diri sendiri dan pekerjaan.j. Bersedia untuk mundur atau menarik produk/jasa karena praktek bisnis yang tidak etis.k. Menentang orang-orang yang mempunyai kekuasaan demi menegakkan nilai (values).

Page 6: Kompendium Ketahanan Energi

KETAHANAN NASIONAL“NATIONAL SECURITY”

Sumber: http://en.wikipedia.org/wiki/National_security …… diunduh 27/3/2012

National security is the requirement to maintain the survival of the state through the use of economic, diplomacy, power projection and political power. The concept developed mostly in the United States of America after World War II. Initially focusing on military might, it now encompasses a broad range of facets, all of which impinge on the non military or economic security of the nation and the values espoused by the national society. Accordingly, in order to possess national security, a nation needs to possess

economic security, energy security, environmental security, etc. Security threats involve not only conventional foes such as other nation-states but also non-state actors such as

violent non-state actors, narcotic cartels, multinational corporations and non-governmental organisations; some authorities include natural disasters and events causing

severe environmental damage in this category.

Indikator untuk mewujudkan ketahanan nasional a.l. :1. using diplomacy to rally allies and isolate threats2. marshalling economic power to facilitate or compel cooperation3. maintaining effective armed forces4. implementing civil defense and emergency preparedness measures

(including anti-terrorism legislation)5. ensuring the resilience and redundancy of critical infrastructure6. using intelligence services to detect and defeat or avoid threats and

espionage, and to protect classified information7. using counterintelligence services or secret police to protect the nation

from internal threats

Page 7: Kompendium Ketahanan Energi

NATIONAL SECURITY: DEFINISI

A typical dictionary definition, in this case from the Macmillan Dictionary (online version), defines the term as "the protection or the safety of a country’s secrets and its citizens"

emphasising the overall security of a nation and a nation state. Walter Lippmann (1943), defined it in terms of war saying that "a nation has security when it does not have to sacrifice its legitimate ínterests to avoid war, and is able, if challenged,

to maintain them by war“.A later definition by Harold Lasswell, a political scientist, in 1950, looks at national security

from almost the same aspect, that of external coercion: "The distinctive meaning of national security means freedom from foreign dictation."Arnold Wolfers (1960), while recognising the need to segregate the subjectivity of the

conceptual idea from the objectivity, talks of threats to acquired values:"An ambiguous symbol meaning different things to different people. National security

objectively means the absence of threats to acquired values and subjectively, the absence of fear that such values will be attacked."

The 1996 definition propagated by the National Defence College of India accretes the elements of national power:

"National security is an appropriate and aggressive blend of political resilience and maturity, human resources, economic structure and capacity, technological

competence, industrial base and availability of natural resources and finally the military might.“

"National security then is the ability to preserve the nation's physical integrity and territory; to maintain its economic relations with the rest of the world on

reasonable terms; to preserve its nature, institution, and governance from disruption from outside; and to control its borders."

In Harvard history professor Charles Maier's definition of 1990, national security is defined through the lens of national power:

"National security... is best described as a capacity to control those domestic and foreign conditions that the public opinion of a given community believes necessary

to enjoy its own self-determination or autonomy, prosperity and wellbeing."

Sumber: http://en.wikipedia.org/wiki/National_security …… diunduh 27/3/2012

Page 8: Kompendium Ketahanan Energi

UNSUR KETAHANAN NASIONAL

Sumber: http://en.wikipedia.org/wiki/Elements_of_national_security …… diunduh 27/3/2012

The umbrella concept of national security has a number of component elements which, when individually satisfied, provide a nation with security of its values, interests and

freedom to choose policy. These are listed differently by various authorities. Besides the military aspect of security, the aspects of politics, society, environment, energy and

natural resources, and, economics are commonly listed. The elements of national security corelate closely to the concept of the elements of national power.

KETAHANAN MILITER = Military securityThis is traditionally, the earliest recognised form of national security. Military

security implies the capability of a nation to defend itself, and/or deter military aggression. Alternatively, military security implies the capability of a nation to

enforce its policy choices by use of military force. The term "military security" is considered synonymous with "security" in much of its usage. One of the

definitions of security given in the Dictionary of Military and Associated Terms, may be considered a definition of "military security":

A condition that results from the establishment and maintenance of protective measures that ensure a state of inviolability from hostile acts or influences.

—Dictionary of Military and Associated Terms

KETAHANAN POLITIK = Political security

The political aspect of security has been offered by Barry Buzan, Ole Wæver, Jaap de Wilde as an important component of national security, Political

security is about the stability of the social order. Closely allied to military security and societal security, other components proposed in a framework for

national security in their book "Security: a new framework for analysis", it specifically addresses threats to sovereignty.[

System referent objects are defined, such as nation-states, nations, transnational groups of political importance including tribes, minorities, some religious organisations, systems of states such as the European Union and the United Nations, besides others. Diplomacy, negotiation and other interactions

form the means of interaction between the objects

Page 9: Kompendium Ketahanan Energi

KETAHANAN EKONOMI = Economic security

Historically, conquest of nations have made conquerors rich through plunder, access to new resources and enlarged trade through controlling of the

conquered nations' economy. In today's complex system of international trade, characterised by multi-national agreements, mutual inter-dependence and

availability of natural resources etc., the freedom to follow choice of policies to develop a nation's economy in the manner desired, forms the essence of

economic security. Economic security today forms, arguably, as important a part of national security as military security.

UNSUR KETAHANAN NASIONAL

Green EconomyWhat is the Green Economy?

The “green economy” refers to economic sectors

that are focused on environmental sustainability.

The green economy seeks to address the

interdependence of human economic development with the health of the

natural ecosystem.

Sumber: http://en.wikipedia.org/wiki/Elements_of_national_security …… diunduh 27/3/2012

Page 10: Kompendium Ketahanan Energi

KETAHANAN LINGKUNGAN = Environmental security

Environmental security deals with environmental issues which threaten the national security of a nation in any manner. The scope and nature of

environmental threats to national security and strategies to engage them are a subject of debate. While all environmental events are not considered

significant of being categorised as threats, many transnational issues, both global and regional would affect national security.

Romm (1993) classifies these as :Transnational environmental problems that threaten a nation's security, in its broad

defined sense. These include global environmental problems such as climate change due to global warming, deforestation and loss of biodiversity, etc.

Environmental or resource problems that threaten a nation's security, traditionally defined. These would be problems whose outcomes would result in conventional threats

to national security as first or higher order outcomes. Such disputes could range from heightened tension or outright conflict due to disputes over water scarcity in the Middle East, to illegal immigration into the United States caused by the failure of

agriculture in Mexico. The genocide in Rwanda,indirectly or partly caused by rise in population and dwindling availability of farmland, is an example of the extremity of

outcome arising from problems of environmental security.

UNSUR KETAHANAN NASIONAL

Environmentally threatening outcomes of warfare, e.g. Romans destroyed the fields of Carthage by pouring salt over them;

Saddam Hussein's burning of oil wells in the Gulf War; the use of Agent Orange by the USA in the Vietnam War for defoilating

forests for military purposes.

Sumber: http://en.wikipedia.org/wiki/Elements_of_national_security …… diunduh 27/3/2012

Page 11: Kompendium Ketahanan Energi

National security and rights & freedoms

The measures adopted to maintain national security in the face of threats to society has led to ongoing dialectic, particularly in liberal democracies, on the appropriate scale and

role of authority in matters of civil and human rights.Tension exists between the preservation of the state (by maintaining self-determination

and sovereignty) and the rights and freedoms of individuals.Although national security measures are imposed to protect society as a whole, many

such measures will restrict the rights and freedoms of all individuals in society. The concern is that where the exercise of national security laws and powers is not subject to

good governance, the rule of law, and strict checks and balances, there is a risk that "national security" may simply serve as a pretext for suppressing unfavorable political and

social views.

Taken to its logical conclusion, this view contends that measures which may ostensibly serve a national security purpose (such as mass surveillance, and censorship of mass

media), could ultimately lead to an Orwellian dystopia.

UNSUR KETAHANAN NASIONAL

Sumber: http://en.wikipedia.org/wiki/Elements_of_national_security …… diunduh 27/3/2012

Page 12: Kompendium Ketahanan Energi

KETAHANAN ENERGI DAN SUMBERDAYA ALAM Security of energy and natural resources

A resource has been defined as: "...a support inventory... biotic or abiotic, renewable or expendable,... for sustaining life at

a heightened level of well-being."—Prabhakaran Paleri (2008)

Resources include water, sources of energy, land and minerals. Availability of adequate natural resources is an important for a nation to develop its industry and economic power.

Lack of resources is a serious challenge for Japan to overcome to increase its national power.

In the Gulf War of 1991, fought over economic issues, Iraq captured Kuwait in order to capture its oil wells, among other reasons. Water resources are subject to disputes

between many nations, including the two nuclear powers, India and Pakistan. Nations attempt to attain energy and natural resource security by acquiring the needed

resources by force, negotiation and commerce.

UNSUR KETAHANAN NASIONAL

Sustainable Energy Management (SEM)Energi Hijau

Green energy is the term used to describe sources of energy that are considered to be environmentally friendly and non-polluting, such as geothermal, wind, solar, and hydro. Sometimes nuclear power is also

considered a green energy source.Green energy sources are often considered "green" because they are

perceived to lower carbon emissions and create less pollution.Green energy is commonly thought of in the context of electricity

generation. Renewable energy certificates (green certificates or green tags) have been

one way for consumers and businesses to support green energy.

Sumber: http://en.wikipedia.org/wiki/Elements_of_national_security …… diunduh 27/3/2012

Page 13: Kompendium Ketahanan Energi

KETAHANAN HUMANIORA = Human security

Sumber: http://en.wikipedia.org/wiki/Human_security…… diunduh 27/3/2012

Human security is an emerging paradigm for understanding global vulnerabilities whose proponents challenge the traditional notion of national

security by arguing that the proper referent for security should be the individual rather than the state.

Human security holds that a people-centered view of security is necessary for national, regional and global stability.

The concept emerged from a post-Cold War, multi-disciplinary understanding of security involving a number of research fields, including development studies, international

relations, strategic studies, and human rights. The United Nations Development Programme's 1994 Human Development Report is considered a milestone publication in

the field of human security, with its argument that insuring "freedom from want" and "freedom from fear" for all persons is the best path to tackle the problem of global

insecurity.Critics of the concept argue that its vagueness undermines its effectiveness; that it has

become little more than a vehicle for activists wishing to promote certain causes; and that it does not help the research community understand what security means or help decision

makers to formulate good policies.

“Ketahanan sosial” suatu komunitas dapat dimaknai sebagai kemampuan suatu komunitas dalam mengatasi resiko akibat perubahan

sosial, ekonomi, politik yang mengelilinginya. Suatu komunitas memiliki “ketahanan sosial” yang baik apabila (1) ia mampu melindungi secara efektif anggotanya termasuk individu dan

keluarga yang rentan dari gelombang perubaha sosial yang mempengaruhinya; (2) ia mampu melakukan investasi sosial dalam

jaringan sosial yang menguntungkan; dan (3) ia, mampu mengembangkan mekanisme yang efektif dalam mengelola konflik dan

kekerasan.

KETAHANAN SOSIAL

Page 14: Kompendium Ketahanan Energi

HUMAN SECURITY: UNDP's 1994 definitionDr. Mahbub ul Haq first drew global attention to the concept of human security in the United

Nations Development Programme's 1994 Human Development Report and sought to influence the UN's 1995 World Summit on Social Development in Copenhagen. The UNDP's 1994 Human Development Report's definition of human security argues that the scope of

global security should be expanded to include threats in seven areas:

Sumber: http://en.wikipedia.org/wiki/Human_security…… diunduh 27/3/2012

KETAHANAN EKONOMI = Economic security — Economic security requires an assured basic income for individuals, usually from productive and remunerative work or, as a last resort, from a publicly financed safety net. In this sense, only

about a quarter of the world’s people are presently economically secure. While the economic security problem may be more serious in developing countries, concern also arises in developed countries as well. Unemployment problems constitute an

important factor underlying political tensions and ethnic violence.

KETAHANAN PANGAN = Food security — Food security requires that all people at all times have both physical and economic access to basic food. According to

the United Nations, the overall availability of food is not a problem, rather the problem often is the poor distribution of food and a lack of purchasing power. In

the past, food security problems have been dealt with at both national and global levels. However, their impacts are limited. According to UN, the key is to tackle the

problems relating to access to assets, work and assured income (related to economic security).

KETAHANAN KESEHATAN = Health security — Health Security aims to guarantee a minimum protection from diseases and unhealthy lifestyles. In

developing countries, the major causes of death traditionally were infectious and parasitic diseases, whereas in industrialized countries, the major killers were

diseases of the circulatory system. Today, lifestyle-related chronic diseases are leading killers worldwide, with 80 percent of deaths from chronic diseases

occurring in low- and middle-income countries. According to the United Nations, in both developing and industrial countries, threats to health security are usually greater for poor people in rural areas,

particularly children. This is due to malnutrition and insufficient access to health services, clean water and other basic necessities.

Page 15: Kompendium Ketahanan Energi

HUMAN SECURITY: UNDP's 1994 definitionDr. Mahbub ul Haq first drew global attention to the concept of human security in the United

Nations Development Programme's 1994 Human Development Report and sought to influence the UN's 1995 World Summit on Social Development in Copenhagen. The UNDP's 1994 Human Development Report's definition of human security argues that the scope of

global security should be expanded to include threats in seven areas:

Sumber: http://en.wikipedia.org/wiki/Human_security…… diunduh 27/3/2012

KETAHANAN LINGKUNGAN = Environmental security — Environmental security aims to protect people from the short- and long-term ravages of nature, man-made threats in nature, and deterioration of the natural environment. In developing countries, lack of

access to clean water resources is one of the greatest environmental threats. In industrial countries, one of the major threats is air pollution. Global warming, caused by the

emission of greenhouse gases, is another environmental security issue.

KETAHANAN PERSONAL = Personal security — Personal security aims to protect people from physical violence, whether from the state or external states, from violent individuals

and sub-state actors, from domestic abuse, or from predatory adults. For many people, the greatest source of anxiety is crime, particularly violent crime.

KETAHANAN KOMUNITAS = Community security — Community security aims to protect people from the loss of traditional relationships and values and from sectarian and ethnic

violence. Traditional communities, particularly minority ethnic groups are often threatened. About half of the world’s states have experienced some inter-ethnic strife. The

United Nations declared 1993 the Year of Indigenous People to highlight the continuing vulnerability of the 300 million aboriginal people in 70 countries as they face a widening

spiral of violence.

KETAHANAN POLITIK = Political security — Political security is concerned with whether people live in a society that honors their basic human rights. According to a survey

conducted by Amnesty International, political repression, systematic torture, ill treatment or disappearance was still practised in 110 countries. Human rights violations are most

frequent during periods of political unrest. Along with repressing individuals and groups, governments may try to exercise control over ideas and information.

Since then, human security has been receiving more attention from the key global development institutions, such as the World Bank.

Page 16: Kompendium Ketahanan Energi

KETAHANAN ENERGI

Sumber: http://en.wikipedia.org/wiki/Energy_security …… diunduh 27/3/2012

Energy security is a term for an association between national security and the availability of natural resources for energy consumption.

Access to cheap energy has become essential to the functioning of modern economies. However, the uneven distribution of energy supplies among

countries has led to significant vulnerabilities.Threats to energy security include the political instability of several energy

producing countries, the manipulation of energy supplies, the competition over energy sources, attacks on supply infrastructure, as well as accidents, natural disasters, rising terrorism, and dominant countries reliance to the foreign oil

supply.

ANCAMAN KETAHANAN ENERGI (Energy Security threats)

The modern world relies on a vast energy supply to fuel everything from transportation to communication, to security and health delivery systems. Due to their vital roles energy sources are logical targets for

attacks that seek to weaken infrastructure. That said, threats to energy sources extend beyond basic tactical aggression or terrorism.

One of the leading threats to energy security is the significant increase in energy prices, either on the world markets – as has occurred in a

number of energy crises over the years – or by the imposition of price increases by an oligopoly or monopoly supplier, cartel or country. In

some cases the threat might come from a single energy superpower– those states able to significantly influence world markets by their

action alone.

Page 17: Kompendium Ketahanan Energi

KETAHANAN ENERGI & TEKNOLOGI TERBARUKAN

Sumber: http://en.wikipedia.org/wiki/Energy_security_and_renewable_technology …… diunduh 27/3/2012

The environmental benefits of renewable energy technologies are widely recognised, but the contribution that they can make to energy security is less well known. Renewable technologies can enhance energy security in electricity generation, heat supply, and

transportation.Access to cheap energy has become essential to the functioning of modern economies.

However, the uneven distribution of fossil fuel supplies among countries, and the critical need to widely access energy resources, has led to significant vulnerabilities. Threats to

global energy security include political instability of energy producing countries, manipulation of energy supplies, competition over energy sources, attacks on supply

infrastructure, as well as accidents and natural disasters.Renewable biofuels for transport represent a key source of diversification from petroleum products. Biofuels from grain and beet in temperate regions have a part to play, but they

are relatively expensive and their energy efficiency and CO2 savings benefits, are variable. Biofuels from sugar cane and other highly productive tropical crops are much more

competitive and beneficial. But all first generation biofuels ultimately compete with food production for land, water, and other resources. Greater efforts are required to develop

and commercialize second generation biofuel technologies, such as biorefineries and ligno-cellulosics, enabling the flexible production of biofuels and other products from non-

edible plant materials.

According to the International Energy Agency (IEA), cellulosic ethanol commercialization could allow ethanol

fuels to play a much larger role in the future than previously thought. Cellulosic ethanol can be made from

plant matter composed primarily of inedible cellulose fibers that form the stems and branches of most plants.

Dedicated energy crops, such as switchgrass, are also promising cellulose sources that can be produced in many

regions of the United States.

Page 18: Kompendium Ketahanan Energi

KETAHANAN ENERGI JANGKA PANJANG

Long term measures to increase energy security center on reducing dependence on any one source of imported energy, increasing the number of suppliers, exploiting native

fossil fuel or renewable energy resources, and reducing overall demand through energy conservation measures. It can also involve entering into international agreements to

underpin international energy trading relationships, such as the Energy Charter Treaty in Europe. All the concern coming from security threats on oil sources long term security

measures will help reduce the future cost of importing and exporting fuel into and out of countries without having to worry about harm coming to the goods being transported.The impact of the 1973 oil crisis and the emergence of the OPEC cartel was a particular

milestone that prompted some countries to increase their energy security. Japan, almost totally dependent on imported oil, steadily introduced the use of natural gas, nuclear

power, high-speed mass transit systems, and implemented energy conservation measures. It has become one of the world leaders in the use of renewable energy. The United

Kingdom began exploiting North Sea oil and gas reserves, and became a net exporter of energy into the 2000s.

In other countries energy security has historically been a lower priority. The United States, for example, has continued to increase its dependency on imported oil although, following

the oil price increases since 2003, the development of biofuels has been suggested as a means of addressing this.

Sumber: http://en.wikipedia.org/wiki/Energy_security …… diunduh 27/3/2012

Increasing energy security is also one of the reasons behind a block on the development of natural gas imports in Sweden. Greater investment in native renewable energy technologies

and energy conservation is envisaged instead. India is carrying out a major hunt for domestic oil to decrease its

dependency on OPEC, while Iceland is well advanced in its plans to become energy-independent by 2050 through

deploying 100% renewable energy.

Page 19: Kompendium Ketahanan Energi

KETAHANAN ENERGI JANGKA PENDEK

PetroleumPetroleum or otherwise known as "crude oil" has become the resource most used by

countries all around the world including Russia, China and the United States of America. With all the oil wells located around the world energy security has become a main issue to

ensure the safety of the petroleum that is being harvested. In the middle east oil fields become main targets for sabotage because of how heavily countries rely on oil. Many

countries hold strategic petroleum reserves as a buffer against the economic and political impacts of an energy crisis. All 28 members of the International Energy Agency hold a

minimum of 90 days of their oil imports, for example. The value of such reserves was demonstrated by the relative lack of disruption caused by

the 2007 Russia-Belarus energy dispute, when Russia indirectly cut exports to several countries in the European Union.

Due to the theories in peak oil and need to curb demand, the United States military and Department of Defense had made significant cuts, and have been making a number of

attempts to come up with more efficient ways to use oil.

Sumber: http://en.wikipedia.org/wiki/Energy_security …… diunduh 27/3/2012

www.ricksquires.com/.../

Sustainable Energy Management (SEM)

Energi berkelanjutan :

1. Sumber energi yang renewable: biofuels, solar power, wind power, hydro

power, wave power, geothermal power dan

tidal power.

2. Teknologi yng mampu meningktkn energy

efficiency.

Page 20: Kompendium Ketahanan Energi

GAS ALAM = NATURAL GAS

Compared to petroleum, reliance on imported natural gas creates significant short term vulnerabilities. Many European countries saw an immediate drop in supply when Russian gas supplies were halted during the Russia-Ukraine gas dispute in 2006.Natural gas has been a viable source of energy in the world. Consisting of mostly methane natural gas is produced using two methods, biogenic and thermogenic.

Biogenic comes from methogenic organisms located in marshes and landfills where thermogenic comes from buried material that is heated up from the earths core. Russia

is the current leading country in production of natural gases.One of the biggest problems currently with natural gas is the ability to storage and

transport it. With its low density it becomes harder to have pipelines in North America to transport enough natural gas as the demand increases. These pipelines are reaching

near capacity and even at full capacity do not produce the amount of gas needed.

Sumber: http://en.wikipedia.org/wiki/Energy_security …… diunduh 27/3/2012

EKONOMI HIJAU vs. EKONOMI HITAM

‘The Black economy’: pembangunan ekonomi yang bertumpu pd bahan bakar fosil seperti batubara, minyak bumi dan gas

alam.

“The green economy” bertumpu pd pengetahuan ekologi-ekonomi dengan tujuan menyelaraskan hubungan ekonomi-manusia dengan ekosistem- alam serta MINIMUM dampak negatif akibat kegiatan ekonomi terhadap

lingkungan

Page 21: Kompendium Ketahanan Energi

ENERGI NUKLIRUranium for nuclear power is mined and enriched in diverse and "stable" countries. These include Canada (23% of the world's total in 2007), Australia (21%), Kazakhstan (16%) and more than 10 other countries. Uranium is mined and fuel is manufactured significantly in

advance of need. Nuclear fuel is considered by some to be a relatively-reliable power source, though a debate over the timing of peak uranium does exist.

Although a very viable resource nuclear power comes under fire a lot of times because of the danger that people associate to it, nuclear power is stable but if something were to

happen there are very little options that have been proposed to fix that problem. Another big factor in the debate with nuclear power is that many people or companies do not want this high waste energy solution near them due to possible radiation leaks, nuclear runoff

into streams and lakes and also the nuclear power plant ruins how appealing a city or state looks to other people in the country.

Sumber: http://en.wikipedia.org/wiki/Energy_security …… diunduh 27/3/2012

Arah Kebijakan Energi Terbarukan Nuklir Krisis listrik nasional sudah berlangsung cukup lama, yang telah mengakibatkan

terganggunya kehidupan sosial, pertumbuhan industri, ekonomi, dan sebagainya. Salah satu diantaranya adalah banyak angkatan kerja yang tidak dapat tertampung.

Pembangkit Listrik Tenaga Nuklir (PLTN) di samping ramah lingkungan juga dapat mengatasi krisis listrik dalam waktu yang relatif cepat untuk kapasitas yang sangat

besar. Oleh sebab itu, PLTN merupakan solusi untuk mengatasi krisis listrik nasional. Pemerintah meningkatkan kegiatan eksplorasi sumberdaya nuklir nasional.

Pemerintah harus konsisten dalam menerapkan kebijakan pemanfaatan energi nuklir sesuai dengan UU No. 17 tahun 2007 tentang RPJP, dimana pada Bab. IV.2.3. RPJM ke-3 ( 2015 – 2019 ), dinyatakan: “... mulai dimanfaatkannya tenaga nuklir untuk pembangkit

listrik dengan mempertimbangkan faktor keselamatan secara ketat,...”. Pemerintah perlu segera membentuk lembaga atau BUMN khusus yang ditugaskan untuk mengimplementasikan program PLTN sesuai dengan UU No. 17 tahun 2007.

Studi kelayakan PLTN yang lebih komprehensif, termasuk penetapan waktu pembangunan PLTN pertama, sebagaimana amanat Sidang DEN yang ke-4,

dikoordinasikan oleh lembaga tersebut. Pengembangan nuklir untuk energy security of supply dan lingkungan.

Perlu peningkatan sosialisasi dengan data dan informasi yang obyektif (teknis, ekonomis, keamanan/kendala dan sebagainya) dengan dana yang memadai, baik itu

untuk generasi muda maupun untuk unsur masyarakat lainnya. (sumber: http://esdm.go.id/news-archives/56-artikel/3342-pokok-pokok-kebijakan-energi-

nasional.html )

Page 22: Kompendium Ketahanan Energi

ENERGI TERBARUKAN (Renewable energy)

The deplopment of renewable technologies usually increases the diversity of electricity sources and, through local generation, contributes to the flexibility of the system and its

resistance to central shocks. For those countries where growing dependence on imported gas is a significant energy security issue, renewable technologies can provide alternative

sources of electric power as well as displacing electricity demand through direct heat production. Renewable biofuels for transport represent a key source of diversification

from petroleum products.As the resources that have been so crucial to survival in the world to this day start declining in numbers, countries will begin to realize that the need for renewable fuel sources will be as vital as ever. With the production of new types of energy including, solar, geothermal, hydro-electric, biofuel and wind power. With the amount of sun that hits the world in one hour there is enough energy to power the world for

one year. With the addition of solar panels all around the world a little less pressure is taken off the need to produce more oil.

Geothermal can potentially lead to other sources of fuel, if companies would take the heat from the inner core of the earth to heat up water sources we could essentially use the steam creating from the

heated water to power machines, this option is one of the cleanest and efficient options. Hydro-electric which has been incorporated into many of the dams around the world produces a lot of energy and is very easy to produce the energy as the dams control the water that is allowed through seams which

power turbines located inside of the dam. Bio-fuels have been researched using many different sources including ethanol and algae, these options are substantially cleaner than the consumption of petroleum

Sumber: http://en.wikipedia.org/wiki/Energy_security …… diunduh 27/3/2012

Arah Kebijakan Energi Terbarukan

1. Pengembangan energi terbarukan difokuskan pada panas bumi (geothermal), energi biomass, surya (solar) dan bahan bakar nabati.

2. Penyediaan dana khusus untuk penelitian dan pengembangan energi terbarukan guna menurunkan biaya produksi.

3. Pengaturan dan pemberlakuan harga khusus untuk energi terbarukan.4. Peningkatan pengembangan industri peralatan produksi energi terbarukan

dalam negeri (peralatan penyulingan BBN, solar cell dan panel harus menggunakan produksi dalam negeri).

5. Pengalokasian dana dengan skema khusus (smart funding) untuk pengembangan energi terbarukan diluar BBN, khususnya untuk skala kecil.

6. Pemerintah melakukan pengaturan dan pengalokasian dana dari program Clean Development Mechanism (CDM), sehingga insentif karbon kredit dapat memberi manfaat pada publik.

(Sumber: http://esdm.go.id/news-archives/56-artikel/3342-pokok-pokok-kebijakan-energi-nasional.html …… diunduh 28/3/2012)

Page 23: Kompendium Ketahanan Energi

Pokok-Pokok Kebijakan Energi Nasional

Sumber: http://esdm.go.id/news-archives/56-artikel/3342-pokok-pokok-kebijakan-energi-nasional.html …… diunduh 28/3/2012

Pokok-pokok Kebijakan Energi Nasional meliputi, arah kebijakan energi minyak dan gas bumi, batubara, energi terbarukkan, energi terbarukkan bahan bakar nabati (BBN), panas

bumi, energi terbarukan surya, PLT tenaga laut dan arah kebijakan energi terbarukan nuklir. Pokok-pokok Kebijakan Energi Nasional yaitu:

I. Arah Kebijakan Energi Minyak dan Gas Bumi

1. Perlu sistem fiskal untuk minyak, gas bumi dan CBM (coal bed methane) yang lebih menjamin keuntungan atau mengurangi resiko kontraktor dengan memberikan bagian pemerintah atau GT (government take) yang kecil untuk R/C (revenue/cost) yang kecil dan GT yang besar untuk R/C yang besar.

2. Perlu segera membangun infrastruktur gas termasuk LNG (liquefied natural gas) receiving terminal, pipa transportasi, SPBG (stasiun pengisi bahan bakar gas), infrastruktur gas kota dan lain-lain. Perlu harga gas dosmetik yang menarik.

3. Perlu peningkatan kualitas informasi untuk wilayah kerja yang ditawarkan melalui perbaikan ketersediaan data antara lain data geofisika dan geologi.

4. Perlu peningkatan kemampuan nasional migas dengan keberpihakan pemerintah misalnya untuk kontrak-kontrak migas yang sudah habis maka pengelolaannya diutamakan untuk perusahaan nasional dengan mempertimbangkan program kerja, kemampuan teknis dan keuangan.

5. Perlu mendorong perbankan nasional untuk memberikan pinjaman guna membiayai kegiatan produksi energi nasional. Dana depletion premium dari energi tak terbarukan sangat diperlukan guna meningkatkan kualitas informasi untuk penawaran konsesi-konsesi migas baru, peningkatan kemampuan sumber daya manusia dan penelitian, infrastruktur pendukung migas, serta untuk pengembangan energi non-migas dan energi di pedesaan.

6. Perlu dikaji segera kemungkinan impor gas (LNG), karena lebih baik/murah mengimpor gas daripada mengimpor minyak dan BBM. Di sektor rumah tangga, pemakaian LPG lebih murah dari pemakaian minyak tanah. Di sektor transportasi, penggunaan BBG lebih murah dan lebih bersih daripada BBM.

7. Perlu diperbaiki sistem birokrasi dan informasi serta kemitraan di lingkungan ESDM di samping koordinasi antar institusi untuk mengatasi permasalahan-permasalahan fiskal, perijinan, tanah, tumpang tindih lahan, lingkungan, permasalahan desentralisasi dan lain-lain.

Page 24: Kompendium Ketahanan Energi

Pokok-Pokok Kebijakan Energi Nasional

Sumber: http://esdm.go.id/news-archives/56-artikel/3342-pokok-pokok-kebijakan-energi-nasional.html …… diunduh 28/3/2012

Arah Kebijakan Batubara

1. Mengutamakan kebutuhan dalam negeri dan melakukan pembatasan ekspor.2. Melakukan pengaturan harga domestik dan kebutuhan internasional (ekspor).3. Mengatur tatalaksana produksi dan pasar mulai dari hulu sampai hilir termasuk

pembentukan badan pengatur yang independen.4. Mengembangkan infrastruktur, transportasi, stockpiling dan blending.5. Menerapkan prinsip pembangunan berkelanjutan pada pertambangan batubara

antara lain memasukkan biaya lingkungan, good mining practices, pembatasan open surface mining, mengutamakan tambang dalam, prioritas tata ruang, konservasi lingkungan dan pemanfaatan teknologi bersih.

6. Melakukan regionalisasi batubara termasuk mine mouth power plant.7. Meningkatkan eksplorasi sumber daya (laju produksi seimbang dengan laju

penambahan sumber daya dan cadangan).

Arah Kebijakan Energi Terbarukan Bahan Bakar Nabati (BBN)

1. Pengembangan BBN untuk menggantikan sebagian BBM.

2. Pada tahap awal pengembangan BBN dilakukan oleh beberapa perusahaan besar yang dipilih untuk mencapai nilai keekonomian.

3. Pengaturan quota mandatory BBN bagi perusahaan penyedia listrik.

4. Penyempurnaan penetapan besaran quota mandatory dalam penggunaan BBN untuk sektor transportasi.

Page 25: Kompendium Ketahanan Energi

Pokok-Pokok Kebijakan Energi Nasional

Sumber: http://esdm.go.id/news-archives/56-artikel/3342-pokok-pokok-kebijakan-energi-nasional.html …… diunduh 28/3/2012

Arah Kebijakan Energi Terbarukan Surya

1. Penerapan mandatory penggunaan solar cell pada pemakai tertentu (industri besar, gedung komersial dan rumah mewah, PLN).

2. Mensinergikan mandatory dan penerapan feed in tarrif.3. Penerapan audit teknologi terhadap komponen/peralatan instalasi

PLTS.4. Mengembangkan industri komponen/peralatan instalasi PLTS.5. Mentargetkan pencapaian keekonomian PLTS ke grid connected tarrif

dalam waktu 10 tahun.6. Mengembangkan penguasaan teknologi PLTS dalam negeri baik

melalui pembelian license atau meningkatkan penelitian dan pengembangannya.

Arah Kebijakan Energi Terbarukan PLT Tenaga Laut

7. Meningkatkan ekplorasi sumberdaya energi berbasis arus, gelombang dan perbedaan suhu air laut.

8. Meningkatkan kemampuan nasional untuk peningkatan pemanfaatan energi arus, gelombang dan perbedaan suhu air laut, baik skala industri maupun domestik di seluruh kawasan laut Indonesia yang potensial.

9. Meningkatkan kemampuan penelitaan dan pengembangan di bidang energi laut menuju pemanfaatannya secara ekonomis.

Page 26: Kompendium Ketahanan Energi

Pokok-Pokok Kebijakan Energi Nasional

Sumber: http://esdm.go.id/news-archives/56-artikel/3342-pokok-pokok-kebijakan-energi-nasional.html …… diunduh 28/3/2012

Arah Kebijakan Energi Terbarukan Panas Bumi

1. Meningkatkan ekplorasi panas bumi dan membuat perkiraan biaya yang layak pada lokasi yang berbeda-beda.

2. Memastikan status tataguna lahan di hutan-hutan yang memiliki potensi panas bumi.

3. Mengkaji implementasi peraturan perundang-undangan di sektor panas bumi untuk mendekatkan sektor hulu dan hilir.

4. Melakukan penyempurnaan di dalam pengelolaan dan persyaratan tender panas bumi, yang antara lain meliputi : Pendelegasian kepada PLN untuk melaksanakan tender, pembagian resiko yang menguntungkan antara PLN dan pengembang, harga jual dan mekanismenya serta pembinaan untuk skala kecil dan penyehatan BUMN.

5. Meningkatkan kemampuan dalam negeri untuk mendukung kegiatan eksplorasi dan industri pendukung kelistrikan.

PANAS BUMI = Geothermal energy

Geothermal energy is energy obtained by tapping the heat of the earth itself, both from kilometers deep into the Earth's crust in some places of the globe or from some meters in geothermal heat pump in

all the places of the planet .

It is expensive to build a power station but operating costs are low resulting in low energy costs for suitable sites.

Ultimately, this energy derives from heat in the Earth's core.

Page 27: Kompendium Ketahanan Energi

DEWAN ENERGI NASIONAL (DEN)

Sumber: http://www.den.go.id/index.php/page/readPage/1 …… diunduh 26/3/2012

Sumber daya energi merupakan kekayaan alam sebagaimana diamanatkan dalam Pasal 33 Undang-Undang Dasar Negara Republik Indonesia Tahun 1945 dikuasai negara dan

dipergunakan untuk sebesar-besarnya kemakmuran rakyat. Peranan energi sangat penting artinya bagi peningkatan kegiatan ekonomi dan ketahanan nasional, sehingga pengelolaan energi yang meliputi penyediaan, pemanfaatan, dan pengusahaannya harus dilaksanakan

secara berkeadilan, berkelanjutan, rasional, optimal, dan terpadu.Cadangan sumber daya energi tidak terbarukan terbatas, maka perlu adanya kegiatan

penganekaragaman sumber daya energi agar ketersediaan energi terjamin.Berdasarkan pertimbangan-pertimbangan tersebut, negara telah mengamanatkan kepada

pemerintah untuk membentuk suatu Dewan Energi Nasional (DEN).

Dewan Energi Nasional sesuai dengan amanat UU No. 30 Tahun 2007 bertugas:1. Merancang dan merumuskan kebijakan energi nasional untuk ditetapkan oleh

pemerintah dengan persetujuan DPR.2. Menetapkan rencana umum energi nasional.3. Menetapkan langkah-langkah penanggulangan kondisi krisis dan darurat energi.4. Mengawasi pelaksanaan kebijakan di bidang energi yang bersifat lintas sektoral.

DEN Rancang Kebijakan Energi Nasional Jangka PanjangDewan Energi Nasional telah menyepakati Rancangan Kebijakan Energi Nasional

(Rancangan-KEN) yang telah dirumuskan dengan memperhatikan saran dan masukan yang disampaikan oleh Anggota DEN.

Rancangan-KEN adalah perubahan paradigma pengelolaan energi nasional yang menempatkan sumber daya energi sebagai modal pembangunan nasional, bukan

hanya sebagai komoditi ekspor. Rancangan KEN disusun dengan tujuan sebagai pedoman dalam pengelolaan energi untuk mewujudkan ketahanan dan kemandirian

energi dalam mendukung pembangunan nasional berkelanjutan.

Untuk mencapai tujuan, sasaran Rancangan-KEN meliputi, ketersediaan energi, prioritas penyediaan energi, pemanfaatan sumber daya energi, cadangan energi

nasional, konservasi dan diversifikasi, lingkungan dan keselamatan, harga subsidi dan insentif energi, penelitian dan pengembangan energi, kelembagaan dan pendanaan.

Rancangan Kebijakan Energi Nasional (KEN) ini akan segera disampaikan kepada DPR-RI untuk mendapatkan persetujuan sebelum ditetapkan pemerintah dan kebijakan energi nasional (KEN) akan digunakan sebagai pedoman dalam penyusunan Rencana Umum

Energi Nasional (RUEN) dan Rencana Umum Ketenagalistrikan Nasional (RUKN).(SUMBER: http://www.ristek.go.id/index.php/module/News+News/id/10503)

Page 28: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

Page 29: Kompendium Ketahanan Energi

KERANGKA REGULASI ENERGI(Menurut Undang-Undang No.30 Tahun 2007 tentang Energi)

UU No. 30/2007Tentang Energi Peraturan

Pemerintah (PP)Peraturan Presiden

(Perpres)

I. Amanat Pembuatan Peraturan Pemerintah (PP) tentang :

1. Penyediaan dan pemanfaatan energi oleh Pemerintah

(Pasal 22 ayat 2)2. Klasifikasi Jasa Energi (Pasal 23 ayat 6)3. Kewajiban pengusahaan energi oleh Badan Usaha

Energi (Pasal 24 ayat 2)4. Pelaksanaan Konservasi Energi, Pemberian

Kemudahan Insentif dan Disinsentif Konservasi Energi (Pasal 25 ayat 5)

5. Pemberian kemudahan dan atau insentif terhadap pemanfaatan energi baru dan sumber energi terbarukan oleh Pemerintah

(Pasal 22 ayat 1)6. Pendanaan untuk pengembangan dan

pemanfaatan hasil penelitian tentang energi baru dan energi terbarukan dari pendapatan negara yang berasal dari energi tak terbarukan (Pasal 30 ayat 4)

II. Amanat Pembuatan Peraturan Presiden (Perpres) tentang :

1. Ketentuan tentang cara penyaringan Calon Anggota Dewan Energi Nasional (Pasal 13 ayat 7)

2. Ketentuan tentang penyusunan Rencana Umum Energi Nasional (Pasal 17 ayat 3)

III. Amanat Penetapan oleh Presiden tentang :1. Kebijakan Energi Nasional (Pasal 11 ayat 1)

IV. Amanat Pembuatan Peraturan Daerah (Perda) tentang :

1. Pemberian kemudahan dan atau insentif terhadap pemanfaatan energi baru dan terbarukan oeleh Pemerintah Daerah

(Pasal 22 ayat 1)2. Penyediaan dan pemanfaatan energi oleh

Pemerintah Daerah (Pasal 22 ayat 2)

PP No. 70 tahun 2009

ttg. Konservasi Energi

Perpres No. 26 /2008ttg. Pembentukan DEN

dan Tata Cara Penyaringan Calon

Anggota DEN

Domain Negara (Legislasi)

Domain Pemerintah (Regulasi)

RPP ttg.Pengelolaan Diversifikasi

Energi

RPP ttg.Energi Baru dan

Energi Terbarukan

(EBT)

Rancangan Perpres ttg.Penyusunan RUEN

Rancangan Keppres ttg.Kebijakan Energi Nasional (KEN)

0

Perdattg. EBT

Peraturan Menteri(yg diamanatkan UU &

PP)

Rancangan Perpres ttg. Hak Keuangan bagi Ketua

Harian & Anggota DEN (Pelaksanaan Pasal 25

ayat 1, Perpres No. 26/2008

Peraturan Daerah(Perda)

Page 30: Kompendium Ketahanan Energi

Batubara; 34.6%

Gas Bumi; 20.6%

Minyak Bumi; 41.7%

EBT; 3.1%

Batubara;

33%

Gas Bumi, 30%

Minyak Bumi, 20%

EBT, 17%

Batubara; 32%

Gas Bumi; 23%

Minyak

Bumi; 20%

EBT; 25%Batubara;

30.7%

Gas Bumi; 21.0%

Minyak Bumi, 43.9%

EBT; 4.4%

ARAH KEBIJAKAN ENERGI

EBT

Gas Bumi

Batubara

M. Bumi

21 %

30,7 %

43,9%

4,4 %

EBT

Gas Bumi

Batubara

M. Bumi

2010* 2015 2020

2025

KONSERVASI ENERGI (37,25%)

DIVER

SIFIKA

SIEN

ERG

I

BAU**

Sumber: *Prakiraan 2010, **Blueprint PEN 2006-2025

PERPRES 5/2006 VISI 25/25

25 %

32 %

20 %

23 %

41.7%

20,6%

34.6%

3,1%

5100 JutaSBM

3200 JutaSBM

3200 JutaSBM

113,1 JutaSBM

Page 31: Kompendium Ketahanan Energi

KEBIJAKAN UTAMA ENERGI

1. Konservasi Energi untuk meningkatkan efisiensi penggunaan energi di sisi suplai dan pemanfaatan (Demand Side).

2. Diversifikasi Energi untuk meningkatkan pangsa energi baru terbarukan dalam bauran energi nasional (Supply Side).

Sustainable Energy Management (SEM)Renewable

energy :

Energi yang dihasilkan dari sumberdaya alam seperti

radiasi-matahari, angin, air, hujan, pasang-surut, panas

bumi, dan hayati………

……. yang secara alamiah dapat diperbaharui

Efficient energy use, sometimes simply called energy efficiency, is using less energy to provide the

same level of energy service.

Page 32: Kompendium Ketahanan Energi

Rencana Induk Konservasi

Energi Nasional (RIKEN)

Rencana Induk Diversifikasi

Energi Nasional (RIDEN)

Rencana Induk Energi

Konvensional/Fosil

KEBIJAKAN ENERGI SEKTORAL

Kebijakan Energi Sektor Rumah Tangga

Kebijakan Energi Sektor Bangunan Komersial

Kebijakan Energi Sektor Transportasi

Kebijakan Energi Sektor Industri

KEBIJAKAN ENERGI KLASTERAL*)

Energi Baru

Kebijakan Energi Klaster Nuklir

Kebijakan Energi Klaster Panas Bumi

Energi Terbarukan

Kebijakan Energi Klaster CBM

Kebijakan Energi Klaster Gasified Coal

Kebijakan Energi Klaster Liquified Coal

Kebijakan Energi Klaster Hidrogen

Kebijakan Energi Klaster Hidro

Kebijakan Energi Klaster Bioenergi

Kebijakan Energi Klaster Energi Surya

Kebijakan Energi Klaster Energi Angin

Kebijakan Energi Klaster Samudera

Kebijakan Energi Klaster Minyak Bumi

Kebijakan Energi Klaster Gas Bumi

Kebijakan Energi Klaster Batubara

Visi Energi Baru Terbarukan

25/25

*) Klaster sesuai dengan UU 30/2007 tentang Energi

Energi Tak Terbarukan

Sisi kebutuhanSisi Penyediaan

Page 33: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

KONDISI SAAT INI ENERGI INDONESIA

1. Kebijakan Umum Bidang Energi (KUBE) : 1981, 1987, 1991, 1998 dan KEN 2003

2. Potensi sumber daya energi cukup besar3. Akses masyarakat terhadap energi masih terbatas4. Pangsa konsumsi BBM : 63% dari energi final5. Ekspor energi besar, impor BBM besar

Ekspor minyak bumi 514 ribu barel per hari, pemakaian dalam negeri 611 ribu barel per hari dan impor 487 ribu barel per hari

Ekspor gas bumi 4,88 BCF per hari, pemakaian dalam negeri 3,47 BCF per hari

Ekspor batubara 92,5 juta ton per tahun, pemakaian dalam negeri 32,91 juta ton per tahun

6. Harga ekspor gas dan batubara lebih tinggi dari harga pemasaran dalam negeri

7. Kemampuan/daya beli konsumen dalam negeri terhadap batubara dan gas rendah dan belum adanya insentif ekonomi baik fiskal maupun non fiskal bagi energi fosil untuk pemakaian dalam negeri

Page 34: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

KONDISI YANG DIHARAPKAN• Meningkatnya akses masyarakat terhadap energi• Meningkatnya keamanan pasokan energi• Menyesuaikan harga energi dengan keekonomiannya• Tersedianya infrastruktur energi yang memadai• Meningkatnya efisiensi penggunaan energi

SASARAN• Terwujudnya keamanan pasokan energi dalam negeri sesuai Perpres No. 5 Tahun 2006 yaitu :– Tercapainya elastisitas p y energi lebih kecil dari 1 pada tahun 2025– Terwujudnya bauran energi primer yang optimal (Lampiran N1) :

1. Peranan minyak bumi menurun menjadi maksimum 20% pada 20252. Peranan gas bumi meningkat menjadi minimum 30% pada tahun 20253. Peranan batubara meningkat menjadi 33% pada tahun 2025, melalui

pemanfaatan brown coal, coal liquefaction dan briket batubara4. Peranan panas bumi dan biofuel meningkat masing-masing menjadi 5% pada

tahun 2025 5. Peranan energi baru dan terbarukan lainnya meningkat menjadi 5% pada tahun

2025Terpenuhinya pasokan energi fosil dalam negeri dengan mengurangi ekspor secara bertahap

Terwujudnya kondisi ekonomi sehingga kemampuan/daya beli masyarakat meningkat:

• Tersedianya infrastruktur energi :6. BBM : jaringan pipanisasi BBM di Jawa; kilang; depot; terminal transit7. Gas : jaringan pipanisasi Kalimantan–Jawa, Jawa Barat–Jawa Timur, Sumatera– Jawa;

Integrated ; g Indonesian Gas Pipeline; embrio dari Trans ASEAN Gas Pipeline (TAGP) – (Lampiran G5); terminal regasifikasi LNG

8. Batubara : sarana dan prasarana transportasi dari mulut tambang ke pelabuhan; pelabuhan di titik suplai dan di lokasi konsumen; sarana dan prasarana distribusi

9. Listrik : ASEAN Power Grid (Lampiran G7); transmisi Jawa, Kalimantan, Sulawesi• Tercapainya struktur harga energi sesuai keekonomiannya

Page 35: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

PELUANG1. Keanekaragaman sumber daya energi: migas, batubara, panas bumi, biofuel dan

energi baru serta terbarukan lainnya2. Pertumbuhan ekonomi yang semakin baik akan meningkatkan kebutuhan energi

dalam negeri dan kemampuan / daya beli masyarakat serta akan menjadi daya tarik investasi swasta yang diperlukan dalam pembangunan sektor energi

3. Potensi peningkatan efisiensi energi cukup besar4. Potensi pasar energi nasional, regional dan internasional masih terbuka

KENDALA5. Struktur harga energi belum mendukung diversifikasi dan konservasi energi6. Adanya disparitas perkembangan ekonomi antar wilayah7. Ketidaksesuaian antara persebaran sumber energi dan konsumen8. Subsidi energi masih menjadi beban negara akibat kemampuan/daya beli masyarakat

yang masih rendah9. Industri energi khususnya minyak dan gas bumi serta ketenagalistrikan pada

umumnya belum kompetitif10. Ketidakstabilan pasar dan harga energi fosil11. Sistem plough back tidak diterapkan secara maksimal12. Mekanisme iklim investasi belum kondusif13. Sistem perencanaan energi belum diterapkan pada sisi permintaan/pengguna yang

mendukung efisiensi penggunaan energi14. Energi masih dianggap sebagai infrastruktur, belum sebagai komoditi15. Tumpang tindih regulasi antar sektor dan otonomi daerah belum sesuai dengan yang

diharapkan16. Kepastian hukum untuk investasi belum jelas

Page 36: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

STRATEGI1. Meningkatkan keamanan pasokan energi dengan memperhatikan aspek lingkungan2. Menerapkan prinsip-prinsip good governance dan transparansi3. Mendorong investasi swasta bagi pengembangan energi4. Melakukan konservasi sumber daya energi5. Menjamin penyediaan energi untuk seluruh lapisan masyarakat6. Meningkatkan pemberdayaan masyarakat dalam pengelolaan energi7. Meningkatkan efisiensi penyediaan dan pemanfaatan energi8. Melakukan diversifikasi energi dengan memaksimalkan sumber daya energi yang ada

di dalam negeri9. Memaksimalkan pemanfaatan energi setempat (Desa Mandiri Energi)10. Meningkatkan kapasitas SDM dan penguasaan teknologi11. Memaksimalkan penerimaan negara sektor ESDM bagi pengembangan sektor ESDM

KEBIJAKAN• Kebijakan Utama– Penyediaan energi melalui :

12. penjaminan ketersediaan pasokan energi dalam negeri13. pengoptimalan produksi energi14. pelaksanaan konservasi energi

– Pemanfaatan energi melalui :15. efisiensi pemanfaatan energi16. diversifikasi energi.

– Penetapan kebijakan harga energi ke arah harga keekonomian dengan tetap mempertimbangkan kemampuan usaha kecil dan bantuan bagi masyarakat tidak mampu dalam jangka waktu tertentu– Pelestarian lingkungan dengan menerapkan prinsip pembangunan berkelanjutan

• Kebijakan Pendukung :17. pengembangan infastruktur energi termasuk peningkatan akses konsumen

terhadap energi18. kemitraan pemerintah dan dunia usaha19. pemberdayaan masyarakat20. penelitan dan pengembangan serta pendidikan dan pelatihan

Page 37: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

UPAYA• Strategi 1 : Mengembangkan Mekanisme Harga Keekonomian Energi dengan upaya :– Rasionalisasi harga energi dituangkan dalam Program Utama 1, 2, 3, 4 dan 14– Penerapan mekanisme insentif ekonomi dan pajak energi (Program Utama 3 dan 4)

• Strategi 2 : Meningkatkan Keamanan Pasokan Energi dengan memperhatikan aspeklingkungan dengan upaya :

1. Peningkatan efisiensi energi, khususnya BBM (Program Utama 5, 6 dan 14)2. Peningkatan status cadangan terbukti energi (Program Utama 7)3. Konservasi sumber daya energi4. Peningkatan cadangan energi nasional/strategis (SPR – Strategic Petroleum

Reserves) – (Program Utama 9)5. Penggunaan cadangan gas bumi baik cadangan besar ataupun kecil untuk

kebutuhan domestik dan cadangan gas mencukupi untuk memenuhi kebutuhan dalam negeri maupun ekspor (dalam UU Migas ada konsep mengenai DMO gas yang mencakup juga insentif) – (Program Utama 10)

6. Penerapan DMO terhadap batubara, dengan memberikan insentif ekonomi untuk mendorong pasokan dan penggunaan dalam negeri termasuk coal liquefaction, upgrading brown coal (UBC) dan gasifikasi batubara serta teknologi batubara bersih lainnya (Program Utama 3, 4, 9 dan 11, Program Pendukung 2)

7. Pengembangan advanced energy technologies berdasarkan Landmark Teknologi Energi – (Program Utama 11 dan 14, Program Pendukung 2)

8. Pengembangan potensi panas bumi untuk penggunaan langsung maupun tidak langsung (Program Utama 7 dan 14, Program Pendukung 2)

9. Mengembangkan energi alternatif BBM non fosil lainnya (Program Utama 8,11, 14, dan 16, Program Pendukung 2)

10. Pengembangan pemanfaatan kendaraan berbahan bakar energi alternatif (Program Utama 3, 4, 10, 11, 13, 14, 15 dan 16, Program Pendukung 1)

11. Penerapan depletion premium untuk menjaga keberlanjutan pasokan (Program Utama 12)

12. Peningkatan pemanfaatan energi yang ramah lingkungan (Program Utama 4, 5, 10, 11 dan 16)

Page 38: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

UPAYA - UPAYA• Strategi 3 : Menerapkan Prinsip-Prinsip Good Governance dan Transparansi denganupaya :1. Penerapan mekanisme open access pada infrastruktur energi (Program Utama 12)2. Deregulasi di tingkat makro dan mikro (corporate) - (Program Utama 12)

• Harmonisasi pengaturan panas bumi dengan ketenagalistrikan (Program Utama 12)

• Harmonisasi pengaturan pemanfaatan kawasan hutan untuk pertambangan dan energi (Program Utama 12)

3. Penetapan kelembagaan yang bertanggung jawab dalam pengaturan standardisasi dan spesifikasi produk-produk EBT dan pelaksana program kegiatan nuklir (Program Pendukung 2)

• Strategi 4 : Mendorong Investasi Swasta bagi Pengembangan Energi, dengan upaya :1. Penerapan insentif ekonomi, baik dalam bentuk fiskal maupun non fiskal,

khususnya untuk pasokan energi bagi kebutuhan domestik, pengembangan energi baru terbarukan dan peningkatan efisiensi energi (Program Utama 1, 2, 3, 4)

2. Pemberian insentif ekonomi bagi investasi baru untuk pengembangan infrastruktur energi (Program Utama 1, 3, dan 13)

3. Pengembangan infrastruktur energi (Program Utama 13)4. Pengembangan pasar domestik untuk energi alternatif, khususnya bio fuel

(Program Utama 1, 3, 11, 13, 15 dan 16, Program Pendukung 1)

• Strategi 5 : Meningkatkan Pemberdayaan Masyarakat dalam Pengelolaan Pembangunan Energi yang Berkelanjutan, dengan upaya :

5. Peningkatan kemampuan Nasional dalam pengembangan energi (Program Utama 15, Program Pendukung 1 dan 3)

6. Penyelenggaraan sosialisasi energi alternatif secara kontinyu (Program Utama 14)

7. Peningkatan peluang bisnis dan industri pabrikasi dengan fokus sumber energi baru terbarukan (Program Utama 11 dan 15)

8. Peningkatan kesadaran masyarakat dalam efisiensi energi (Program Utama 14, Program Pendukung 3)

Page 39: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

UPAYA-UPAYA• Strategi 6 : Meningkatkan efisiensi penyediaan dan pemanfaatan energi dengan upaya:– Peningkatan efisiensi pada industri penyedia energi– Peningkatan efisiensi pada peralatan pemanfaat energi– Peningkatan efisiensi pada pengguna energi

• Strategi 7 : Memaksimalkan sumber daya energi yang ada di dalam negeri denganupaya :– Peningkatan kegiatan eksplorasi– Pemberian insentif fiskal dan non fiskal

• Strategi 8 : Memaksimalkan dana penerimaan negara sektor ESDM bagipengembangan sektor ESDM dengan upaya :– Pemanfaatan premium Migas untuk program-program unggulan– Penyusunan regulasi penerimaan negara bukan pajak sektor ESDM

• Strategi 9 : Meningkatkan kapasitas SDM dan penguasaan teknologi dengan upaya :– Pengembangan mekanisme pendanaan bagi penelitian dan pengembangan– Perbaikan sistem remunerasi yang berdasarkan profesionalisme

Strategi 10 : Memaksimalkan pemanfaatan energi setempat dengan upaya :– Pengembangan Desa Mandiri Energi– Pengembangan kawasan khusus energi– Pengembangan kemampuan wirausaha energi di daerah– Pengembangan pemanfaatan energi untuk kegiatan ekonomi– Penyusunan mekanisme ekspor-impor tenaga listrik dan sewa jaringan

• Strategi 11 : Melakukan diversifikasi energi dengan memaksimalkan sumber daya energiyang ada di dalam negeri dengan upaya :– Pengembangan energi alternatif untuk transportasi, rumah tangga dan industri– Diversifikasi pembangkit tenaga listrik diantaranya melalui interkoneksi pembangkitskala kecil dan menengah dari sumber energi baru terbarukan

Page 40: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

PROGRAM PENGEMBANGANPROGRAM UTAMA 1 : RASIONALISASI HARGA BBM1. Penerapan mekanisme penyesuaian harga BBM dengan beberapa alternatif:

• Mekanisme penyesuaian harga pasar sepenuhnya secara otomatis untuk seluruh jenis BBM

• Mekanisme penyesuaian harga secara otomatis pada tingkat yang disubsidi untuk seluruh jenis BBM

• Mekanisme penyesuaian harga secara otomatis, khusus untuk jenis BBM tertentu (minyak tanah rumah tangga dan minyak solar transportasi) secara fixed price

• Mekanisme penyesuaian harga secara fixed price untuk seluruh jenis BBM2. Penyediaan subsidi energi bagi konsumen dhuafa3. Pemberian insentif penyediaan energi alternatif, termasuk skema percepatan depresiasi4. Penerapan sistem insentif untuk mendorong peningkatan efisiensi energi

PROGRAM UTAMA 2 : PENYEDIAAN ENERGI ALTERNATIF PENGGANTI MINYAKTANAH UNTUK RUMAH TANGGA1. Peningkatan pemanfaatan dan biogas rumah tangga2. Peningkatan rasio elektrifikasi

PROGRAM UTAMA 3 : PENERAPAN TAX ALLOWANCE1. Peningkatan pasokan energi bagi kebutuhan domestik2. Pengembangan energi alternatif dan efisiensi energi

PROGRAM UTAMA 4 : PENERAPAN CARBON TAX SECARA BERTAHAP UNTUKPENGEMBANGAN ENERGI BERSIHPROGRAM UTAMA 5 : PENERAPAN SUPPLY DAN DEMAND SIDE MANAGEMENT

1. Penerapan standarisasi dan labelisasi, penerapan manajer energi dan pelaksanaan audit energi pada sektor industri dan komersial

2. Penerapan peralatan hemat energi pada sektor rumah tangga3. Penerapan standar efisiensi bahan bakar pada sektor transportasi4. Penerapan teknologi hemat energi dan manajemen energi pada sektor pembangkit

listrik5. Pelaksanaan sosialisasi hemat energi

Page 41: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

PROGRAM UTAMA 6 : PENYUSUNAN INSTRUMEN KEBIJAKAN

1. Penyusunan regulasi :a. CBM : - peningkatan status peraturan pengusahaan CBM termasuk aturan

pelaksanaanb. BBN : - penerapan kewajiban pencampuran BBN pada BBMc. Panas bumi : - penyusunan mekanisme pentarifan dari hulu sampai dengan hilird. Coal Liquefaction: - peraturan alokasi batubara

2. Peningkatan belanja negara untuk survey dan proyek percontohan

PROGRAM UTAMA 7 : PENINGKATAN KEGIATAN EKSPLORASI1. Pemberian insentif ekonomi untuk meningkatkan investasi bagi kegiatan eksplorasi2. Migas: eksplorasi wilayah baru termasuk frontier areas dan laut dalam3. Batubara: eksplorasi wilayah baru dan eksplorasi lanjutan untuk meningkatkan status

cadangan4. Panas bumi: eksplorasi pencarian potensi-potensi baru5. CBM : eksplorasi dan pembukaan wilayah kerja baru

PROGRAM UTAMA 8 : INTENSIFIKASI PENCARIAN DAN PEMANFAATAN SUMBERSUMBERENERGI BARU TERBARUKAN1. Survei potensi energi baru terbarukan2. Pengembangan database potensi energi baru terbarukan3. Pemanfaatan gas suar bakar (Flare Gas)

PROGRAM UTAMA 9 : PENGEMBANGAN CADANGAN ENERGI STRATEGIS UNTUKKEAMANAN PASOKAN DALAM NEGERI1. Peningkatan stok minyak dan batubara dalam negeri2. Pengalokasian sumber daya energi untuk memenuhi kebutuhan dimasa mendatang

PROGRAM UTAMA 10 : PENINGKATAN PEMANFAATAN GAS DI DALAM NEGERI1. Perbaikan dan pengembangan infrastruktur pasokan gas2. Pengembangan pemanfaatan CNG, GTL, DME, LPG dan gas kota

Page 42: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

PROGRAM UTAMA 11 : PENELITIAN DAN PENGEMBANGAN ENERGI

1. Pengembangan IPTEK energia. Teknologi batubara kalori rendah b. Kilang mini LNG (Upgraded Brown Coal – UBC) c. Ocean technologyd. Batubara cair (Coal Liquefaction) e. Dimethyl ether (DME)f. Teknologi energi ramah lingkungang. Coal bed methaneh. Integrated coal gasificationi. Hidrat gas bumij. CNG untuk pembangkit tenaga listrik k. Photovoltaic

2. Pengembangan mekanisme pendanaan Pemerintah/Pemerintah Daerah bagipenelitian dan pengembangan IPTEK energi

3. Komersialisasi IPTEK energil. Aplikasi teknologi energi berbahan bakar ganda, antara lain batubara dengan energi

lainnya, khususnya biomassam. Pengembangan kendaraan berbahan bakar energi alternatifn. Pemanfaatan LNG untuk transportasio. Pengembangan model skema bisnisp. Penerapan sistem insentif finansialq. Pengembangan energi baru terbarukan dan teknologi energi efisien dalam kegiatan

pengadaan yang menggunakan dana Pemerintah

4. Peningkatan kemitraan antar stakeholders energi baik di dalam maupun di luar negeri

Page 43: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

PROGRAM UTAMA 12 : RESTRUKTURISASI INDUSTRI ENERGI1. Penetapan aturan mengenai depletion premium2. Penetapan aturan mekanisme open access infrastruktur energi

PROGRAM UTAMA 13 : PERCEPATAN PEMBANGUNAN INFRASTRUKTUR ENERGI1. Infrastruktur gas2. Infrastruktur batubara3. Infrastruktur listrik4. Infrastruktur BBM5. Infrasturktur energi alternatif BBM lainnya, termasuk BBG untuk sektor transportasi

PROGRAM UTAMA 14 : SOSIALISASI1. Pengembangan forum dialog2. Pengembangan community development pada lingkup nasional3. Pemanfaatan media massa (cetak dan elektronik)4. Penggunaan BBG dan BXX pada kendaraan operasional di lingkungan Pemerintah5. Penyediaan fasilitas bimbingan teknis bagi masyarakat, pengusaha dan industri

dalam hal pemanfaatan energi baru terbarukan dan teknologi energi yang efisien

PROGRAM UTAMA 15 : PENGEMBANGAN INDUSTRI DAN JASA ENERGI DALAMNEGERI1. Pabrikasi teknologi energi dalam negeri2. Jasa rekayasa energi dalam negeri3. Pengutamaan penggunaan produksi dalam negeri (TKDN)

PROGRAM UTAMA 16 : PENGEMBANGAN INFRASTRUKTUR ENERGI6. Perbaikan dan pengembangan infrastruktur pasokan minyak bumi, gas bumi dan

batubara7. Pengembangan infrastruktur ketenagalistrikan8. Pengembangan infrastruktur energi baru dan terbarukan

Page 44: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

PROGRAM PENDUKUNG

PROGRAM PENDUKUNG 1 : PENINGKATAN KEMAMPUAN MASYARAKAT DALAMPENGUSAHAAN ENERGI

PROGRAM PENDUKUNG 2 : PENATAAN KEMBALI KELEMBAGAAN ENERGI1. Penetapan kebijakan energi nasional2. Revitalisasi kelembagaan sejalan UU Energi untuk pelaksanaan kebijakan

energi nasional3. Regulator energi4. Pengembangan teknologi dan sumberdaya manusia energi5. Penetapan spesifikasi dan standar komoditi energi baru dan terbarukan

PROGRAM PENDUKUNG 3 : PENGEMBANGAN KEMAMPUAN SUMBERDAYAMANUSIA NASIONAL1. STEM (Sekolah Tinggi Energi dan Mineral)2. Sertifikasi personil3. Standar kompetensi4. Kode etik profesi

Page 45: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

MILESTONE PENGEMBANGAN ENERGI ALTERNATIF(1) Milestone Kilang Batubara Cair(2) Milestone Coal Bed Methane (CBM)(3) Milestone Terminal LNG(4) Milestone PLTP(5) Milestone PLTN(6) Milestone Biodiesel(7) Milestone Bioethanol(8) Milestone Biooil(9) Milestone PLTS(10) Milestone PLTMH(11) Milestone PLTU Biomasa/Sampah(12) Milestone PLT Bayu

BAHAN BAKAR NABATI = Biofuel

Liquid biofuel is usually either bioalcohol such as bioethanol or an oil such as biodiesel.

Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. With advanced

technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel

for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions.

Biodiesel is made from vegetable oils, animal fats or recycled greases. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide,

and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification .

Page 46: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

Page 47: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

Page 48: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

Pembangkit Listrik Tenaga Nuklir (PLTN) adalah stasiun pembangkit listrik thermal di mana panas yang dihasilkan diperoleh dari satu atau lebih

reaktor nuklir pembangkit listrik.PLTN termasuk dalam pembangkit daya base load, yang dapat bekerja dengan baik ketika daya keluarannya konstan (meskipun boiling water reactor dapat turun hingga setengah dayanya ketika malam hari). Daya

yang dibangkitkan per unit pembangkit berkisar dari 40 MWe hingga 1000 MWe. Unit baru yang sedang dibangun pada tahun 2005 mempunyai daya

600-1200 MWe.Hingga saat ini, terdapat 442 PLTN berlisensi di dunia dengan 441

diantaranya beroperasi di 31 negara yang berbeda. Keseluruhan reaktor tersebut menyuplai 17% daya listrik dunia.

(SUMBER: http://id.wikipedia.org/wiki/Pembangkit_listrik_tenaga_nuklir)

Page 49: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Biodiesel Production

Biodiesel can be produced from straight vegetable oil, animal oil/fats, tallow and waste oils. There are three basic routes to biodiesel production from oils and fats:

Base catalyzed transesterification of the oil. Direct acid catalyzed transesterification of the oil. Conversion of the oil to its fatty acids and then to biodiesel.

Almost all biodiesel is produced using base catalyzed transesterification as it is the most economical process requiring only low temperatures and pressures and producing a 98%

conversion yield. For this reason only this process will be described in this report. The Transesterification process is the reaction of a triglyceride (fat/oil) with an alcohol to form

esters and glycerol. A triglyceride has a glycerine molecule as its base with three long chain fatty acids attached. The characteristics of the fat are determined by the nature of the fatty acids

attached to the glycerine. The nature of the fatty acids can in turn affect the characteristics of the biodiesel. During the esterification process, the triglyceride is reacted with alcohol in the presence

of a catalyst, usually a strong alkaline like sodium hydroxide. The alcohol reacts with the fatty acids to form the mono-alkyl ester, or biodiesel and crude glycerol. In most production methanol or ethanol is the alcohol used (methanol produces methyl esters, ethanol produces ethyl esters) and is base catalysed by either potassium or sodium hydroxide. Potassium hydroxide has been

found to be more suitable for the ethyl ester biodiesel production, either base can be used for the methyl ester. A common product of the transesterification process is Rape Methyl Ester (RME)

produced from raw rapeseed oil reacted with methanol. (sumber: http://www.esru.strath.ac.uk/EandE/Web_sites/02-03/biofuels/what_biodiesel.htm)

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

Page 50: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Bioethanol Production Ethanol can be produced from biomass by the hydrolysis and sugar fermentation processes. Biomass wastes contain a complex mixture of carbohydrate polymers from the plant cell walls known as cellulose, hemi cellulose and lignin. In order to

produce sugars from the biomass, the biomass is pre-treated with acids or enzymes in order to reduce the size of the feedstock and to open up the plant structure. The cellulose and the hemi cellulose portions are broken down (hydrolysed) by enzymes

or dilute acids into sucrose sugar that is then fermented into ethanol. The lignin which is also present in the biomass is normally used as a fuel for the ethanol

production plants boilers. There are three principle methods of extracting sugars from biomass. These are concentrated acid hydrolysis, dilute acid hydrolysis and

enzymatic hydrolysis. (sumber:

http://www.esru.strath.ac.uk/EandE/Web_sites/02-03/biofuels/what_bioethanol.htm)

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

Page 51: Kompendium Ketahanan Energi

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

BIOOIL = PYROLYSIS OILPyrolysis oil is a synthetic fuel under investigation as substitute for petroleum. It is extracted by biomass to liquid technology of destructive distillation from dried biomass in a reactor at temperature of about 500°C with subsequent cooling. Pyrolytic oil (or bio-oil) is a kind of tar and normally contains too high levels of oxygen to be a hydrocarbon. As such it is distinctly

different from similar petroleum products.Biomass is split into solid and gaseous components under the influence of heat only (

anhydrous pyrolysis). The solid component, charcoal, may be used for heating the process, a soil additive (biochar), or as activated carbon in absorption processes. The non-condensable

gaseous component, consisting of hydrogen (H2), carbon monoxide (CO), carbon dioxide (CO2) and methane (CH4), may be burned. The condensible gases, however, may be rapidly

cooled to form condensate droplets, which can then be separated from the non-condensable gases due to the substantial difference in density of each fraction. The

condensate may be reignited similar to #2 fossil fuel. The heating value is 15-22 MJ/kg.(SMBER: http://en.wikipedia.org/wiki/Pyrolysis_oil)

Sumber: www.esdm.go.id/.../714-blue-print-pengelolaan-energi-nasional-pen.... …… diunduh 26/3/2012

Page 52: Kompendium Ketahanan Energi

Sumber: …… diunduh 26/3/2012

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Page 53: Kompendium Ketahanan Energi

Sumber: …… diunduh 26/3/2012

BLUEPRINT PENGELOLAAN ENERGI NASIONAL 2006 - 2025

Sesuai Peraturan Presiden Nomor 5 Tahun 2006JAKARTA, 2006

Page 54: Kompendium Ketahanan Energi

Sumber: http://economy.okezone.com/read/2010/05/01/320/328236/7-pokok-arah-kebijakan-energi-nasional…… diunduh 26/3/2012

I. Arah Kebijakan Energi Minyak dan Gas Bumi.

1. Perlu sistem fiskal untuk minyak, gas bumi dan CBM (coal bed methane) yang lebih menjamin keuntungan atau mengurangi resiko kontraktor dengan memberikan bagian pemerintah atau GT (government take) yang kecil untuk R/C (revenue/cost) yang kecil dan GT yang besar untuk R/C yang besar.

2. Perlu segera membangun infrastruktur gas termasuk LNG (liquefied natural gas) receiving terminal, pipa transportasi, SPBG (stasiun pengisi bahan bakar gas), infrastruktur gas kota dan lain-lain. Perlu harga gas dosmetik yang menarik.

3. Perlu peningkatan kualitas informasi untuk wilayah kerja yang ditawarkan melalui perbaikan ketersediaan data antara lain data geofisika dan geologi.

4. Perlu peningkatan kemampuan nasional migas dengan keberpihakan pemerintah misalnya untuk kontrak-kontrak migas yang sudah habis maka pengelolaannya diutamakan untuk perusahaan nasional dengan mempertimbangkan program kerja, kemampuan teknis dan keuangan.

5. Perlu mendorong perbankan nasional untuk memberikan pinjaman guna membiayai kegiatan produksi energi nasional.

6. Dana depletion premium dari energi tak terbarukan sangat diperlukan guna meningkatkan kualitas informasi untuk penawaran konsesi-konsesi migas baru, peningkatan kemampuan sumber daya manusia dan penelitian, infrastruktur pendukung migas, serta untuk pengembangan energi non-migas dan energi di pedesaan.

7. Perlu dikaji segera kemungkinan impor gas (LNG), karena lebih baik/murah mengimpor gas daripada mengimpor minyak dan BBM. Di sektor rumah tangga, pemakaian LPG lebih murah dari pemakaian minyak tanah. Di sektor transportasi, penggunaan BBG lebih murah dan lebih bersih daripada BBM.

8. Perlu diperbaiki sistem birokrasi dan informasi serta kemitraan di lingkungan ESDM di samping koordinasi antar institusi untuk mengatasi permasalahan-permasalahan fiskal, perijinan, tanah, tumpang tindih lahan, lingkungan, permasalahan desentralisasi dan lain-lain.

7 Pokok Arah Kebijakan Energi NasionalPokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak

dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah

kebijakan energi terbarukan nuklir.

Page 55: Kompendium Ketahanan Energi

Sumber: http://economy.okezone.com/read/2010/05/01/320/328236/7-pokok-arah-kebijakan-energi-nasional…… diunduh 26/3/2012

Tujuh Pokok Arah Kebijakan Energi NasionalPokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak

dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah

kebijakan energi terbarukan nuklir.

Issu--issu Kritis Energi

Adanya ketergantungan yang masih tinggi terhadap energi fosil, sedangkan cadangan energi fosil sangat terbatas

Potensi energi non-fosil/energi terbarukan cukup besar tetapi pemanfaatannya masih kecil karena beberapa kendala a.l.:

1. Biaya investasi tinggi2. Harga energi terbarukan belumdapat bersaing dengan harga energi

fosil3. Kemampuan SDM relatif rendah terutama untuk energi terbarukan

yang belumkomersial4. Kemampuan jasa dan industri energi kurang mendukung

Adanya beragam permasalahan yang dihadapi dan dengan paradigma baru yang

menekankan pada pengembangan dan pemanfaatan energi yang menjamin

“security of supply” dan mendapatkan“nilai tambah” yang tinggi, maka disusunlah

“ Kebijakan Energi Nasional (KEN)”

Page 56: Kompendium Ketahanan Energi

Sumber: http://economy.okezone.com/read/2010/05/01/320/328236/7-pokok-arah-kebijakan-energi-nasional…… diunduh 26/3/2012

III. Arah Kebijakan Energi Terbarukan.

1. Pengembangan energi terbarukan difokuskan pada panas bumi (geothermal), energi biomass, surya (solar) dan bahan bakar nabati.

2. Penyediaan dana khusus untuk penelitian dan pengembangan energi terbarukan guna menurunkan biaya produksi.

3. Pengaturan dan pemberlakuan harga khusus untuk energi terbarukan.4. Peningkatan pengembangan industri peralatan produksi energi terbarukan dalam

negeri (peralatan penyulingan BBN, solar cell dan panel harus menggunakan produksi dalam negeri).

5. Pengalokasian dana dengan skema khusus (smart funding) untuk pengembangan energi terbarukan diluar BBN, khususnya untuk skala kecil.

6. Pemerintah melakukan pengaturan dan pengalokasian dana dari program Clean Development Mechanism (CDM), sehingga insentif karbon kredit dapat memberi manfaat pada publik

7 Pokok Arah Kebijakan Energi NasionalPokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak

dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah

kebijakan energi terbarukan nuklir.

ENERGI AIR = Hydropower

Energy in water can be harnessed and used. Since water is about 800 times denser than air, even a slow flowing stream of water, or moderate sea swell, can yield

considerable amounts of energy. There are many forms of water energy:1. Hydroelectric energy is a term usually reserved for large-scale hydroelectric dams. 2. Micro hydro systems are hydroelectric power installations that typically produce

up to 100 kW of power. They are often used in water rich areas as a remote-area power supply (RAPS).

3. Damless hydro systems derive kinetic energy from rivers and oceans without using a dam.

4. Ocean energy describes all the technologies to harness energy from the ocean and the sea. This includes marine current power, ocean thermal energy conversion, and tidal power.

Page 57: Kompendium Ketahanan Energi

Sumber: http://economy.okezone.com/read/2010/05/01/320/328236/7-pokok-arah-kebijakan-energi-nasional…… diunduh 26/3/2012

IV. Arah Kebijakan Energi Terbarukan Bahan Bakar Nabati (BBN).

1. Pengembangan BBN untuk menggantikan sebagian BBM.2. Pada tahap awal pengembangan BBN dilakukan oleh beberapa perusahaan besar

yang dipilih untuk mencapai nilai keekonomian.3. Pengaturan quota mandatory BBN bagi perusahaan penyedia listrik.4. Penyempurnaan penetapan besaran quota mandatory dalam penggunaan BBN untuk

sektor transportasi.

V. Arah Kebijakan Energi Terbarukan Panas Bumi.

5. Meningkatkan ekplorasi panas bumi dan membuat perkiraan biaya yang layak pada lokasi yang berbeda-beda.

6. Memastikan status tataguna lahan di hutan-hutan yang memiliki potensi panas bumi.7. Mengkaji implementasi peraturan perundang-undangan di sektor panas bumi untuk

mendekatkan sektor hulu dan hilir.8. Melakukan penyempurnaan di dalam pengelolaan dan persyaratan tender panas

bumi, yang antara lain meliputi : Pendelegasian kepada PLN untuk melaksanakan tender, pembagian resiko yang menguntungkan antara PLN dan pengembang, harga jual dan mekanismenya serta pembinaan untuk skala kecil dan penyehatan BUMN.

9. Meningkatkan kemampuan dalam negeri untuk mendukung kegiatan eksplorasi dan industri pendukung kelistrikan.

7 Pokok Arah Kebijakan Energi NasionalPokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak

dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah

kebijakan energi terbarukan nuklir.

Page 58: Kompendium Ketahanan Energi

Sumber: http://economy.okezone.com/read/2010/05/01/320/328236/7-pokok-arah-kebijakan-energi-nasional…… diunduh 26/3/2012

VI. Arah Kebijakan Energi Terbarukan Surya.

1. Penerapan mandatory penggunaan solar cell pada pemakai tertentu (industri besar, gedung komersial dan rumah mewah, PLN).

2. Mensinergikan mandatory dan penerapan feed in tarrif.3. Penerapan audit teknologi terhadap komponen/peralatan instalasi PLTS.4. Mengembangkan industri komponen/peralatan instalasi PLTS.5. Menargetkan pencapaian keekonomian PLTS ke grid connected tarrif dalam

waktu 10 tahun.6. Mengembangkan penguasaan teknologi PLTS dalam negeri baik melalui

pembelian license atau meningkatkan penelitian dan pengembangannya.

VII. Arah Kebijakan Energi Terbarukan PLT Tenaga Laut.

7. Meningkatkan ekplorasi sumberdaya energi berbasis arus, gelombang dan perbedaan suhu air laut.

8. Meningkatkan kemampuan nasional untuk peningkatan pemanfaatan energi arus, gelombang dan perbedaan suhu air laut, baik skala industri maupun domestik di seluruh kawasan laut Indonesia yang potensial.

9. Meningkatkan kemampuan penelitaan dan pengembangan di bidang energi laut menuju pemanfaatannya secara ekonomis.

7 Pokok Arah Kebijakan Energi NasionalPokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak

dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah

kebijakan energi terbarukan nuklir.

Page 59: Kompendium Ketahanan Energi

Sumber: http://economy.okezone.com/read/2010/05/01/320/328236/7-pokok-arah-kebijakan-energi-nasional…… diunduh 26/3/2012

VII. Arah Kebijakan Energi Terbarukan Nuklir.

1. Krisis listrik nasional sudah berlangsung cukup lama, yang telah mengakibatkan terganggunya kehidupan sosial, pertumbuhan industri, ekonomi, dan sebagainya. Salah satu di antaranya adalah banyak angkatan kerja yang tidak dapat tertampung.Pembangkit Listrik Tenaga Nuklir (PLTN) di samping ramah lingkungan juga dapat mengatasi krisis listrik dalam waktu yang relatif cepat untuk kapasitas yang sangat besar. Oleh sebab itu, PLTN merupakan solusi untuk mengatasi krisis listrik nasional.

2. Pemerintah meningkatkan kegiatan eksplorasi sumberdaya nuklir nasional.3. Pemerintah harus konsisten dalam menerapkan kebijakan pemanfaatan energi nuklir

sesuai dengan UU No. 17 tahun 2007 tentang RPJP, dimana pada Bab. IV.2.3. RPJM ke-3 ( 2015 – 2019 ), dinyatakan: “... mulai dimanfaatkannya tenaga nuklir untuk pembangkit listrik dengan mempertimbangkan faktor keselamatan secara ketat,...”.

4. Pemerintah perlu segera membentuk lembaga atau BUMN khusus yang ditugaskan untuk mengimplementasikan program PLTN sesuai dengan UU Nomor 17 tahun 2007. Studi kelayakan PLTN yang lebih komprehensif, termasuk penetapan waktu pembangunan PLTN pertama, sebagaimana amanat Sidang DEN yang ke-4, dikoordinasikan oleh lembaga tersebut.

5. Pengembangan nuklir untuk energy security of supply dan lingkungan. 6. Perlu peningkatan sosialisasi dengan data dan informasi yang obyektif (teknis,

ekonomis, keamanan/kendala dan sebagainya) dengan dana yang memadai, baik itu untuk generasi muda maupun untuk unsur masyarakat lainnya.

7 Pokok Arah Kebijakan Energi NasionalPokok-pokok kebijakan energi nasional meliputi, arah kebijakan energi minyak

dan gas bumi, batu bara, energi terbarukan, energi terbarukan bahan bakar nabati (BBN), panas bumi, energi terbarukan surya, PLT tenaga laut dan arah

kebijakan energi terbarukan nuklir.

Page 60: Kompendium Ketahanan Energi

ENERGI TERBARUKAN TUMBUH PESAT

Sumber: http://www.hijauku.com/2011/07/22/energi-terbarukan-tumbuh-pesat/ …… diunduh 26/3/2012

Laporan “REN21 Renewables 2011 Global Status” yang diluncurkan minggu lalu menunjukkan, sektor energi terbarukan terus tumbuh dengan pesat di tengah resesi

ekonomi, kebijakan pemotongan insentif dan rendahnya harga gas alam.Pada 2010, energi terbarukan memasok 16% dari total konsumsi energi global dan

menyumbang 20% produksi listrik dunia. Kapasitas energi terbarukan saat ini mencapai seperempat dari produksi energi dunia. Energi terbarukan memasok 50% kapasitas pembangkit energi baru pada 2010. Hal ini termasuk pembangkit listrik tenaga air

(hydropower) yang menyumbang 30 GW pada 2010.

Pada tahun yang sama, kapasitas pemanas air dan ruangan meningkat menjadi 25 gigawatts-thermal (GWth), atau sekitar 16%. Laporan ini disusun oleh REN21 bekerja

sama dengan jaringan penelitian global (www.ren21.net).“Energi terbarukan secara global menunjukkan kinerja yang positif pada masa-masa sulit seperti sekarang ini,” ujar Mohamed El-Ashry, Chairman dari Komite Pelaksana REN21.

“Saat ini semakin banyak masyarakat yang menggunakan energi terbarukan seiring meningkatnya kapasitas dan turunnya harga. Kontribusi energi terbarukan terhadap

energi global juga terus meningkat.”

Produksi dan pasar sel surya dunia tumbuh hampir dua kali lipat dari 2009 didorong oleh insentif pemerintah dan harga sel surya yang terus turun.

Pada 2010, Jerman memasang sel surya lebih banyak dibanding seluruh pemasangan sel surya di dunia pada tahun sebelumnya. Pasar sel surya di Jepang dan AS naik dua kali

lipat dari tahun 2009.

Secara global, pembangkit listrik tenaga angin menjadi penyumbang terbesar kapasitas energi baru (disusul oleh pembangkit listrik tenaga air dan sel surya). Namun untuk

pertama kalinya, kapasitas energi surya Eropa lebih banyak dibanding kapasitas energi anginnya.

Faktor kebijakan terus menjadi pendorong pertumbuhan energi terbarukan. Hingga awal 2011, setidaknya 119 negara sudah memiliki kebijakan yang mendukung perkembangan

energi terbarukan dalam skala nasional. Jumlah ini naik dua kali lipat dari 55 negara pada awal 2005.

Lebih dari separuh negara adalah negara-negara berkembang.

Page 61: Kompendium Ketahanan Energi

ENERGI TERBARUKAN TUMBUH PESAT

Sumber: http://www.hijauku.com/2011/07/22/energi-terbarukan-tumbuh-pesat/ …… diunduh 26/3/2012

Setidaknya saat ini ada 95 negara yang mendukung produksi energi terbarukan.

Kebijakan yang paling populer diterapkan adalah kebijakan tarif “feed-in” yang menjamin kontrak dalam jangka panjang dan akses terhadap jaringan listrik dan harga

jual energi sesuai dengan biaya produksinya.

Tahun lalu, nilai investasi di sektor energi terbarukan mencapai rekor US$211 miliar – meningkat 30% dibanding jumlah investasi pada 2009 yang sebesar US$160 miliar, dan

lima kali lipat dari investasi pada 2004.

Dana yang diinvestasikan pada perusahaan energi terbarukan, produksi energi skala besar dan proyek biofuel naik menjadi US$143 miliar. Untuk pertama kalinya jumlah investasi di negara berkembang mengalahkan negara maju sebagaimana tercantum

dalam laporan “UNEP Global Trends in Renewable Energy Investment 2011”.China menarik investasi terbanyak sebesar US$48.5 miliar atau lebih dari sepertiga total investasi dunia. Namun negara berkembang yang lain juga mengalami kemajuan pesat

dalam hal kebijakan, investasi, tren pasar dan manufaktur.

Di luar Asia, pertumbuhan pasar energi terbarukan juga terjadi di negara-negara Amerika Latin dan setidaknya di 20 negara di Timur Tengah, Afrika Utara dan Afrika sub-

Sahara.Namun negara maju masih memimpin investasi di proyek energi skala kecil dan bidang riset dan pengembangan (R&D) selama 2010. Jerman, Italia dan AS adalah negara yang

masuk tiga besar.

Energi terbarukan juga memiliki peran penting di wilayah-wilayah terpencil guna memastikan penduduk di wilayah itu memiliki akses ke layanan energi dasar seperti

penerangan, komunikasi, memasak, pendingin udara dan pompa air. Energi terbarukan juga bisa dimanfaatkan untuk menunjang pertumbuhan ekonomi dengan

menggunakannya sesuai kebutuhan.

Page 62: Kompendium Ketahanan Energi

Sumber: …… diunduh 26/3/2012

Beberapa penemuan penting lain dalam laporan ini adalah:

1. Kapasitas energi terbarukan kini mencapai seperempat dari total kapasitas produksi energi dunia dan memasok 20% kebutuhan listrik global dengan sumbangan terbesar berasal dari pembangkit listrik tenaga air.

2. Negara berkembang bersama-sama menguasai lebih dari separuh sumber energi terbarukan dunia .

3. Pembangkit listrik tenaga surya kini telah didirikan di lebih dari 100 negara.4. Lima besar negara yang memiliki pembangkit energi terbarukan di luar

pembangkit listrik tenaga air adalah AS, China, Jerman, Spanyol dan India.5. Di AS, energi terbarukan menyumbang 10.9% produksi energi domestik (nuklir

sebesar 11.3%), tumbuh 5.6% dari 2009.6. Sebanyak 30 negara bagian di AS (termasuk Washington, DC) sudah memiliki

standar kebijakan energi terbarukan (Renewable Portfolio Standards, RPS).7. China menjadi negara yang paling banyak mendirikan pembangkit listrik tenaga

angin dan surya serta produsen energi air terbesar pada 2010. Negara Tirai Bambu itu menambah 29 GW kapasitas jaringan listrik terbarukan dengan jumlah total sebesar 252 GW, atau naik 13% dari 2009.

8. Energi terbarukan menyumbang 26% total kapasitas listrik terpasang di China pada 2010, 18% total produksi energi dan lebih dari 9% total pasokan energi.

9. Brasil memasok hampir seluruh ethanol berbahan baku gula dunia, dan tengah membangun pembangkit listrik tenaga air, biomassa, pembangkit tenaga angin dan sistem pemanas tenaga surya.

10. Di Uni Eropa, energi terbarukan menyumbang 41% kapasitas listrik baru. Walaupun jumlah ini mengalami penurunan dibanding tahun sebelumnya yang lebih dari 60%, kapasitas energi terbarukan di Eropa kini terbesar sepanjang sejarah.

11. Uni Eropa melampaui target produksi energi tenaga angin dan surya pada 2010. Mereka kini tengah berkonsentrasi memroduksi sistem dan pompa pemanas tenaga surya.

12. Negara-negara seperti Finlandia, Jerman, Spanyol dan Taiwan meningkatkan target produksi energi terbarukan mereka. Sementara Afrika Selatan, Guatemala, India dan beberapa negara lain, mulai mengadopsi pembangkit energi terbarukan.

13. Negara berkembang, yang saat ini mewakili lebih dari separuh negara yang memiliki target kebijakan energi terbarukan memiliki peran yang semakin penting dalam memajukan energi yang ramah lingkungan ini.

ENERGI TERBARUKAN TUMBUH PESAT

Page 63: Kompendium Ketahanan Energi

ENERGI TERBARUKAN DI INDONESIA

Sumber: http://alamendah.wordpress.com/2012/03/07/energi-terbarukan-di-indonesia/ …… diunduh 26/3/2012

Energi terbarukan di Indonesia, sebuah ironi. Di satu sisi Indonesia merupakan negara dengan potensi melimpah akan sumber energi terbarukan semisal tenaga matahari

(surya), angin, dan panas bumi (geothermal). Sayangnya pemerintah Indonesia belum memanfaatkan secara maksimal sumber energi terbarukan yang melimpah tersebut dan

masih bergantung pada energi berbahan fosil.Padahal pemanfaatan energi terbarukan yang maksimal bisa menjadi solusi krisis energi

yang terjadi di Indonesia. Energi terbarukan diyakini juga lebih bersih (ramah lingkungan), aman, dan terjangkau masyarakat.

Energi terbarukan merupakan energi yang dihasilkan dari sumberdaya energi yang secara alamiah tidak akan habis dan dapat berkelanjutan jika dikelola dengan baik. Macam

sumber energi terbarukan seperti panas bumi, biofuel, panas surya (matahari), angin, biogas, ombak laut, dan suhu kedalaman laut.

ENERGI SURYA = Solar energy

Solar energy is the energy derived from the sun through the form of solar radiation.

Solar powered electrical generation relies on photovoltaics and heat engines.

A partial list of other solar applications includes space heating and cooling through solar architecture,

daylighting, solar hot water, solar cooking, and high temperature process heat for industrial purposes.

Page 64: Kompendium Ketahanan Energi

ENERGY SUPPLY SIDE MANAGEMENT

ENERGY DEMAND SIDE MANAGEMENT

PERUBAHAN PARADIGMA PENGELOLAAN ENERGI

SUPPLY SUPPLYDEMAND DEMAND

Saat ini: Ke depan:

1. Kebutuhan energi belum efisien2. Kebutuhan energi tersebut dipenuhi

dengan energi fosil dengan biaya berapapun dan malah disubsidi

3. Energi terbarukan hanya sebagai alternatif

4. Sumber energi terbarukan yang tidak termanfaatkan adalah menyia-nyiakan karunia Tuhan

1. Efisienkan kebutuhan energi2. Maksimalkan penyediaan dan

pemanfaatan energi terbarukan, paling tidak dengan harga pada avoided fossil energy cost, bila perlu disubsidi

3. Energi fosil dipakai sebagai penyeimbang

4. Sumber energi fosil yang tidak termanfaatkan adalah sebagai warisan untuk anak-cucu / diekspor

Energi Fosil dengan biaya berapapun(Malah Disubsidi)

Energi TerbarukanSebagai Alternatif

Kebutuhan Energi Sektoral

yang belum efisien:

-RumahTangga- Transportasi

- Industri- Komersial

Maksimalkan Penyediaan dan

Pemanfaatan Energi Terbarukan

dengan harga Avoided Fossil Energy Costs

Energi Fosil sebagai Faktor Penyeimbang

Kebutuhan Energi Sektoral yang

Efisien:-RumahTangga- Transportasi

- Industri- Komersial

(KONSERVASI)

(DISVERSIFIKASI)

Page 65: Kompendium Ketahanan Energi

Policy Directives

Presiden RI di Tampak

Siring (2010)

Konsumsi Energi Fosil

yang Meningkat

Mitigasi Perubahan

Iklim

No.8 : Ketahanan EnergiNo.10 : Perkuat Green Economy

UNFCCC *)

ALUR PIKIR PENGEMBANGAN EBTKE

GREEN ENERGY CONCEPT:1. Efisienkan Penggunaan Energi2. Gunakan Energi Terbarukan3. Gunakan Teknologi Energi Bersih

untuk energi fosil maupun non-fosil

UU 10/1997UU 27/2003UU 30/2007UU 30/2009

Green Values

*) United Nations Framework Convention on Climate Change

0

Green Energy

Green Industry

Green Transportation

Ketahanan Energi, Kesejahteraan

Rakyat dan Pembangunan

Berkelanjutan

Upaya Pengembangan

Energi Baru, Energi Terbarukan dan

Efisien Pemanfaatan

Energi

Page 66: Kompendium Ketahanan Energi

SISTEM PENYEDIAAN DAN PEMANFAATAN ENERGI NASIONAL

(Dengan Pendekatan Supply Side Management)

Energi Hijau sebagai alternatif)

Pengangkutan /

Penyaluran

Pengangkutan /

Penyaluran

Pengangkutan /

Penyaluran

Pengangkutan /

Penyaluran

INDUSTRI ENERGI PRIMER

Pembangkitan

Tenaga Listrik

OTORITAS

GEOLOGI

Pemanfaatan Energi Belum Efisien

Bahan

Baku

Nabati

Page 67: Kompendium Ketahanan Energi

PEMANFAATAN AKHIR

Bahan Bakar Minyak

TenagaListrik

Hasil :

Komersial

Industri

Rumah Tangga

Transportasi

Produk Energi

Sektor Pengguna

SUMBER DAYA

Geologi

Sumber Daya

Geologi Kebencan

aan

Geologi Tata

Lingkungan

OTORITASGEOLOGI

OTORITAS TERKAIT sumber daya air,pertanian, kehutanan, kelautan, dirgantara

PembangkitanTenaga Listrik

TransmisiDistribusi ListrikPenjualan

Tenaga Listrik

Gas Bumi

Pengolahan

Niaga Tanpa Aset

Bahan Bakar

Eksploitasi Eksplorasi

Pengangkutan/ Penyaluran

Penyimpanan / Penimbunan

CadanganPanasBumi

Panas Bumi

EksploitasiEksplorasi

(Pemanfaatan Langsung)

INDUSTRI ENERGI PRIMER

Hulu (Mengangkat dari perut bumi)

Hilir (Mengolah menjadi produk energi)

Minyak Bumi

Batubara

Cadangan Energi Fosil

PARADIGMA BARU SISTEM PENYEDIAAN DAN PEMANFAATAN ENERGI NASIONAL

(Dengan Pendekatan Demand Side Management)

Niaga Dengan Aset

BahanBakarNabati

Energi Surya, Nuklir,

Bayu, dll

Pengangkutan/ Penyaluran

Penyimpanan / Penimbunan

NiagaTanpa Aset

NiagaDengan Aset Pengolahan

Heat

ENERGI FOSIL (sebagai Balance)

Efisiensi Energi dan

Pemanfaatan Akhir

Tenaga Air

“ENERGI HIJAU” (Maksimalkan)

Bahan Baku

Nabati

Page 68: Kompendium Ketahanan Energi

Baru Lima Persen. Saat ini, menurut Greenpeace, Pemerintah Indonesia baru memanfaatkan energi

terbarukan sekitar lima persen dari total listrik yang digunakan di Indonesia. Selebihnya, masih bergantung pada energi yang bersumber dari minyak, batu bara, dan gas bumi.Kebijakan pemerintah Indonesia pun masih kurang mendukung pemanfaatan sumber

energi terbarukan. Salah satu indikasinya bisa dilihat dari Peraturan Pemerintah Nomor 5 Tahun 2006 tentang Kebijakan Energi Nasional. Dalam Bab II Pasal 2 Peraturan Pemerintah tersebut, target konsumsi energi yang digunakan di Indonesia pada tahun 2025 meliputi:

Minyak bumi kurang dari 20%Gas bumi lebih dari 30%Batubara lebih dari 33%

Biofuel lebih dari 5%Panas bumi lebih dari 5%

Energi baru dan terbarukan lainnya, khususnya, Biomasa, Nuklir, Tenaga Air Skala Kecil, Tenaga Surya, dan Tenaga Angin lebih dari 5%

Bahan bakar lain yang berasal dari pencairan batubara lebih dari 2%

Dari target konsumsi energi yang digunakan di Indonesia pada tahun 2025 berdasarkan Peraturan Pemerintah Nomor 5 Tahun 2006 tentang Kebijakan Energi Nasional ini bisa

disimak bahwa target pemanfaatan energi terbarukan di Indonesia pada tahun 2025 hanya sekitar 15 % dan selebihnya masih tergantung pada penggunaan energi berbahan fosil.

Dari target pemanfaatan energi terbarukan yang mencapai 15% pada tahun 2025 itupun masih dibayang-bayangi pesimistis. Salah satunya diungkap langsung oleh Direktur

Jenderal Energi Baru, Terbarukan dan Konservasi Energi (EBTKE), Kardaya Warnika dalam acara diskusi METI di Kantor PLN Pusat, Jakarta (25/1/2012).

Perserikatan Bangsa-bangsa (PBB) pada 16 januari 2012 silam mentargetkat pada 2030, semua orang di dunia sudah menggunakan energi dari sumber-sumber terbarukan. Dan

untuk mengkampanyekan hal tersebut PBB menetapkan tahun 2012 sebagai Tahun Internasional Energi Terbarukan.

ENERGI TERBARUKAN DI INDONESIA

Sumber: http://alamendah.wordpress.com/2012/03/07/energi-terbarukan-di-indonesia/ …… diunduh 26/3/2012

Page 69: Kompendium Ketahanan Energi

6 KEBIJAKAN CERDAS UNTUK ENERGI TERBARUKAN

Sumber: http://www.hijauku.com/2011/06/17/6-kebijakan-cerdas-untuk-energi-terbarukan/ …… diunduh 26/3/2012

Laporan terbaru dari IPCC (Intergovernmental Panel on Climate Change) menyatakan, energi terbarukan bisa memasok 77% energi dunia pada 2050 jika semua negara di dunia

mengadopsi kebijakan yang tepat. Kesimpulan yang diterbitkan di Green Harmony Home ini didukung oleh laporan berjudul

“Grounding Green Power”. Laporan tersebut menyatakan, negara berkembang perlu mengambil kebijakan-kebijakan penting dalam pemanfaatan energi terbarukan dengan

berfokus pada energi listrik.

Enam prinsip kebijakan energi terbarukan yang cerdas itu meliputi:

1. Kebijakan energi terbarukan harus komprehensif – mencakup regulasi sektor energi, kondisi investasi, pendanaan, infrastruktur listrik dan kemampuan teknis yang memadai.

2. Memiliki tujuan yang jelas – termasuk cara penerapan teknologi, akses terhadap energi dan peningkatan produksi energi sejalan dengan pembangunan ekonomi.

3. Mampu menarik investasi swasta dengan cara menciptakan pasar yang kondusif dan stabil.

4. Mampu menghemat biaya – dengan menciptakan kebijakan secara hati-hati untuk menghindari subsidi yang berlebihan atas energi terbarukan pada saat yang sama menghilangkan insentif pada bahan bakar fosil.

5. Mendukung inovasi – terus berusaha meningkatkan kinerja, kemandirian, keamanan dan efisiensi biaya penerapan teknologi terbarukan.

6. Transparan, akuntabilitas dan kerja sama – berusaha menciptakan regulasi sektor kelistrikan yang baik termasuk berusaha meningkatkan transparansi, akuntabilitas dan partisipasi semua pihak yang terkait.

Page 70: Kompendium Ketahanan Energi

ENERGI HIJAU TERBARUKANRenewable green energy comes from green sources of energy. These sources

are usually harnessed with little pollution. Geothermal power, wind, wave and solar power are some of the renewable green energy sources that are

known today. Here we will describe all the kinds of renewable green energy sources currently in use and the efficiency and scale of these sources.

Also, we will look at what’s the best solution for our future energy demands. Will it depend on only one source of energy or will there be a wide range of

energy sources we should use instead of the current polluting sources of energy?

Soemarno, 7 March 2012Presenting in The Intern. Goest Lecture on Sustainable Energy Alternatives

Page 71: Kompendium Ketahanan Energi

KONSERVASI ENERGI

Energy conservation is the practice of decreasing the quantity of energy used. It may be achieved through efficient energy use, in which case energy use is decreased while achieving a similar outcome, or by reduced consumption of energy services. Energy

conservation may result in increase of financial capital, environmental value, national security, personal security, and human comfort.

Individuals and organizations that are direct consumers of energy may want to conserve energy in order to reduce energy costs and promote economic security. Industrial and

commercial users may want to increase efficiency and thus maximize profit.

Sumber: http://id.wikipedia.org/wiki/Penghematan_energi … diunduh 26/3/2012

Konservasi energi dapat merujuk kepadaHukum kekekalan energi atau hukum konservasi energi

Penghematan energi

Hukum kekekalan energi adalah salah satu dari hukum-hukum kekekalan yang meliputi energi kinetik dan energi potensial. Hukum ini adalah hukum pertama dalam

termodinamika.Hukum Kekekalan Energi (Hukum I Termodinamika) berbunyi: "Energi dapat berubah dari satu bentuk ke bentuk yang lain tapi tidak bisa diciptakan ataupun dimusnahkan (konversi

energi)".Penghematan energi atau konservasi energi adalah tindakan mengurangi jumlah

penggunaan energi. Penghematan energi dapat dicapai dengan penggunaan energi secara efisien dimana manfaat yang sama diperoleh dengan menggunakan energi lebih sedikit,

ataupun dengan mengurangi konsumsi dan kegiatan yang menggunakan energi. Penghematan energi dapat menyebabkan berkurangnya biaya, serta meningkatnya nilai

lingkungan, keamanan negara, keamanan pribadi, serta kenyamanan. Organisasi-organisasi serta perseorangan dapat menghemat biaya dengan melakukan penghematan energi,

sedangkan pengguna komersial dan industri dapat meningkatkan efisiensi dan keuntungan dengan melakukan penghemaan energi.

Penghematan energi adalah unsur yang penting dari sebuah kebijakan energi. Penghematan energi menurunkan konsumsi energi dan permintaan energi per kapita,

sehingga dapat menutup meningkatnya kebutuhan energi akibat pertumbuhan populasi. Hal ini mengurangi naiknya biaya energi, dan dapat mengurangi kebutuhan pembangkit

energi atau impor energi. Berkurangnya permintaan energi dapat memberikan fleksibilitas dalam memilih metode produksi energi.

Page 72: Kompendium Ketahanan Energi

KONSERVASI ENERGI LISTRIK

Electrical energy conservation is an important element of energy policy.

Energy conservation reduces the energy consumption and energy demand per capita, and thus offsets the growth in energy supply needed to keep up with population growth. This

reduces the rise in energy costs, and can reduce the need for new power plants, and energy imports. The reduced energy demand can provide more flexibility in choosing the most

preferred methods of energy production.By reducing emissions, energy conservation is an important part of lessening climate

change. Energy conservation facilitates the replacement of non-renewable resources with renewable energy.

Energy conservation is often the most economical solution to energy shortages, and is a more environmentally benign alternative to increased energy production.

Sumber: http://www.gbcindonesia.org/publications/166-keekonomian-listrik-dan-konservasi-energi-.html

…. Diuinduh 26/3/2012

Pentingnya Konservasi Energi Listrik

Karena upaya menekan subsidi melalui kenaikan keekonomian listrik urung dilakukan, perlu upaya-upaya untuk konservasi energi listrik di wilayah-wilayah yang permintaan

listriknya tinggi. Salah satunya penghematan listrik di lingkungan rumah tangga, perkantoran dan industri dengan memaksimalkan pencahayaan alami, sistem sirkulasi

udara yang baik, serta ruang terbuka hijau.

Di sektor bangunan gedung, konservasi energi pada sisi pem a n f a a t a n s aya n g nya menjadi tidak terlalu menarik bila nilai subsidi listrik masih sangat tinggi karena nilai

keekonomian yang didapat tidak terlalu signifikan.Menurut skyscraperpage, di Jakarta ada kurang lebih 159 gedung highrise(gedung dengan tinggi minimal 35 meter dan

jumlah lantai minimal 12 lantai).

Bisa dibayangkan, bila konservasi energi di bangunan gedung menjadi tantangan program lingkungan bagi pemilik atau pengelola gedung. Rata-rata konsumsi energi listrik gedung highrise sebesar 240 kwh/m2 dengan rata-rata luas bangunan 2.500

m2.Apabila dilakukan penghematan 20% dalam setahun saja,emisi karbon yang bisa ditekan untuk keseluruhan 159 bangunan gedung highrise di Jakarta kurang lebih sama dengan jumlah emisi CO2 yang dihasilkan oleh PLTU berbahan bakar batu bara 2 MW

yang bekerja selama setahun lamanya.

Page 73: Kompendium Ketahanan Energi

Issu-issu Konservasi EnergiCritics and advocates of some forms of energy conservation make the following

arguments:Standard economic theory suggests that technological improvements that increase energy

efficiency will tend to increase, rather than reduce energy use. This is called the Jevons Paradox and it is said to occur in two ways.

Firstly, increased energy efficiency makes the use of energy relatively cheaper, thus encouraging increased use.

Secondly, increased energy efficiency leads to increased economic growth, which pulls up energy use in the whole economy. This does not imply that increased fuel efficiency is

worthless. Increased fuel efficiency enables greater production and a higher quality of life

(Wackernagel, Mathis and William Rees, 1997, "Perpetual and structural barriers to investing in natural capital: economics from an ecological footprint perspective." Ecological

Economics, Vol.20 No.3 p3-24).

KONSERVASI ENERGI

Konservasi energi adalah kegiatan pemanfaatan energi secara evisien dan rasional tanpa mengurangi pengunaan energi yang memang benar-benar diperlukan untuk menunjang

pembangunan.Tujuan konservasi energi adalah untuk memelihara kelestarian suber daya alam yang berupa sumber energi melalui kebijakan pemilihan teknologi dan pemanfaatan energi secara efisien,

rasional dan bijaksana untuk mewujudkan kemampuan penyediaan energi, penggunaan energi secara efisien dan merata serta kelestarian sumber-sumber energi.

Untuk mencapai tujuan konservasi energi dilakukan kegiatan:

a. pemanfaatan sumber daya energi secara lebih bijaksana;b. peningkatan efisiensi energi nasional yang antara lain melalui penurunan intensitas energi di

seluruh sektor;c. peningkatan nilai tambah secara nasional untuk setiap satuan energi yang digunakan.

PEMANFAATAN SUMBER ENERGI(1) sumber energi wajib dimanfaatkan secara berdaya guna dan berhasil guna.(2) Pemanfaatan sumber energi sebagaimana dimaksud dalam ayat (1) dilakukan dengan memperhatikan:

d. Kelestarian lingkungan hidup;e. Perancangan yang berorientasi pada penggunaan energi secara hemat;f. Pemilihan sarana, peralatan dan bahan yang secara langsung maupun tidak langsung

menghemat penggunaan energi;g. Optimasi pengoperasian sistem, sarana, peralatan dan proses yang bertujuan menghemat

energi.

(Sumber: KEPPRES 43/1991, KONSERVASI ENERGI)

Page 74: Kompendium Ketahanan Energi

LANGKAH-LANGKAH KONSERVASI ENERGI*(KEPPRES 43/1991, KONSERVASI ENERGI)

Penyebarluasan pengertian dan arti pentingnya energi dilakukan melalui:

1. Kampanye dan penyebaran informasi dengan media cetak, media elektronik, diskusi, ceramah dan lomba hemat energi;

2. Pendidikan dan pelatihan untuk meningkatkan pengetahuan teknis, memperluas wawasan teknologi dalam bidang konservasi energi dan melatih penerapannya secara langsung;

3. Peragaan dan percontohan untuk memperkenalkan teknologi konservasi kepada masyarakat pemakai energi melalui percontohan peralatan hemat energi, baik dari segi perancangan maupun cara pengoperasiannya;

4. Penelitian danpengembangan untuk meningkatkan dan mengembangkan pengetahuan teknologi dalam bidang konservasi energi;

5. Pengembangan sistem audit energi dan identifikasi potensi, perbaikan efisiensi sistem, perbaikan efisiensi proses, perbaikan efisiensi sarana dan perbaikan efisiensi peralatan;

6. Standarisasi yaitu melaksanakan upaya penghematan energi melalui penetapan standar unjuk kerja dan efisiensi peralatan.

Sumber: http://bicaraenergi.com/2011/12/pilih-efisiensi-energi-atau-konservasi-energi/

Konservasi Energi

Keputusan Presiden No. 43 tahun 1991 tentang Konservasi energi mendefenisikan bahwa “konservasi energi” adalah kegiatan pemanfaatan

energi secara efisien dan rasional tanpa mengurangi pengunaan energi yang memang benar-benar diperlukan untuk menunjang pembangunan.

Peraturan Pemerintah No. 70 Tahun 2009 tentang Konservasi Energi, definisi “konservasi energi” adalah upaya sistematis, terencana, dan terpadu guna melestarikan sumber daya energi dalam negeri serta

meningkatkan efisiensi pemanfaatannya.

Page 75: Kompendium Ketahanan Energi

ELECTRIC MOTORElectric motors consume more than 60% of all electrical energy generated and are

responsible for the loss of 10 to 20% of all electricity converted into mechanical energy(European Commission of the Institute for Environment and Sustainability, "Electricity

Consumption and Efficiency Trends in the Enlarged European Union http://re.jrc.ec.europa.eu/energyefficiency/pdf/EnEff%20Report%202006.pdf", 2006)

Consumers are often poorly informed of the savings of energy efficient products. The research one must put into conserving energy often is too time consuming and

costly when there are cheaper products and technology available using today's fossil fuels.

Sumber: http://id.wikipedia.org/wiki/Motor_listrik….. Diunduh 27/3/2012

MOTOR LISTRIKMotor listrik adalah alat untuk mengubah energi listrik menjadi

energi mekanik. Alat yang berfungsi sebaliknya, mengubah energi mekanik menjadi energi listrik disebut generator atau dinamo.

Motor listrik dapat ditemukan pada peralatan rumah tangga seperti kipas angin, mesin cuci, pompa air dan penyedot debu.

Motor listrik yang umum digunakan di dunia Industri adalah motor listrik asinkron, dengan dua standar global yakni IEC dan NEMA.

Motor asinkron IEC berbasis metrik (milimeter), sedangkan motor listrik NEMA berbasis imperial (inch), dalam aplikasi ada satuan

daya dalam horsepower (hp) maupun kiloWatt (kW).Motor listrik IEC dibagi menjadi beberapa kelas sesuai dengan

efisiensi yang dimilikinya, sebagai standar di EU, pembagian kelas ini menjadi EFF1, EFF2 dan EFF3. EFF1 adalah motor listrik yang paling efisien, paling sedikit memboroskan tenaga, sedangkan EFF3 sudah

tidak boleh dipergunakan dalam lingkungan EU, sebab memboroskan bahan bakar di pembangkit listrik dan secara

otomatis akan menimbulkan buangan karbon yang terbanyak, sehingga lebih mencemari lingkungan.

Page 76: Kompendium Ketahanan Energi

E & E JOURNAL

Energy & Environment (E&E) is a peer-reviewed academic journal aimed at natural scientists, technologists, and the international social science and

policy communities covering the direct and indirect environmental impacts of energy acquisition, transport, production and use.

Its editor-in-chief since 1996 is Sonja Boehmer-Christiansen. Contributors have included David Henderson, Richard Tol, and Gary Yohe.

"Social Sciences Citation Index". Thomson Reuters. http://science.thomsonreuters.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&ISSN=0958-305X. Retrieved

2011-05-03."Environment Complete: Database Coverage List". EBSCO.

http://www.ebscohost.com/titleLists/eih-coverage.pdf. Retrieved 2009-11-30.

ENERGI DAN EKOLOGI

Production, transport and exploitation of the energy, all have a great impact on environment and ecosystems. Unfortunately so, energy has almost always negative impact on the environment, from

direct ecological disasters like spilling of the oil, acid rains and radioactive emission, to indirect effects like the global warming. Since the energetic needs of the mankind will continue its growth in the next decades as well, some measures which would as much as possible decrease the influence of energy exploit to an environment are really a necessity. The most dangerous energy sources are currently

fossil fuels (coal, oil and natural gas), and potential danger comes also in form of the used radioactive fuel from nuclear power plants (highly radioactive waste). Fossil fuels are dangerous because when

combusting, they release large quantities of carbon dioxide, and radioactive waste is always dangerous because it influences the structure of organisms on a very basic level.

Majority of the world's energy is still gained from ecologically unacceptable energy sources, especially fossil fuels which are still dominant energy source. Since fossil fuels have coal as their base,

normal combustion of these fuels results in carbon dioxide (CO2) which is a greenhouse gas. This carbon dioxide mostly ends up in the atmosphere and with its greenhouse effect causes the global warming. Even more dangerous is the gas that is released during the incomplete fuel combustion (combustion without the needed amount of oxygen), and this is carbon monoxide (CO). Carbon

monoxide is extremely poisonous gas without color, taste or scent, and its concentration of just 0.6% is causing death after only 15 minutes of the inhalation.

At this moment, not single one fossil fuel isn't completely purified, and so during the combustion some other harmful gases like sulfur dioxide or nitrogen oxide are getting released as well. These gases later react with the water steam in the clouds forming drops that are falling on earth in the

form of weak sulfuric acid and nitric acid - acid rains, and these rains have extremely negative impact on all the ecosystems they're catching. Combustion of some energy sources results in the form of tiny particles of minerals which are later forming the ashes, but certain number of these particles rises to

the atmosphere carried by swirl of smoke. These particles are very dangerous for human health.

(Sumber: http://www.our-energy.com/energy_and_ecology.html….. Diunduh 27/3/2012)

Page 77: Kompendium Ketahanan Energi

DAMPAK LINGKUNGAN

The environmental impact of the energy industry is diverse. Energy has been harnessed by humans for millennia. Initially it was with the

use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years.

In recent years there has been a trend towards the increased commercialization of various renewable energy sources.

EKOLOGI ENERGI

Ecologically acceptable energy sources' using rates are still negligible on the global scale and ecological problems as the consequence of excessive use of the fossil fuels still deserve

special attention, not only from energetic, but certainly also from ecological point of view. Different energy sources have different effect on the environment in which these energy sources are manufactured, transported or used. Right picture shows the surface ozone as

the example of how the major use of fuels influences quality of the air. Surface ozone is the result of the reaction that happens once a stagnant air and sunny weather nitric oxide reacts

with organic volatiles. Nitric oxide on the surface is usually the result of the fossil fuels' combustion, and organic volatiles are formed from smoke of the fuels, variety of solvents

and similar. Surface ozone has negative effect on airways and decreases working capacity of the lungs, can cause nose and eyes irritation, and generally reduce ability of the people in

doing their normal activities. Surface ozone is just one of the many problems that are connected with energy, and the impact of other energy sources on environment is explained

in the next sequel: Fossil fuels – this type of fuel has by far the worst negative impact on the environment.

Combustion of fossil fuels causes the release of tremendous amounts of carbon that was settled down millions of years and then was covered with layers of rocks and soil to an

atmosphere. The same carbon is now forming carbon dioxide in the atmosphere which is a greenhouse gas and which is significantly influencing current temperatures on the Earth.

Bioenergy (biofuels) – biofuels are creating the same problems as the fossil fuels, but since production of biofuels closes the carbon cycle, biofuels are less harmful than fossil fuels.

Closing the carbon cycle means that plants which are used for producing biofuels during the growth take from the atmosphere certain amounts of coal which is later returned to the

atmosphere by combustion of these biofuels. Fossil fuels don't have this circle closed because here carbon gets only released to the atmosphere.

(Sumber: http://www.our-energy.com/energy_and_ecology.html….. Diunduh 27/3/2012)

Page 78: Kompendium Ketahanan Energi

DAMPAK LINGKUNGAN

The environmental impact of the energy industry is diverse. Energy has been harnessed by humans for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million

years.In recent years there has been a trend towards the increased commercialization of

various renewable energy sources.

EKOLOGI ENERGI

Solar energy – although energy of the Sun has tremendous potential because of its small power efficiency it would be needed to cover great areas in order to get more serious amounts of usable energy. This solution is ecologically acceptable only in areas where there's no vegetation, namely in deserts, and in «green» areas this would create heavy

negative effect on the environment. Installment of solar collectors or solar cells on rooftops isn't almost having any negative effect on the environment.

Wind energy – production of energy out of the wind doesn't have serious negative effect on the environment. Ecologically speaking, only real flaw of the wind power plants is the negative effect on decreasing the bird population because its propeller is killing birds.

Smaller criticisms are visual pollution of the environment, destruction of intact nature by building the access roads to the windmills and generating the sound of low audio frequency

which has negative effects on health (sleeping problems, causing headaches, can cause anxiety).

Water energy – water energy use isn't creating any pollution of the environment, but the infrastructural objects can have significant impact on the environment. For instance, huge

dams building is causing the flood of the large areas and rises the level of underground waters and this can change the whole local biosystem. Additional problem is also cutting the

natural water flow and withal cutting the routes of movement of some water animals. Nuclear energy – production of energy in nuclear power plants is extremely clean process.

There aren't greenhouse gases, it only comes to heating of the water which is used for reactor cooling and this can eventually influence on some biosystem. The biggest problem regarding nuclear power plants is the used fuel which is extremely radioactive and must be

stored for couple of centuries in special underground warehouses. Geothermal energy – use of geothermal energy doesn't pollute the environment. Same as other renewable energy sources, geothermal energy use also requires some infrastructural

objects, but influence of these objects to an environment is negligible when we look amount of the produced energy.

(Sumber: http://www.our-energy.com/energy_and_ecology.html….. Diunduh 27/3/2012)

Page 79: Kompendium Ketahanan Energi

ENERGI TERBARUKAN

Renewable energy is energy which comes from natural resources such as sunlight, wind, rain, tides, and geothermal heat, which are renewable (naturally

replenished). About 16% of global final energy consumption comes from renewables, with 10% coming from traditional biomass, which is mainly used for

heating, and 3.4% from hydroelectricity. New renewables (small hydro, modern biomass, wind, solar, geothermal, and

biofuels) accounted for another 3% and are growing very rapidly (. The share of renewables in electricity generation is around 19%, with 16% of global electricity coming from hydroelectricity and 3% from new renewables.

(Renewable Energy Policy Network for the 21st Century)

Mankind will be, not very far in the future, forced to find ecologically acceptable energy sources which will have to be enough to cover energetic needs. Momentarily

there are renewable energy sources as the ecologically acceptable solution, but still it isn't really to expect suitable commercialization of these energy sources, big enough to

cover the growing energetic needs of the population. Sun's energy isn't enough exploitable and is very expensive, wind energy isn't available in all areas in sufficient

quantities and energetic potentials of water are already mostly used. Geothermal energy could be optimally exploited only on tectonic faults which are areas on Earth

where thermal energy from inner of the Earth comes very near the surface. Tidal power and wave power are huge potential, but aren't that reachable and therefore at

this moment not very useable to generate energy. Bioenergy or more precise biofuels are making their place as the replacement for traditional fossil fuels, but this fuels are also releasing greenhouse gasses to the

atmosphere and aren't completely ecologically acceptable. There is also one ethical problem regarding biofuels. Since biofuels are made out of the sugar cane, corn,

soybean and other plants which can be use as the food. In this way rich states are producing biofuels by transforming the food into the fuel while on the other hand there are lots of people dying from hunger, where this food could easily save their

lives.

(Sumber: http://www.our-energy.com/energy_and_ecology.html….. Diunduh 27/3/2012)

Page 80: Kompendium Ketahanan Energi

ENERGI TERBARUKAN

Renewable energy flows involve natural phenomena such as sunlight, wind, tides, plant growth, and geothermal heat, as the

International Energy Agency explains:Renewable energy is derived from natural processes that are

replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in

the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels

and hydrogen derived from renewable resources.

IEA Renewable Energy Working Party (2002). Renewable Energy... into the mainstream, p. 9.

ENERGI SURYASun is ours closest star and directly or indirectly source of almost all available energy on Earth.

Sun's energy originates from nuclear fusion in its core, where temperature reaches 15 millions °C. Nuclear fusion is process of joining two light atoms into one heavier atom. Sum of all masses before reaction is larger than sum of all masses after reaction - difference is transformed into

energy by famous Einstein's equation E=mc2. On Sun, light atoms are hydrogen atoms (input) and resulting atom is helium atom (output). Thanks to nuclear fusion on Sun, every second about 600

million tons of hydrogen is transformed into helium, having 4 million tons of hydrogen transformed into energy as side effect. This energy in form of light and heat spreads itself into the universe with one small part of that energy reaching the Earth. Nuclear fusion on Sun is about five billion years

old, which is estimated age of the Sun, and considering available hydrogen stocks it is calculated to last approximately next five billion years. Although Sun's energy makes other energy sources

possible, in this chapter we will concentrate strictly on direct use of solar energy. Under optimal conditions, on earth's surface can be gained 1 kW/m2, and real value depends upon location,

season, day time, weather conditions, etc. On map that shows insolation level is clearly visible that Europe is not located on best place for exploitation, but despite of that direct use of solar energy

in constantly increasing in Europe. This is mostly result of some countries politics, which are subsidizing installment of elements which are transforming solar energy in to a usable form of

energy. General problems of using this energy are small energy flow, huge oscillations of radiation intensity and large investment costs.

Basic principles of solar energy direct use are:Solar collectors - preparing hot water and warming the chambers

Photovoltaic - direct transformation of solar energy to an electricityConcentrating solar power - use in large power plants

(Sumber: http://www.our-energy.com/solar_energy.html….. Diunduh 27/3/2012)

Page 81: Kompendium Ketahanan Energi

HYDRO POWER

. REN21 (2010). Renewables 2010 Global Status Report p. 15.

ENERGI AIRWater energy (hydro energy) is most significant renewable energy source, withal the only

one enough competitive to fossil fuels and nuclear energy. In the last thirty years or so, production of energy in water power plants has tripled, but hydro energy's share was only increased for 50 % (from 2.2% to 3.3%). Nuclear power plants had in same period almost

hundred times more production growth and its share 80 times more. That is because of the restrictions that hydro energy has. It can't be used in all areas because it needs abundance

of fast flowing water, and also is very desirable to have it enough throughout all year, because electricity can't be cheaply stored. To negate effect of water-levels' oscillations, water gates as well as accumulation lakes are being built. That significantly increases the

whole power plant's expenditures, and also raises the level of underground waters near the accumulation. Underground water level has large influence on flora and fauna, so hydro

energy isn't completely harmless for environment. Large problem when accumulating is also earthquake's protection. It is estimated that only about 25% of world's hydro energetic

potential is used. Most of unused potentials are located in undeveloped countries, which is favorable because of these countries' expected energy's consumption growth. Biggest

projects, planed or already started are replying to China, India, Malaysia, Vietnam, Brazil, Peru... Growing energy need often puts concern for cleaner environment in second plan, and dimensions of some projects are giving impression that its performances are not only matter

of energy but of prestige as well

(Sumber: http://www.our-energy.com/hydropower_hydroelectric_power.html….. Diunduh 27/3/2012)

Asas Kebijakan Penyelenggaraan Ketenagalistrikan1. Efisiensi2. Berkeadilan3. Kebersamaan4. Optimasi ekonomis5. Berkelanjutan6. Mengandalkan kemampuan7. sendiri8. Keamanan dan keselamatan9. Kelestarian fungsi lingkungan10. hidup

Page 82: Kompendium Ketahanan Energi

PEMBANGKIT ENERGI

Power generation. Renewable energy provides 19% of electricity generation worldwide. Renewable power generators are spread across many countries, and

wind power alone already provides a significant share of electricity in some areas: for example, 14% in the U.S. state of Iowa, 40% in the northern German

state of Schleswig-Holstein, and 20% in Denmark. Some countries get most of their power from renewables, including Iceland and Paraguay (100%), Norway (98%), Brazil (86%), Austria (62%), New Zealand (65%),

and Sweden (54%).

REN21 (2010). Renewables 2010 Global Status Report p. 53.

PLTAThere are three main types of hydroelectrics: fluid, accumulative (Hydroelectric Dam),

and reversible (Pumped-storage Plants) hydroelectrics. By definition fluid hydroelectrics are the ones that don't have upstream accumulation or its

accumulation can be emptied for less than two hours with its nominal power. This means that almost direct use of kinetic energy of the water is used for turbine's

moving. These hydro electrics are easiest to build, but are very dependable on water's fluidity. Advantage of this type is small environment's influence and no underground

waters level increasing.

(Sumber: http://www.our-energy.com/hydropower_hydroelectric_power.html….. Diunduh 27/3/2012)

Page 83: Kompendium Ketahanan Energi

PEMANAS DAN PENGHANGAT

Solar hot water makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180

GWth). Most of these systems are installed on multi-family apartment buildings and

meet a portion of the hot water needs of an estimated 50–60 million households in China. Worldwide, total installed solar water heating systems meet a portion

of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well. In Sweden, national use of biomass energy has surpassed that of oil. Direct geothermal for heating

is also growing rapidly.

REN21 (2010). Renewables 2010 Global Status Report p. 53.

ENERGI SURYA = Solar energy

Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture,

convert and distribute solar energy.

Active solar techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy.

Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light

dispersing properties, and designing spaces that naturally circulate air.

Page 84: Kompendium Ketahanan Energi

BAHAN BAKAR untuk TRANSPORTASI

Renewable biofuels have contributed to a significant decline in oil consumption in the United States since 2006.

The 93 billion liters of biofuels produced worldwide in 2009 displaced the equivalent of an estimated 68 billion liters of gasoline, equal to about 5% of

world gasoline production.

REN21 (2010). Renewables 2010 Global Status Report p. 53.

BAHAN BAKAR NABATI = BIOFUELSBiofuels have potential directed towards to decrease of CO2 production. This is primarily based on the fact that plants, which are used for biofuels production,

absorb CO2 during their growth which is then released during the biofuels combustion. The energy needed for plant growth and cultivation and their

transformation into biofuels and afterwards the distribution needs additional release of carbon dioxide (CO2). Carbon dioxide emissions that gets released during production and distribution of biofuels can be calculated with the help of technique called “Life Cycle Analysis (LCA)” which is based on monitoring and calculating CO2

emissions in period since the time plant starts its growth, or to be more precise from the time seeds are planted into earth all the way to the release of gases in

engine of the automobile. Different studies for different biofuels have been made with different results. Most of the LCA studies showed how biofuels when

compared with traditional fossil fuels create significantly less greenhouse gases so their use as the replacement for fossil fuels would mean significant decrease of

greenhouse effect. There are different types of biofuels that are divided on first and second generation

which depends on the source of materials used for production, production costs, price and CO2 emissions. First generation of biofuels is based on the production

from the sugar, starch, different plant oils or oil fats while second generation production uses agricultural and forest waste.

(Sumber: http://www.our-energy.com/biofuels.html….. Diunduh 27/3/2012)

Page 85: Kompendium Ketahanan Energi

WIND POWER

Airflows can be used to run wind turbines. Modern wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated

output of 1.5–3 MW have become the most common for commercial use; the power output of a turbine is a function of the cube of the wind speed, so

as wind speed increases, power output increases dramatically.

EWEA Executive summary "Analysis of Wind Energy in the EU-25" (PDF). European Wind Energy Association.

Pembangkit Listrik Tenaga Bayu (PLTB ) / AnginPembangkit Listrik Tenaga Bayu (PLTB) / Angin menggunakan sistem konversi energi angin

(SKEA) ke listrik dengan menggunakan turbin angin atau kincir angin. Seperti pada umumnya Negara tropis, kecepatan angin rata-rata di Indonesia terbilang kecil, hanya sekitar 3-5 m/ detik. Supaya layak secara komersil, kecepatan angin yang diperlukan

untuk PLTB berada dalam kisaran 5-6 m/ detik pada ketinggian pusat 10 m. Hanya sedikit daerah di Indonesia dengan kecepatan angin cukup besar, kebanyakan di Nusa Tenggara.

Potensi tenaga angin di Indonesia diperkirakan hanya sekitar 9.200 MW.Peta jalan pengembangan PLTB yang dikeluarkan Kementrian ESDM menargetkan

dibangunnya instalasi berkapasitas total 800 MW, baik tersambung dengan jaringan listrik ataupun tidak pada tahun 2025. Saat ini LAPAN, bersama dengan Institut Teknolog

Bandung (ITB) tengah mengembangkan Sistem Konversi Energi Angin (SKEA) berdasarkan rotor Savonius dan Windside. Sistem ini telah berhasil membuat system berukuran 50 kW dan tengah melakukan penelitian dan pengembangan untuk turbin berkapasitas 300 kW.Di dunia, PLTB termasuk teknologi energi terbarukan yang cukup maju terutama dalam

satu dekade terkahir. Produsen pengubah energi angin (WEC) sudah mampu memproduksi turbin dengan kapasitas 2.500 hingga 5.000 kW. Dua tipe teknologi turbin

angin yang paling sering digunakan di Indonesia turbin angin adalah:Turbin angin sumbu horizontal (kapasitas kurang dari 1 MWe). Instalasi PLTB berkapasitas

10 kW dengan asumsi kecepatan angin di atas 7 m/ detik dan faktor kapasitas 20% membutuhkan biaya investasi sebesar 1.500 dolar Amerika per kWe dan biaya

pembangkitan sebesar 1 sen dolar Amerika per kWh.Turbin angin sumbu vertikal untuk kecepatan angin di bawah 7 m/ detik dengan faktor kapasitas kurang dari 30% membutuhkan biaya investasi sebesar 2.500-3.200 per kWe.

(Sumber: http://www.kip-pln.com/index.php?option=com_content&view=article&id=158:pltb&catid=57:berita&Itemid=264 ….

Diunduh 26/3/2012)

Page 86: Kompendium Ketahanan Energi

WIND POWERAreas where winds are stronger and more constant, such as offshore and high altitude

sites, are preferred locations for wind farms. Typical capacity factors are 20-40%, with values at the upper end of the range in

particularly favourable sites.

http://www.ewea.org/fileadmin/ewea_documents/documents/publications/WETF/Facts_Summary.pdf. How Does A Wind Turbine's Energy Production Differ from Its Power Production? [dead link] ^ Wind Power: Capacity Factor, Intermittency, and what happens when the wind doesn’t blow?.

Peluang Dan Tantangan Pengembangan PLT Bayu Angin adalah salah satu bentuk energi yang tersedia di alam, Pembangkit Listrik Tenaga

Angin (PLT Bayu/PLTB) mengkonversikan energi angin menjadi energi listrik dengan menggunakan turbin angin atau kincir angin.

Pemanfaatan energi angin merupakan pemanfaatan energi terbarukan yang paling berkembang saat ini. Kapasitas terpasang di seluruh dunia sampai dengan akhir 2010

sebesar 194.390 Gigawatt (GW), dengan urutan negara pengguna terbesar yaitu China, Amerika Serikat (USA), Jerman, Spanyol dan India. Sedangkan di Indonesia baru

mencapai sekitar 1,8 Megawatt (MW). Peluang pengembangan PLTB di Indonesia didukung oleh adanya potensi energi angin di

beberapa wilayah Indonesia, kebutuhan energi yang belum terpenuhi, terutama di daerah pulau-pulau dan lokasi terpencil serta potensi angin, tuntutan global untuk mengurangi penggunaan energi yang menghasilkan polutan, makin menurunnya

cadangan bahan bakar energi fosil yang memerlukan subtitusi dari sumber energi lain (EBT) terakhir telah diterbitkannya berbagai regulasi yang mendukung pengembangan

EBT.Pengembangan energi angin menghadapi tantangan-tantangan di antaranya belum

tersedia peta potensi angin dan data angin yang komperehensif, lokasi potensial energi angin umumnya terletak di daerah yang miskin dan kebutuhan energi rendah serta

terisolir. Faktor lain, belum ada pihak swasta yang melakukan investasi dalam pembangunan PLTB, belum ada mekanisme insentif untuk pengguna energi terbarukan

dan pengembangan industri yang berorientasi pada pemanfaatan khususnya PLTB, investasi pembangkit PLTB relatif tinggi di bandingkan dengan investasi pembangkit

konvensional, belum terdapat kelembagaan yang memadai dan belum ada keseragaman kebijakan diantara departemen untuk pengelolaan penerapan PLTB serta masih kurang

edukasi maupun sosialisasi aplikasi PLTB ke masyarakat.

(Sumber: http://www.ebtke.esdm.go.id/energi/energi-terbarukan/angin/279-peluang-dan-tantangan-pengembangan-plt-bayu.html …. Diunduh 26/3/2012)

Page 87: Kompendium Ketahanan Energi

WIND POWERGlobally, the long-term technical potential of wind energy is believed to be five times

total current global energy production, or 40 times current electricity demand. This could require wind turbines to be installed over large areas, particularly in areas of

higher wind resources. Offshore resources experience average wind speeds of ~90% greater than that of land, so offshore resources could contribute substantially more

energy.

"Offshore stations experience mean wind speeds at 80 m that are 90% greater than over land on average. Evaluation of global wind power

Pengembangan Energi Bayu Di Indonesia

Pemanfaatan tenaga angin sebagai sumber energi di Indonesia bukan tidak mungkin dikembangkan lebih lanjut. Di tengah potensi angin melimpah di kawasan pesisir

Indonesia, total kapasitas terpasang dalam sistem konversi energi angin saat ini kurang dari 800 kilowatt.

"Kecepatan angin di wilayah Indonesia umumnya di bawah 5,9 meter per detik yang secara ekonomi kurang layak untuk membangun pembangkit listrik. Namun, bukan

berarti hal itu tidak bermanfaat," kata Kepala Penelitian dan Pengembangan Departemen Energi dan Sumber Daya Mineral (ESDM), Nenny Sri Utami, membacakan pidato Menteri ESDM saat membuka seminar Teknologi dan Pemanfaatan Energi Angin

sebagai Peluang Usaha Baru di Bogor, Rabu (28/3).

Di seluruh Indonesia, lima unit kincir angin pembangkit berkapasitas masing-masing 80 kilowatt (kW) sudah dibangun. Tahun 2007, tujuh unit dengan kapasitas sama menyusul dibangun di empat lokasi, masing-masing di Pulau Selayar tiga unit, Sulawesi Utara dua

unit, dan Nusa Penida, Bali, serta Bangka Belitung, masing-masing satu unit.

Menurut Kepala Subdirektorat Usaha Energi Baru dan Terbarukan Ditjen Listrik dan Pemanfaatan Energi (LPE) ESDM Kosasih Abbas, mengacu pada kebijakan energi

nasional, maka pembangkit listrik tenaga bayu (PLTB) harus mampu menghasilkan 250 megawatt (MW) pada tahun 2025.

Page 88: Kompendium Ketahanan Energi

WIND POWERGlobally, the long-term technical potential of wind energy is believed to be five times

total current global energy production, or 40 times current electricity demand. This could require wind turbines to be installed over large areas, particularly in areas of

higher wind resources. Offshore resources experience average wind speeds of ~90% greater than that of land, so offshore resources could contribute substantially more

energy.

"Offshore stations experience mean wind speeds at 80 m that are 90% greater than over land on average. Evaluation of global wind power

Peta potensi angin

Salah satu program yang harus dilakukan sebelum mengembangkan PLTB adalah pemetaan potensi energi angin di Indonesia. Hingga sekarang, Indonesia belum memiliki

peta komprehensif, karena pengembangannya butuh biaya miliaran rupiah.Potensi energi angin di Indonesia umumnya berkecepatan lebih dari 5 meter per detik (m/detik). Hasil pemetaan Lembaga Penerbangan dan Antariksa Nasional (Lapan) pada 120 lokasi menunjukkan, beberapa wilayah memiliki kecepatan angin di atas 5 m/detik, masing-masing Nusa Tenggara Timur, Nusa Tenggara Barat, Sulawesi Selatan, dan Pantai

Selatan Jawa.Adapun kecepatan angin 4 m/detik hingga 5 m/detik tergolong berskala menengah

dengan potensi kapasitas 10-100 kW.

ENERGI ANGIN = Wind power

Airflows can be used to run wind turbines.

Modern wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most

common for commercial use; the power output of a turbine is a function of the cube of the wind speed, so as wind speed increases, power output increases

dramatically.

Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms.

Typical capacity factors are 20-40%, with values at the upper end of the range in particularly favourable sites.

Page 89: Kompendium Ketahanan Energi

HYDROPOWEREnergy in water can be harnessed and used. Since water is about 800 times denser than air, even a slow flowing stream of water, or moderate sea swell, can yield considerable

amounts of energy. There are many forms of water energy:Hydroelectric energy is a term usually reserved for large-scale hydroelectric dams.

Examples are the Grand Coulee Dam in Washington State and the Akosombo Dam in Ghana.

Micro hydro systems are hydroelectric power installations that typically produce up to 100 kW of power. They are often used in water rich areas as a remote-area power

supply (RAPS).Run-of-the-river hydroelectricity systems derive kinetic energy from rivers and oceans

without using a dam.

Small hydro (Small hydroelectric)

Sunday, 26 September 2010 Small hydro is facility which converts potential energy of the water into the kinetic energy in form of water current, then into mechanical energy spinning of the turbines, and finally in the end, electrical energy in the generator. In the last few years world trends in energy have shifted towards renewable energy sources,

and because of this small hydroelectrics are becoming increasingly popular. Small hydroelectrics are believed to have zero impact on environment unlike big

hydroelectric plants that cause big damage to nearby ecosystems, have negative influence on soil, cause flooding, increase methane emissions, and overall emissions

connected with the building and transport process. The huge amounts of water in pipelines of drinking water are logical choice as the potential source of energy. Given

the fact that the flow through pipelines exists by the water pump site, especially at the part of the pipeline near the well, water store and pump site, where the flow of the water through the pipes is mostly achieved by the gravitational force, setting up the turbine and the supportive electric generators does not disrupt the drinking water supply, and in the same time produces electrical energy. Hydropower technology,

which is considered as the renewable energy source is today technically not only most known but also most developed on global level, with the very high level of efficiency.

22 percent of world's electricity generation comes from the small and big hydro power plants.

(Sumber: http://www.our-energy.com/small_hydro.html….. Diunduh 27/3/2012)

Page 90: Kompendium Ketahanan Energi

SOLAR ENERGYSolar energy is the energy derived from the sun through the form of solar radiation. Solar

powered electrical generation relies on photovoltaics and heat engines. A partial list of other solar applications includes space heating and cooling through solar architecture, daylighting,

solar hot water, solar cooking, and high temperature process heat for industrial purposes.

Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Active solar

techniques include the use of photovoltaic panels and solar thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting

materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air.

Solar collectors (Solar thermal heat)

Solar collectors transform solar energy into water’s thermal energy (or some other liquid). Heating water systems can be open in which water that should be heated goes directly through a roof collector, or closed, where collectors are filled with liquid that do not freeze (for instance anti-freeze). Closed systems can be used everywhere, even

in areas of temperatures below zero. During day time, if the weather is good, water can be heated only in collectors. If weather is not good, collectors help in heating of

the water therefore decreasing electricity consumption. Solar collectors are very useful also for pool water heating. In that case temperature of the water is very low and it is simplier to maintain temperature using open heating systems. In that way

optimal temperature is maintained couple of weeks longer in one year than without heating water system. There are also collectors which directly heat the air. Those

systems circulate the air through collectors and transfer large part of energy onto the air. Later, that air returns itself to a heated chamber maintaining the chamber's

temperature. Combining air heating and water heating, lots of money can be saved.

(Sumber: http://www.our-energy.com/solar_energy.html….. Diunduh 27/3/2012)

Page 91: Kompendium Ketahanan Energi

BIOMASSBiomass (plant material) is a renewable energy source because the energy it contains comes from the sun. Through the process of photosynthesis, plants capture the sun's energy. When the plants are burnt, they release the sun's

energy they contain. In this way, biomass functions as a sort of natural battery for storing solar energy. As long as biomass is produced sustainably, with only as

much used as is grown, the battery will last indefinitely.In general there are two main approaches to using plants for energy production:

growing plants specifically for energy use (known as first and third-generation biomass), and using the residues (known as second-generation biomass) from

plants that are used for other things.

Union of Concerned Scientists. How Biomass Energy Works

BioenergySaturday, 04 February 2006 Biomass is renewable energy source that consists of many animal and plant products. It can be directly transformed by combustion in

energy and produce water steam for industry and household's heating and to gain energy in smaller thermal power plants. So far the most advanced chemical

conversion of biomass is fermentation to alcohol. Biogas as the result of fermentation without presence of oxygen consists of methane and carbon and can be used as fuel, and other modern procedures of energy biomass include

pyrolysis, gasification and getting hydrogen. Main biomass advantage relating to fossil fuels is less damaging gases emission as well as less waste waters.

Supplementary advantages are taking care of the waste and its exploit as well as leftovers from agriculture, forestry and wood industries, decrease of energents importing, investment in agriculture and rudimental areas and increasing the

safety of energy's distribution. Predictions are that share of biomass till the end of this century will be between 30% and 40% of consumed energy. Sweden for

instance, in 1998 got 18% of energy using biomass, and Finland 10%. According to EU's documents it is predicted that production of the energy gained from biomass

in relation to other renewable sources will be in year 2010 about 73%. Ukraine has installed capacities of 320 MW for gaining electricity with the use of biomass.

(Sumber: http://www.our-energy.com/bioenergy.html….. Diunduh 27/3/2012)

Page 92: Kompendium Ketahanan Energi

BIOFUEL

Biofuels include a wide range of fuels which are derived from biomass. The term covers solid biomass, liquid fuels and various biogases.

Liquid biofuels include bioalcohols, such as bioethanol, and oils, such as biodiesel. Gaseous biofuels include biogas, landfill gas and synthetic gas.

Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. With advanced technology being

developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions.

Bioethanol is widely used in the USA and in Brazil.Biodiesel is made from vegetable oils, animal fats or recycled greases. Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to

reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most

common biofuel in Europe.Biofuels provided 2.7% of the world's transport fuel in 2010.

REN21 (2011). "Renewables 2011: Global Status Report". pp. 13–14. http://www.ren21.net/Portals/97/documents/GSR/GSR2011_Master18.pdf.

BAHAN BAKAR NABATI (BBN)

adalah bahan bakar dari sumber hayati. Bahan Bakar Nabati (BBN) berjenis biodiesel dan bioetanol saat ini telah menjadi pilihan sumber energi pengganti

minyak bumi. Bahan bakar nabati (BBN) berperan penting dalam menganekaragamkan penggunaan energi dan memberikan sumbangan terhadap

peningkatan ketahanan energi. Indonesia adalah negara tropis, sehingga hampir keseluruhan jenis tanaman

penghasil minyak nabati dapat tumbuh dengan cepat. Simulasi yang dilakukan Organization for Economic Co-Operation & Development (OECD, 2006) juga

mengungkapkan bila negara-negara maju konsisten menggantikan 10% konsumsi bahan bakar fosil dengan BBN, maka perlu dilakukan konversi lahan pertanian yang besar. Konversi lahan pertanian tersebut mustahil dilakukan bagi negara

maju karena akan mengganggu produksi pangan. Alternatif yang mungkin ditempuh negara-negara maju adalah mengimpor bahan baku BBN.

(sumber: kao.akprind.ac.id/.../... )

Page 93: Kompendium Ketahanan Energi

ENERGI PANAS BUMIGeothermal energy is thermal energy generated and stored in the Earth. Thermal

energy is the energy that determines the temperature of matter. Earth's geothermal energy originates from the original formation of the planet (20%) and from

radioactive decay of minerals (80%). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous

conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots geo, meaning earth, and thermos,

meaning heat.The heat that is used for geothermal energy can be stored deep within the Earth, all the

way down to Earth’s core – 4,000 miles down. At the core, temperatures may reach over 9,000 degrees Fahrenheit. Heat conducts from the core to surrounding rock.

Extremely high temperature and pressure cause some rock to melt, which is commonly known as magma. Magma convects upward since it is lighter than the solid rock. This

magma then heats rock and water in the crust, sometimes up to 700 degrees Fahrenheit.

Nemzer, J. "Geothermal heating and cooling". http://www.geothermal.marin.org/.

ENERGI PANAS BUMIEnergi panas Bumi adalah energi yang diekstraksi dari panas yang tersimpan di dalam bumi. Energi panas Bumi ini berasal dari aktivitas tektonik di dalam bumi yang terjadi

sejak planet ini diciptakan. Panas ini juga berasal dari panas matahari yang diserap oleh permukaan Bumi.

Energi panas Bumi adalah energi yang diekstraksi dari panas yang tersimpan di dalam Bumi. Energi panas Bumi ini berasal dari aktivitas tektonik di dalam Bumi yang terjadi

sejak planet ini diciptakan. Panas ini juga berasal dari panas matahari yang diserap oleh permukaan Bumi. Energi ini telah dipergunakan untuk memanaskan (ruangan ketika

musim dingin atau air) sejak peradaban Romawi, namun sekarang lebih populer untuk menghasilkan energi listrik. Sekitar 10 Giga Watt pembangkit listrik tenaga panas Bumi telah dipasang di seluruh dunia pada tahun 2007, dan menyumbang sekitar 0.3% total

energi listrik dunia.

(Sumber: http://id.wikipedia.org/wiki/Energi_panas_bumi ... diunduh 26/3/2012)

Page 94: Kompendium Ketahanan Energi

BIOFUELS FOR TRANSPORTATION

Biofuels provided 3% of the world's transport fuel in 2010. Mandates for blending biofuels exist in 31 countries at the national level and in 29 states/provinces. According to the International Energy Agency,

biofuels have the potential to meet more than a quarter of world demand for transportation fuels by 2050.Since the 1970s, Brazil has had an ethanol fuel program which has allowed the country to become the

world's second largest producer of ethanol (after the United States) and the world's largest exporter. Brazil’s ethanol fuel program uses modern equipment and cheap sugarcane as feedstock, and the residual cane-

waste (bagasse) is used to produce heat and power. There are no longer light vehicles in Brazil running on pure gasoline. By the end of 2008 there were 35,000 filling stations throughout Brazil with at least one

ethanol pump.

Daniel Budny and Paulo Sotero, editor (2007-04). "Brazil Institute Special Report: The Global Dynamics of Biofuels" (PDF). Brazil Institute of the

Woodrow Wilson Center. http://www.wilsoncenter.org/topics/pubs/Brazil_SR_e3.pdf. Retrieved 2008-05-03.

Biodiesel facts

Monday, 10 December 2007 Biodiesel facts. Biodiesel is renewable energy source. Read some interesting facts about biodiesel.

Biodiesel is a renewable fuel (renewable energy source) that can be manufactured from algae, vegetable oils, animal fats or recycled restaurant greases; it can be produced locally in most

countries.

Biodiesel is distinguished from the straight vegetable oils (SVO) or waste vegetable oils (WVO) used (alone, or blended) as fuels in some diesel vehicles.

Biodiesel is made through a chemical process called transesterification whereby the glycerin is separated from the fat or vegetable oil. The process leaves behind two products -- methyl esters (the chemical name for biodiesel) and glycerin (a valuable byproduct usually sold to be used in soaps and

other products).

Biodiesel is biodegradable and non-toxic, and typically produces about 60% less net-lifecycle carbon dioxide emissions, as it is itself produced from atmospheric carbon dioxide via photosynthesis in

plants.

Biodiesel is generally more expensive to purchase than petroleum diesel but this differential may diminish due to economies of scale, the rising cost of petroleum and government tax subsidies. In Germany, biodiesel is generally cheaper than normal diesel at gas stations that sell both products.

Biodiesel is used by millions of car owners in Europe, particularly in Germany. With a market share of nearly 3% of the German diesel fuel market, Biodiesel has become the number one alternative fuel –

and its use will certainly continue to grow.

Biodiesel is free from sulphur (< 0,001 %). Biodiesel is easily biodegradable with no hazard to soil or groundwater in the case of accidents.

Page 95: Kompendium Ketahanan Energi

BIOFUELS FOR TRANSPORTATION

Biofuels provided 3% of the world's transport fuel in 2010. Mandates for blending biofuels exist in 31 countries at the national level and in 29 states/provinces. According to the International Energy Agency,

biofuels have the potential to meet more than a quarter of world demand for transportation fuels by 2050.Since the 1970s, Brazil has had an ethanol fuel program which has allowed the country to become the

world's second largest producer of ethanol (after the United States) and the world's largest exporter. Brazil’s ethanol fuel program uses modern equipment and cheap sugarcane as feedstock, and the residual cane-

waste (bagasse) is used to produce heat and power. There are no longer light vehicles in Brazil running on pure gasoline. By the end of 2008 there were 35,000 filling stations throughout Brazil with at least one

ethanol pump.

Daniel Budny and Paulo Sotero, editor (2007-04). "Brazil Institute Special Report: The Global Dynamics of Biofuels" (PDF). Brazil Institute of the

Woodrow Wilson Center. http://www.wilsoncenter.org/topics/pubs/Brazil_SR_e3.pdf. Retrieved 2008-05-03.

Biodiesel facts

The energy content of biodiesel is about 90 percent that of petroleum diesel. Biodiesel is often mixed with petroleum-based diesel fuel. When 20% biodiesel is blended with 80%

diesel fuel, this blend is known as B20. Some people mistakenly believe this blend is biodiesel. Biodiesel is being used in a variety of non-engine applications such as solvents and paint remover.

Biodiesel has a flash point that is considerably higher than petroleum-based diesel fuel (above 160

°C). This means that the fire hazard associated with transportation, storage, and utilization of biodiesel is much less than with other commonly used fuels.

Biodiesel is designated under federal law as an "alternative fuel" and is registered with the US Environmental Protection Agency (EPA) as a fuel and fuel additive.

The biodiesel market is expected to grow from a couple hundred million gallons per year today to over one billion gallons per year by 2010.

Biofuels are at this moment mostly produced out of the sugar cane, corn, soybean and canola, and in the same time there are about 850 million people that don't have enough food.

Corn is the major source for current mass production of biofuels such as biodiesel and ethanol. Corn previously earmarked for food production is now being bought by biofuels manufacturers willing to

pay a higher price than food consumers.

Biodiesel has been proven to perform similarly to diesel in more than 50 million successful road miles in virtually all types of diesel engines, countless off-road miles and countless marine hours. Biodiesel emissions have decreased levels of polycyclic aromatic hydrocarbons (PAH) and nitrited

PAH compounds that have been identified as potential cancer causing compounds.

(Sumber: http://www.our-energy.com/energy_facts/biodiesel_facts.html… diunduh 27/3/2012)

Page 96: Kompendium Ketahanan Energi

ARTIFICIAL PHOTOSYNTHESIS

Artificial photosynthesis uses techniques include nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce

hydrogen and then using carbon dioxide to make methanol.

Collings AF and Critchley C (eds). Artificial Photosynthesis- From Basic Biology to Industrial Application (Wiley-VCH Weinheim 2005) p ix.

ARTIFICIAL PHOTOSYNTHESIS is a chemical process that replicates the natural process of photosynthesis, a process that converts sunlight, water, and carbon dioxide into carbohydrates and oxygen. The term is commonly used to refer to any scheme for capturing and storing the energy

from sunlight in the chemical bonds of a fuel (a solar fuel). Photocatalytic water splitting converts water into protons (and eventually hydrogen) and oxygen, and is a main research area in artificial photosynthesis. Light-driven carbon dioxide reduction

is another studied process, replicating natural carbon fixation.

Advantages of solar fuel production through artificial photosynthesis include:The solar energy can be immediately converted and stored. In photovoltaic cells,

sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary loss of energy associated with the second

conversion.The byproducts of these reactions are environmentally friendly. Artificially

photosynthesized fuel would be a carbon-neutral source of energy, which could be used for transportation or homes.

Disadvantages include:Materials used for artificial photosynthesis often corrode in water, so they may be less stable than photovoltaics over long periods of time. Most hydrogen catalysts are very sensitive to oxygen, being inactivated or degraded in its presence; also, photodamage

may occur over time.The overall cost is not yet advantageous enough to compete with fossil fuels as a

commercially viable source of energy.

(sumber: http://en.wikipedia.org/wiki/Artificial_photosynthesis)

Page 97: Kompendium Ketahanan Energi

ENERGI BERKELANJUTAN

Sustainable energy is the provision of energy that meets the needs of the present without compromising the ability of future

generations to meet their needs. Sustainable energy sources include all renewable energy sources, such as hydroelectricity, ocean

thermal, orbital solar, terrestrial solar, wind energy, wave power, geothermal energy, and tidal power.

It usually also includes technologies designed to

improve energy efficiency.

Hydroelectricity is the term referring to electricity generated by hydropower; the production of electrical power through the use of the gravitational force of falling or flowing water. It is the most widely used

form of renewable energy, accounting for 16 percent of global electricity consumption, and 3,427 terawatt-hours of electricity production in 2010,

which continues the rapid rate of increase experienced between 2003 and 2009.

Most hydroelectric power comes from the potential energy of dammed water driving a water turbine and generator. The power extracted from

the water depends on the volume and on the difference in height between the source and the water's outflow. This height difference is

called the head. The amount of potential energy in water is proportional to the head. A large pipe (the "penstock") delivers water to the turbine.

(sumber: http://en.wikipedia.org/wiki/Hydroelectricity)

Page 98: Kompendium Ketahanan Energi

EFISIENSI ENERGIEnergy efficiency and renewable energy are said to be the twin pillars of sustainable

energy. Some ways in which sustainable energy has been defined are:"Effectively, the provision of energy such that it meets the needs of the present without compromising the ability of future generations to meet their own needs. ...Sustainable

Energy has two key components: renewable energy and energy efficiency." – Renewable Energy and Efficiency Partnership (British)

"Dynamic harmony between equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations." And,

"the solution will lie in finding sustainable energy sources and more efficient means of converting and utilizing energy." – Sustainable energy by J. W. Tester, et al., from MIT

Press.

"The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy". Aceee.org. Archived from the original on May 5, 2008. http://web.archive.org/web/20080505041521/http://aceee.org/store/proddetail.cfm?CFID=2957330&CFTOKEN=50269931&ItemID=432&CategoryID=7. enewable Energy and Efficiency Partnership (August 2004). "Glossary of terms in sustainable energy regulation" (PDF). http://www.reeep.org/file_upload/296_tmpphpXkSxyj.pdf. "The Sustainable Energy Community :: invVest | invVEST Definition of Sustainable Energy". invVest. http://www.invvest.org/blog/invVEST-Definition-of-Sustainable-Energy/. Jamaica Sustainable Development Network. "Glossary of terms". Archived from the original on 2007-11-30. http://web.archive.org/web/20071130092351/http://www.jsdnp.org.jm/glossary.html.

"Any energy generation, efficiency & conservation source where: Resources are available to enable

massive scaling to become a significant portion of energy generation, long term, preferably 100

years.." – Invest, a green technology non-profit organization.[

"Energy which is replenishable within a human lifetime and causes no long-term damage to the

environment." – Jamaica Sustainable Development Network

Page 99: Kompendium Ketahanan Energi

GREEN ENERGY

This sets sustainable energy apart from other renewable energy terminology such as alternative energy and green energy, by focusing on the ability of an energy source to

continue providing energy. Sustainable energy can produce some pollution of the environment, as long as it is not sufficient to prohibit heavy use of the source for an

indefinite amount of time. Sustainable energy is also distinct from Low-carbon energy, which is sustainable only in the sense that it does not add to the CO2 in the atmosphere.

Green Energy is energy that can be extracted, generated, and/or consumed without any significant negative impact to the environment. The planet has a natural capability to

recover which means pollution that does not go beyond that capability can still be termed green.

Green Power Defined | Green Power Partnership | US EPA". Epa.gov. 2006-06-28. http://www.epa.gov/greenpower/gpmarket/index.htm.

Green power is a subset of renewable energy and represents those renewable energy

resources and technologies that provide the highest environmental benefit. The U.S.

Environmental Protection Agency defines green power as electricity produced from

solar, wind, geothermal, biogas, biomass, and low-impact small hydroelectric sources.

Customers often buy green power for avoided environmental impacts and its greenhouse gas

reduction benefits.

Page 100: Kompendium Ketahanan Energi

ENERGI HIJAU

Green energy includes natural energetic processes that can be harnessed with little pollution.

Anaerobic digestion, geothermal power, wind power, small-scale hydropower, solar energy, biomass power, tidal power, wave power, and some forms of nuclear power

(which is able to "burn" nuclear waste through a process known as nuclear transmutation, and therefore belong in the "Green Energy" category). Some definitions may also include power derived from the incineration of waste.

Some people, including George Monbiot and James Lovelock have specifically classified nuclear power as green energy. Others, including Greenpeace disagree,

claiming that the problems associated with radioactive waste and the risk of nuclear accidents (such as the Chernobyl disaster) pose an unacceptable risk to the

environment and to humanity. However, newer nuclear reactor designs are capable of utilizing what is now deemed "nuclear waste" until it is no longer (or dramatically less) dangerous, and have design features that greatly minimize the possibility of a

nuclear accident.

. The Guardian (London). http://www.guardian.co.uk/environment/georgemonbiot/2009/feb/20/george-monbiot-nuclear-climate). [

dead link] ^ Lovelock, James (2006). The Revenge of Gaia. Reprinted Penguin, 2007. ISBN 978-0-14-102990-0 ^ "End the nuclear age | Greenpeace International". Greenpeace.org.

http://www.greenpeace.org/international/campaigns/nuclear. Retrieved 2010-07-08. ^ http://www.greenpeace.org/raw/content/international/press/reports/briefing-nuclear-not-answer-apr07.pdf

No power source is entirely impact-free.

All energy sources require energy and give rise to some degree of

pollution from manufacture of the technology.

Page 101: Kompendium Ketahanan Energi

GREEN ENERGYNo power source is entirely impact-free. All energy sources require energy and give rise to

some degree of pollution from manufacture of the technology.In several countries with common carrier arrangements, electricity retailing arrangements make it possible for consumers to purchase green electricity (renewable electricity) from

either their utility or a green power provider.When energy is purchased from the electricity network, the power reaching the consumer

will not necessarily be generated from green energy sources. The local utility company, electric company, or state power pool buys their electricity from electricity producers who

may be generating from fossil fuel, nuclear or renewable energy sources.

San Francisco Community Choice Program Design, Draft Implementation Plan and H Bond Action Plan, Ordinance 447-07, 2007.

In many countries green energy currently provides a very small amount of electricity, generally

contributing less than 2 to 5% to the overall pool.

In some U.S. states, local governments have formed regional

power purchasing pools using Community Choice Aggregation and

Solar Bonds to achieve a 51% renewable mix or higher, such as in

the City of San Francisco.

Page 102: Kompendium Ketahanan Energi

GREEN ENERGY = ENERGI HIJAU

By participating in a green energy program a consumer may be having an effect on the energy sources used and ultimately might be helping to promote and expand the

use of green energy. They are also making a statement to policy makers that they are willing to pay a price premium to support renewable energy.

Green energy consumers either obligate the utility companies to increase the amount of green energy that they purchase from the pool (so decreasing the amount

of non-green energy they purchase), or directly fund the green energy through a green power provider.

If insufficient green energy sources are available, the utility must develop new ones or contract with a third party energy supplier to provide green energy, causing more

to be built. However, there is no way the consumer can check whether or not the electricity bought is "green" or otherwise.

GREEN EENERGY

Green energy is energy that is produced in a manner that has less of a negative impact to the environment than energy sources like fossil fuels, which are often

produced with harmful side effects. “Greener” types of energy that often come to mind are solar, wind, geothermal and hydro energy. There are several more, even

including nuclear energy, that is sometimes considered a green energy source because of its lower waste output relative to energy sources such as coal or oil.

The goal of green energy is generally to create power with as little pollution as possible produced as a by-product. Every form of energy collection will result in

some pollution, but those that are green are known to cause less than those that are not. Most people who advocate greener sources of energy claim that the result of worldwide use of green energy will result in the ability to preserve the planet for a longer time. Greenhouse gases, a by-product of traditional sources of energy such as fossil fuels are thought to be causing global warming, or the process of the Earth

heating up at an accelerated pace.

(SUMBER: http://www.wisegeek.com/what-is-green-energy.htm)

Page 103: Kompendium Ketahanan Energi

ENERGI HIJAUIn some countries such as the Netherlands, electricity companies guarantee to buy an equal amount of 'green power' as is being used by their green power

customers. In the United States, one of the main problems with purchasing green energy

through the electrical grid is the current centralized infrastructure that supplies the consumer’s electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO2 emissions, higher energy costs,

and power quality issues.

U.S. Department of Energy Office of Electricity Delivery and Energy Reliability."Energy Distribution"U.S. Department of Energy Office of Electricity Delivery and Energy Reliability.

[Whittington, H.W. "Electricity generation: Options for reduction in carbon emissions". Philosophical transactions in mathematics, physical, and engineering sciences. Vol. 360, No. 1797. (Aug. 15, 2002)

Published by: The Royal Society]

Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy

demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible. In addition, despite the amount of renewable energy produced or the economic viability

of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing

changes to the electrical grid that will accommodate a mixed-fuel economy.

Page 104: Kompendium Ketahanan Energi

ENERGI HIJAU TERBARUKAN

Renewable green energy is energy that comes from renewable sources, and lowers overall air pollution or negative environmental effects. Renewable energy is defined as energy coming from infinite sources rather than finite

physical or commodity sources. Green energy is commonly defined as energy that lowers a negative impact by decreasing outgoing emissions of toxins like carbon dioxide and greenhouse gases. The collective term “renewable green

energy” puts these two criteria together. Since the multiple criteria are in many ways complementary, renewable green energy represents the ideal

choice for a range of government and business uses, as well as mass residential usage.

Some of the main examples of renewable green energy include solar energy, wind energy, and hydropower or water generated energy. Other more

obscure forms of energy that some call renewable and green are biomass energies, although experts could argue that these are actually finite sources,

due to the necessary fertile land for production of the products that are used. Some common examples of non-renewable energies are fossil fuels.

Coal and oil are the two main non-renewable energies that power much of the world’s energy use. Governments and businesses all over the world are

trying to find renewable green energy solutions that will replace non-renewable or unsustainable polluting energy sources.

(Sumber: http://www.wisegeek.com/what-is-renewable-green-energy.htm)

. Romm, Joseph; Levine, Mark; Brown, Marilyn; Peterson, Eric. “A road map for U.S. carbon reductions”. Science, Vol. 279, No. 5351. (Jan. 30, 1998). Washington

Page 105: Kompendium Ketahanan Energi

ENERGI HIJAU

A more recent concept for improving our electrical grid is to beam microwaves from Earth-orbiting satellites or the moon to directly when and where there is

demand. The power would be generated from solar energy captured on the lunar surface. In this system, the receivers would be “broad, translucent tent-like structures that would receive microwaves and convert them to electricity”. NASA said in 2000 that the technology was worth pursuing but it is still too soon to say

if the technology will be cost-effective.

The World Wide Fund for Nature and several green electricity labelling organizations have created the Eugene Green Energy Standard under which the national green electricity certification schemes can be accredited to ensure that

the purchase of green energy leads to the provision of additional new green energy resources.

[Britt, Robert Roy. “Could Space-Based Power Plants Prevent Blackouts?”. Science. (August 15, 2003)] ^ Eugene Green Energy Standard, Eugene Network. Retrieved 2007-06-07.

GREEN ELECTRICITY is defined as power produced from renewable resources. Renewable resources include wind, solar, hydro and waste. REI believes that

municipal waste and other forms of waste represent a valuable resource and source of green electricity that should be exploited. Energy produced from waste has the

following advantages over any other form of renewable energy. Municipal waste will always exist in the locations where the power is needed the

most. The use of waste to produce power using the Recovered Energy System™ will always have less environmental impact than any other alternative use for or disposal of the waste. Municipal waste can provide up to 1/3 of our total power requirements and it is readily available. There is a raw material cost to most other forms of energy, whereas waste is able to charge a tipping fee. Mismanagement of waste will cause

serious long-term environmental damage. Converting municipal waste into electricity does not contribute to the greenhouse effect and when properly done has a positive

environmental impact.

(sumber: http://www.recoveredenergy.com/d_greenelec.html)

Page 106: Kompendium Ketahanan Energi

ENERGI HIJAU

Renewable energy, after its generation, needs to be stored in a medium for use with autonomous devices as well as vehicles. Also, to provide household

electricity in remote areas (that is areas which are not connected to the mains electricity grid), energy storage is required for use with renewable energy. Energy

generation and consumption systems used in the latter case are usually stand-alone power systems.

Some examples are:1. energy carriers as hydrogen, liquid nitrogen, compressed air, oxyhydrogen,

batteries, to power vehicles.2. flywheel energy storage, pumped-storage hydroelectricity is more usable in

stationary applications (e.g. to power homes and offices. 3. In household power systems, conversion of energy can also be done to

reduce smell. For example organic matter such as cow dung and spoilable organic matter can be converted to biochar. To eliminate emissions, carbon capture and storage is then used.

ENERGI RAMAH LINGKUNGAN atau energi hijau (Inggris: green energy) adalah suatu istilah yang menjelaskan apa yang dianggap

sebagai sumber energi dan tenaga yang ramah terhadap lingkungan. Khususnya, istilah ini merujuk ke sumber-sumber energi yang dapat

diperbaharui dan tidak mencemari lingkungan.

Selain air, sinar matahari dan angin terdapat pula energi yang berasal dari makhluk hidup. Termasuk dalam kategori yang terakhir sering disebut juga sebagai biomassa, yang sebagai salah satu contohnya

adalah minyak jelantah.

(sumber: http://id.wikipedia.org/wiki/Energi_ramah_lingkungan)

Page 107: Kompendium Ketahanan Energi

Sustainable Energy Management (SEM)Energi Hijau

Green energy is the term used to describe sources of energy that are considered to be environmentally friendly and non-polluting, such as geothermal, wind, solar, and hydro. Sometimes nuclear power is also

considered a green energy source.Green energy sources are often considered "green" because they are perceived

to lower carbon emissions and create less pollution.Green energy is commonly thought of in the context of electricity generation. Renewable energy certificates (green certificates or green tags) have been one

way for consumers and businesses to support green energy.

Total green electricity generation for Scotland

Scotland can generate all its domestic electricity using renewable methods by 2020, the Government has confirmed. However, it will be challenge to reach the target and green energy generation will need to be supported by at least 2.5 GW from

thermal power units that will be increasing their carbon capture and storage rates.The Government also aims to completely remove carbon from electricity generation by 2030, under plans outlined in the Electricity Generation Policy Statement (EGPS),

which has just been released.

The plans mean there will be no need to build any new nuclear power stations in Scotland. By generating energy through low carbon methods, not only will the

environment benefit, but costs will fall. Customers can expect average household bills of around £1,285 in 2020, over £100 less than if the status quo continues, says

the EGPS. Under the plan the electricity supply should be secure, affordable for customers and produce a competitive advantage for Scotland by delivering

investments of up to £46billion.

(sumber: http://www.earthtimes.org/energy/green-electricity-generation-scotland/1855/)

Page 108: Kompendium Ketahanan Energi

Sustainable Energy Management (SEM)

Energi berkelanjutan :

1. Sumber energi yang renewable: biofuels, solar power, wind power, hydro power, wave power, geothermal power dan tidal power.

2. Teknologi yng mampu meningktkn energy efficiency.

www.ricksquires.com/.../

Page 109: Kompendium Ketahanan Energi

Sustainable Energy Management (SEM)Efisiensi Energi

Efficient energy use, sometimes simply called energy efficiency, is using less energy to provide the same level of energy service.

Insulating a home allows a building to use less heating and cooling energy to achieve and maintain a comfortable temperature.

Installing fluorescent lights and/or skylights instead of incandescent lights to attain the same level of illumination.

Efficient energy use is achieved primarily by means of a more efficient technology or process rather than by changes in individual behavior.

The 3 Ways to Move Forward with Sustainable Energy

In order to successfully move into an era of sustainable and renewable energy, we must tackle the problem in 3 stages.

1. We must cut down on our energy demand and manage that demand on high energy use days.

2. We must switch over to a wealth of free energy obtained from the sun, the wind, waves, hot rocks and natural biomass matter and we must

balance these energy sources in order to displace quickly depleting fossil fuels.

3. We must manage our demand better by converting vehicles to electric power, running our air conditioners at sensible times and becoming smart

with our power usage.

(sumber: http://www.sustainableenergy.com.au/)

Page 110: Kompendium Ketahanan Energi

Sustainable Energy Management (SEM)Renewable energy :

Energi yang dihasilkan dari sumberdaya alam seperti radiasi-matahari, angin, air, hujan, pasang-surut, panas bumi, dan hayati………

……. yang secara alamiah dapat diperbaharui

Biogas merupakan gas yang dihasilkan oleh aktivitas anaerobik atau fermentasi dari bahan-bahan organik

termasuk diantaranya; kotoran manusia dan hewan, limbah domestik (rumah tangga), sampah biodegradable atau setiap limbah organik yang biodegradable dalam kondisi anaerobik. Kandungan utama dalam biogas adalah metana dan karbon

dioksida.Biogas dapat digunakan sebagai bahan bakar kendaraan

maupun untuk menghasilkan listrik.

Page 111: Kompendium Ketahanan Energi

ENERGI AIR = Hydropower

Energy in water can be harnessed and used. Since water is about 800 times denser than air, even a slow flowing stream of water, or moderate sea swell,

can yield considerable amounts of energy. There are many forms of water energy:

Hydroelectric energy is a term usually reserved for large-scale hydroelectric dams.

Micro hydro systems are hydroelectric power installations that typically produce up to 100 kW of power. They are often used in water rich areas as a

remote-area power supply (RAPS). Damless hydro systems derive kinetic energy from rivers and oceans without

using a dam.

Ocean energy describes all the technologies to harness energy from the ocean and the sea. This includes

marine current power, ocean thermal energy conversion, and tidal power.

Page 112: Kompendium Ketahanan Energi

ENERGI SURYA = Solar energy

Solar energy is the energy derived from the sun through the form of solar radiation.

Solar powered electrical generation relies on photovoltaics and heat engines.

A partial list of other solar applications includes space heating and cooling through solar architecture, daylighting, solar hot water, solar cooking, and high temperature process heat for

industrial purposes.

SUMBER: http://panel-surya.blogspot.com/2011/06/apa-itu-panel-surya-solar-cell.html

Page 113: Kompendium Ketahanan Energi

ENERGI SURYA = Solar energy

Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute

solar energy. Active solar techniques include the use of photovoltaic panels and solar

thermal collectors to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and

designing spaces that naturally circulate air.

Pembangkit listrik tenaga surya (PLTS) itu konsepnya sederhana, Yaitu mengubah cahaya matahari menjadi energi listrik. Cahaya matahari merupakan salah satu

bentuk energi dari sumberdaya alam. Sumberdaya alam matahari ini sudah banyak digunakan

untuk memasok daya listrik di satelit komunikasi melalui sel surya. Sel surya ini dapat menghasilkan energi listrik dalam jumlah yang tidak terbatas langsung diambil dari matahari,

tanpa ada bagian yang berputar dan tidak memerlukan bahan bakar. Sehingga sistem sel surya sering dikatakan

bersih dan ramah lingkungan.

PLTS

Page 114: Kompendium Ketahanan Energi

BAHAN BAKAR NABATI = Biofuel

BBN cair biasanya berupa bioalcohol (bioethanol) atau minyak (biodiesel).

Bioethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. With advanced

technology being developed, cellulosic biomass, such as trees and grasses, are also used as feedstocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase

octane and improve vehicle emissions. Biodiesel is made from vegetable oils, animal fats or recycled greases. Biodiesel

can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons

from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification .

Salah satu usulan mekanisme mitigasi itu berupa upaya menghasilkan lebih banyak bahan bakar nabati, yang sering disebut biofuel, sehingga pemakaian

bahan bakar fosil dapat dikurangi.

Untuk menghasilkan bahan bakar nabati dalam jumlah besar dibutuhkan lahan perkebunan skala besar dan areal hutan di daerah tropis, yang biasanya dihuni oleh masyarakat adat. Perkebunan besar ini memproduksi bahan bakar nabati seperti etanol (dari tebu) atau biodiesel (dari kelapa sawit dan tanaman jarak),

dan pelan-pelan mulai dapat menggantikan bahan bakar konvensional asal fosil.

Di Indonesia, pada tahun 2006, pemerintah mengeluarkan kebijakan-kebijakan yang mendukung usaha perkebunan ini. Di antaranya, Instruksi Presiden No.

I/2006 tentang Penyediaan dan Pemanfaatan Bahan Bakar Nabati sebagai bahan bakar alternatif

(sumber: http://rumahiklim.org/masyarakat-adat-dan-perubahan-iklim/mitigasi/bahan-

bakar-nabati/)

BAHAN BAKAR NABATI

Page 115: Kompendium Ketahanan Energi

PANAS BUMI = Geothermal energy

Geothermal energy is energy obtained by tapping the heat of the earth itself, both from kilometers deep into the Earth's crust in some places of

the globe or from some meters in geothermal heat pump in all the places of the planet .

It is expensive to build a power station but operating costs are low resulting in low energy costs for suitable sites.

Ultimately, this energy derives from heat in the Earth's core.

Energi panas Bumi adalah energi yang diekstraksi dari panas yang tersimpan di dalam bumi. Energi panas Bumi ini berasal dari aktivitas tektonik di dalam

bumi yang terjadi sejak planet ini diciptakan. Panas ini juga berasal dari panas matahari yang diserap oleh permukaan Bumi. Energi ini telah

dipergunakan untuk memanaskan (ruangan ketika musim dingin atau air) sejak peradaban Romawi, namun sekarang lebih populer untuk

menghasilkan energi listrik. Sekitar 10 Giga Watt pembangkit listrik tenaga panas Bumi telah dipasang di seluruh dunia pada tahun 2007, dan

menyumbang sekitar 0.3% total energi listrik dunia.Energi panas Bumi cukup ekonomis dan ramah lingkungan, namun terbatas

hanya pada dekat area perbatasan lapisan tektonik.Pangeran Piero Ginori Conti mencoba generator panas Bumipertama pada 4 July 1904 di area panas Bumi Larderello di Italia. Grup area sumber panas Bumi terbesar di dunia, disebut The Geyser, berada di California, Amerika

Serikat. Pada tahun 2004, lima negara (El Salvador, Kenya, Filipina, Islandia, dan Kostarika) telah menggunakan panas Bumi untuk menghasilkan lebih

dari 15% kebutuhan listriknya.

(SUMBER: http://id.wikipedia.org/wiki/Energi_panas_bumi)

ENERGI PANAS BUMI

Page 116: Kompendium Ketahanan Energi

ENERGI ANGIN = Wind power

Airflows can be used to run wind turbines. Modern wind turbines range from around 600 kW to 5 MW of rated power, although

turbines with rated output of 1.5–3 MW have become the most common for commercial use; the power output of a turbine is a function of the cube of the wind speed, so as wind

speed increases, power output increases dramatically. Areas where winds are stronger and more constant, such as offshore and high altitude sites,

are preferred locations for wind farms. Typical capacity factors are 20-40%, with values at the upper end of the range in particularly

favourable sites.

Tenaga angin menunjuk kepada pengumpulan energi yang berguna dari angin. Pada 2005, kapasitas generator tenaga-angin adalah

58.982 MW, hasil tersebut kurang dari 1% penggunaan listrik dunia. Meskipun masih berupa sumber energi listrik minor di

kebanyakan negara, penghasilan tenaga angin lebih dari empat kali lipat antara 1999 dan 2005.

Kebanyakan tenaga angin modern dihasilkan dalam bentuk listrik dengan mengubah rotasi dari pisau turbin menjadi arus listrik

dengan menggunakan generator listrik. Pada kincir angin energi angin digunakan untuk memutar peralatan mekanik untuk

melakukan kerja fisik, seperti menggiling "grain" atau memompa air.

Tenaga angin digunakan dalam ladang angin skala besar untuk penghasilan listrik nasional dan juga dalam turbin individu kecil

untuk menyediakan listrik di lokasi yang terisolir.

ENERGI ANGIN (Bayu)

Sumber: http://id.wikipedia.org/wiki/Tenaga_angin …. Diunduh 28/3/2012)

Page 117: Kompendium Ketahanan Energi

ENERGI ANGIN = Wind power

Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand. This

could require large amounts of land to be used for wind turbines, particularly in areas of higher wind resources.

Offshore resources experience mean wind speeds of ~90% greater than that of land, so offshore resources could contribute substantially more energy.

This number could also increase with higher altitude ground-based or airborne wind turbines.

Wind power is renewable and produces no greenhouse gases during operation, such as carbon dioxide and methane.

Kincir angin adalah sebuah mesin yang digerakkan oleh tenaga angin untuk menumbuk biji-bijian. Kincir

angin juga digunakan untuk memompa air untuk mengairi sawah.

Kincir angin modern adalah mesin yang digunakan untuk menghasilkan

energi listrik, disebut juga dengan turbin angin. Turbin angin kebanyakan

ditemukan di Eropa dan Amerika Utara.

Kincir angin pertama kali digunakan untuk membangkitkan listrik dibangun

oleh P. La Cour dari Denmark diahir abad ke-19. Setelah perang dunia I, layar dengan penampang melintang menyerupai sudut propeler pesawat

sekarang disebut kincir angin type propeler' atau turbin

SUMBER: renewableenergyindonesia.wordpress.c

Page 118: Kompendium Ketahanan Energi

ENERGI TERBARUKAN

Usually however, renewable energy is derived from the mains electricity grid. This means that energy storage is mostly not used, as the mains electricity grid is organised to produce

the exact amount of energy being consumed at that particular moment.

Energy production on the mains electricity grid is always set up as a combination of (large-scale) renewable energy plants, as well as other power plants as fossil-fuel power plants

and nuclear power This combination however, which is essential for this type of energy supply (as e.g. wind

turbines, solar power plants etc.) can only produce when the wind blows and the sun shines. This is also one of the main drawbacks of the system as fossil fuel powerplants are

polluting and are a main cause of global warming (nuclear power being an exception).

Although fossil fuel power plants too can made emissionless (through carbon capture and storage), as well as renewable (if the plants are converted to e.g. biomass) the best solution

is still to phase out the latter power plants over time. Nuclear power plants too can be more or less eliminated from their problem of nuclear waste through the use of nuclear

reprocessing and newer plants as fast breeder and nuclear fusion plants.

Most renewable energy comes either directly or indirectly from the sun. Sunlight, or solar energy, can be used directly for heating and lighting homes and other buildings, for generating electricity, and for hot water heating, solar cooling, and a variety of commercial and industrial uses.

Solar shingles are installed on a rooftop. Credit: Stellar Sun Shop The sun's heat also drives the winds, whose energy, is captured with

wind turbines. Then, the winds and the sun's heat cause water to evaporate. When this water vapor turns into rain or snow and flows

downhill into rivers or streams, its energy can be captured using hydroelectric power.

Along with the rain and snow, sunlight causes plants to grow. The organic matter that makes up those plants is known as biomass. Biomass can be used to produce electricity, transportation fuels, or chemicals. The use of

biomass for any of these purposes is called bioenergy.

(SUMBER: http://www.renewableenergyworld.com/rea/tech/home)

ENERGI TERBARUKAN

Page 119: Kompendium Ketahanan Energi

ENERGI TERBARUKAN

Renewable energy power plants do provide a steady flow of energy. For example hydropower plants, ocean thermal plants, osmotic power plants all provide power at a

regulated pace, and are thus available power sources at any given moment (even at night, windstill moments etc.). At present however, the number of steady-flow

renewable energy plants alone is still too small to meet energy demands at the times of the day when the irregular producing renewable energy plants cannot produce power.

Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up

energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe.

Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the

wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main

sources of energy on the mains electricity net and replacing them will not be possible overnight.

About sustainable energyWe need energy for almost everything we do from cooking, heating and lighting our homes and offices, to travelling for work or pleasure, and powering telecommunications and industry. But more than two-thirds of the greenhouse gas

emissions that are responsible for climate change come from energy sources - mostly through burning oil and coal. Many

energy sources also have a direct impact on the environment. We urgently need to move to energy systems that are

environmentally and socially sustainable.

Page 120: Kompendium Ketahanan Energi

PENYIMPANAN ENERGISeveral large-scale energy storage suggestions for the grid have been done. This

improves efficiency and decreases energy losses but a conversion to a energy storing mains electricity grid is a very costly solution. Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is car batteries in personal vehicles that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a

very complicated and difficult procedure.

.Energy storage apparatus' as car batteries are also

built with materials that pose a threat to the environment (e.g. sulphuric acid). The combined

production of batteries for such a large part of the population would thus still not quite environmental.

Besides car batteries however, other large-scale energy storage suggestions for the grid have been

done which make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy

storage).

Page 121: Kompendium Ketahanan Energi

KONSERVASI ENERGI

Energy conservation refers to efforts made to reduce energy consumption. Energy conservation can be achieved through increased efficient energy use, in conjunction

with decreased energy consumption and/or reduced consumption from conventional energy sources.

Energy conservation can result in increased financial capital, environmental quality, national security, personal security, and human comfort.

Individuals and organizations that are direct consumers of energy choose to conserve energy to reduce energy costs and promote economic security. Industrial and

commercial users can increase energy use efficiency to maximize profit.

Sumber: http://nurulullulnotes.blogspot.com/2011/09/bercerita-konservasi-energi.html ... diunduh 26/3/2012

KONSERVASI ENERGIKonservasi energi merupakan penghematan jumlah energi secara rasional,efisien dan

optimal yang sesuai dengan kebutuhan agar diperoleh keiiritan baik dari segi biaya, maupun jumlah energi yang dipakai.

Tujuan dari konservasi energi adalah untuk memelihara kelestarian sumber daya alam yang merupakan sumber energi (misalnya : air,energi fosil) dengan kebijakan pemilihan teknologi

tepat guna dan penggunaan energi secara optimal,efisien,rasional untuk mewujudkan penyediaan energi di masa yang akan datang. selain itu, konservasi energi juga berujuan

untuk mengurangi polutan-polutan atau gas-gas beracun yang bertebaran di atmosfer bumi kita.

Penghematan jumlah energi memiliki arti mengurangi jumlah energi yang digunakan untuk melakukan aktivitas.

Efisiensi dan penghematan ditujukan pada hal-hal atau tahap-tahap dimana yang tidak perlu, atau kurang perlu dihilangkan tanpa mengganggu fungsi utama proses produksi. Hal ini sejalan dengan filosofi konservasi energi, bahwa jika pengurangan energi justru malah

akan membuat keresahan, mengganggu proses produksi, maka hal tersebut bukanlah sebuah konservasi.

Keuntungan yang diperoleh dengan mengkonservasi energi adalah : # menurunkan biaya produksi # menurunkan jumlah polutan # memperpanjang 'usia' energi

# menurunkan emisi gas rumah kaca# menjaga kelestarian lingkungan # meningkatkan keselamatan juga berdampak baik bagi kesehatan

Page 122: Kompendium Ketahanan Energi

KEBIJAKAN ENERGI

Energy policy is the manner in which a given entity (often governmental) has decided to address

issues of energy development including energy production, distribution and consumption.

The attributes of energy policy may include legislation,

international treaties, incentives to investment, guidelines for energy conservation, taxation

and other public policy techniques.

Page 123: Kompendium Ketahanan Energi

ENERGI BERKELANJUTAN

Sustainable energy is the provision of energy that meets the needs of the present without compromising the ability of

future generations to meet their needs.

Sustainable energy sources are most often regarded as including all renewable energy sources, such as

hydroelectricity, solar energy, wind energy, wave power, geothermal energy, bioenergy, and tidal power.

It usually also includes technologies that improve

energy efficiency.

Page 124: Kompendium Ketahanan Energi

PENGGUNAAN BIOFUEL

Biofuel is defined as solid, liquid or gaseous fuel obtained from relatively recently lifeless or living

biological material and is different from fossil fuels, which are derived from long dead biological

material.

Various plants and plant-derived materials are used for biofuel manufacturing.

Bio fuels are a renewable energy and can be sustainable (carbon neutral) in terms of

greenhouse gas emissions since they are in the carbon cycle for the short term.

Page 125: Kompendium Ketahanan Energi

KAYU BAKARUnsustainable firewood harvesting can lead to loss of biodiversity and erosion due to

loss of forest cover. An example of this is a 40 year study done by the University of Leeds of African forests, which account for a third of the world's total tropical forest

which demonstrates that Africa is a significant carbon sink. A climate change expert, Lee White states that "To get an idea of the value of the sink, the removal of nearly 5 billion tonnes of carbon dioxide from the atmosphere by intact

tropical forests is at issue.

According to the U.N. the continent is losing forest twice as fast as the rest of the world. "Once upon a time, Africa boasted seven million square kilometers of forest but a third

of that has been lost, most of it to charcoal.”

Rowan, Anthea (2009-09-25). "Africa's burning charcoal problem". BBC NEWS Africa. http://news.bbc.co.uk/2/hi/africa/8272603.stm. Retrieved 2011-04-22.

KAYU BAKARAdalah energi padat lainnya yaitu jumlah seluruh

kayu kasar yang digunakan untuk bahan bakar.Kayu bakar merupakan bahan bakar tradisional untuk

memasak yang biasanya banyak digunakan di pedesaan. Kayu bakar tidak terbakar secara

sempurna dan hal ini membahayakan kesehatan sistem pernafasan terutama pada kaum perempuan. Perilaku ibu rumah tangga yang menggunakan kayu

bakar sebagai bahan bakar memasak sangat diperlukan karena mereka merupakan orang yang selalu terpajan pada asapnya dan beresiko terkena

penyakit pada saluran pernafasan.

Page 126: Kompendium Ketahanan Energi

DAMPAK LINGKUNGAN Petroleum

The environmental impact of petroleum is often negative because it is toxic to almost all forms of life. The possibility of climate change

exists.

Petroleum, commonly referred to as oil, is closely linked to virtually all aspects

of present society, especially for transportation and heating for both

homes and for commercial activities.

Page 127: Kompendium Ketahanan Energi

GAS ALAMNatural gas is often described as the cleanest fossil fuel, producing less carbon dioxide

per joule delivered than either coal or oil., and far fewer pollutants than other fossil fuels. However, in absolute terms it does contribute substantially to global carbon

emissions, and this contribution is projected to grow. According to the IPCC Fourth Assessment Report, in 2004 natural gas produced about

5,300 Mt/yr of CO2 emissions, while coal and oil produced 10,600 and 10,200 respectively; but by 2030, according to an updated version of the SRES B2 emissions

scenario, natural gas would be the source of 11,000 Mt/yr, with coal and oil now 8,400 and 17,200 respectively. (Total global emissions for 2004 were estimated at over 27,200

Mt.)In addition, natural gas itself is a greenhouse gas far more potent than carbon dioxide

when released into the atmosphere but is released in smaller amounts.

http://www.naturalgas.org/environment/naturalgas.asp#greenhouse/

GAS ALAM

Gas alam sering juga disebut sebagai gas Bumi atau gas rawa, adalah bahan bakar fosil berbentuk gas yang

terutama terdiri dari metana CH4). Ia dapat ditemukan di ladang minyak, ladang gas Bumi dan

juga tambang batu bara. Ketika gas yang kaya dengan metana diproduksi melalui pembusukan oleh bakteri

anaerobik dari bahan-bahan organik selain dari fosil, maka ia disebut biogas.

Sumber biogas dapat ditemukan di rawa-rawa, tempat pembuangan akhir sampah, serta penampungan kotoran

manusia dan hewan.

Page 128: Kompendium Ketahanan Energi

PEMBANGKIT LISTRIKThe environmental impact of electricity generation is significant because modern society

uses large amounts of electrical power. This power is normally generated at power plants that convert some other kind of energy into electrical power. Each such system has advantages and disadvantages, but many of

them pose environmental concerns.

http://en.wikipedia.org/wiki/Environmental_impact_of_electricity_generation

Sekilas tentang Pembangkit Listrik Tenaga Surya

Solar cell atau sel surya merupakan lembaran yang terdiri dari bahan semikonduktor yang berfungsi mengubah cahaya matahari (surya) menjadi energi listrik. setelah

menjadi energi listrik, kita bisa memanfaatkannya untuk berbagai kebutuhan seperti penerangan, televisi dll maupun untuk usaha.

Sistem pembangkit listrik tenaga surya ini membutuhkan beaya awal yang relatif besar, selain karena harga panel sel surya yang masih mahal, juga efisiensinya masih

relatif rendah. sehingga masih sedikit yang memanfaatkannya. Namun akhir-akhir ini banyak orang yang tertarik menggunakan sel surya karena dengan cepatnya

teknologi semikonduktor, sel surya menjadi lebih murah, efisiensi lebih tinggi dan kapasitas lebih besar, juga keuntungan ramah lingkungan. selain itu, tidak adanya

investasi dibahan bakar, sangat memungkinkan dalam jangka panjang sel surya mampu bersaing dengan sumber energi BBM atau bahkan lebih murah.

Sel surya dapat diletakkan diatap rumah, kemudian dengan perantara inverter, bisa langsung disambung ke beban dan ke baterai penyimpan standar 12 V dengan

kapasitas disesuaikan dengan kebutuhan. pada siang hari baterai akan menyimpan energi dari sel surya untuk digunakan pada malam harinya. Sel surya juga dapat digunakan untuk menghemat rekening listrik, jika pemakai masih berlangganan

listrik ke PLN, karena dengan alat tertentu, penggunaan listrik PLN hanya digunakan jika daya dari sel surya tidak mencukupi kebutuhan. untuk sistem yang paling

sederhana, sel surya dapat menghasilkan daya sekitar 4 lampu pijar (1 lembar panel sel surya ada yang berkapasitas 50Wp dan 80Wp) dan sistem ini dapat

dikembangkan sesuai dengan kebutuhan pemakai dengan menambah panel-panel sel surya.

(sumber: http://energi-terbarukan-indonesia.blogspot.com/2009/01/sekilas-tentang-pembangkit-listrik.html)

Page 129: Kompendium Ketahanan Energi

DAMPAK LINGKUNGAN AKIBAT BENDUNGAN-WADUK

The environmental impact of reservoirs is coming under ever increasing scrutiny as the world demand for water and energy increases and the number and size of reservoirs

increases. Dams and the reservoirs can be used to supply drinking water, generate hydroelectric

power, increasing the water supply for irrigation, provide recreational opportunities and to improve certain aspects of the environment. However, adverse environmental and

sociological impacts have also been identified during and after many reservoir constructions. Whether reservoir projects are ultimately beneficial or detrimental—to both the environment and surrounding human populations— has been debated since

the 1960s and probably long before that. In 1960 the construction of Llyn Celyn and the flooding of Capel Celyn provoked political uproar which continues to this day. More

recently, the construction of Three Gorges Dam and other similar projects throughout Asia, Africa and Latin America have generated considerable environmental and political

debate.

Sumber: http://en.wikipedia.org/wiki/Environmental_impact_of_reservoirs

PLTA : PEMBANGKIT LISTRIK TENAGA AIR

Pembangkit Listrik Tenaga Air (PLTA) adalah pembangkit yang mengandalkan energi potensial dan kinetik dari air untuk menghasilkan energi listrik. Energi listrik yang dibangkitkan ini biasa disebut sebagai

hidroelektrik.

Bentuk utama dari pembangkit listrik jenis ini adalah Generator yang dihubungkan ke turbin yang digerakkan oleh tenaga kinetik dari air. Namun, secara luas, pembangkit listrik tenaga air tidak hanya terbatas pada air dari sebuah waduk atau air terjun, melainkan juga meliputi pembangkit listrik yang menggunakan tenaga air dalam bentuk lain seperti tenaga ombak.

(Sumber: http://id.wikipedia.org/wiki/Pembangkit_listrik_tenaga_air)

Page 130: Kompendium Ketahanan Energi

ENERGI ANGIN

Compared to the environmental effects of traditional energy sources, the environmental effects of wind power are relatively minor. Wind power consumes no fuel, and emits no air pollution, unlike fossil fuel power sources. The energy consumed to manufacture and

transport the materials used to build a wind power plant is equal to the new energy produced by the plant within a few months.

While a wind farm may cover a large area of land, many land uses such as agriculture are compatible, with only small areas of turbine foundations and infrastructure made

unavailable for use.

Why Australia needs wind powerhttp://en.wikipedia.org/wiki/Environmental_impact_of_wind_power

POWER SYSTEM

ENERGI angin merupakan salah satu sumber energi yang terbarukan dan juga energi yang bersih lingkungan karena relatif tidak menimbulkan emisi udara. Namun

masalah kunci dari sumber tenaga ini adalah ketidak kontinyu-an energi dari alam itu sendiri. sehingga banyak cara atau metode yang dikembangkan untuk

menanggulangi masalah tersebut, salah satunya adalah dengan menggunakan sebagian energi yang dihasilkan untuk memproduksi hidrogen melalui proses

elektrolisis air. Kemudian hidrogen ini disimpan sebagai bahan bakar untuk menghasilkan listrik pada saat beban puncak atau kondisi dimana pembangkit listrik tenaga angin tersebut kekurangan daya untuk memenuhi permintaan beban. Energi yang tersimpan dalam bentuk hidrogen dapat di ubah kembali menjadi tenaga listrik

dengan teknologi fuel cell ataupun dengan teknologi mesin bakar (combustion engine) yang terhubung dengan generator listrik.

Sistem pembangkit gabungan antara energi angin dan hidrogen ini sering disebut Wind-Hydrogen hybrid power system seperti terliahat pada gambar diatas. Banyak

negara yang mengembangkan sistem ini seperti Australia, Inggris, Amerika, Denmark, Scotlandia dll.

Teknologi ini sangat berguna untuk memanfaatkan sumber daerah lokal yang lokasinya tidak terjangkau oleh sistem transmisi karena masalah beaya (cost).

Persoalan lain yang perlu diatasi adalah teknologi penyimpanan hidrogen, sperti masalah penggetasan/ embrittlement bahan yang digunakan di sistem tenaga

(power system).

(sumber: http://energi-terbarukan-indonesia.blogspot.com/)

Page 131: Kompendium Ketahanan Energi

TEKNOLOGI ENERGI HIJAUWhat is Renewable Energy?

http://www.green-the-world.net/what_is_renewable_energy.html

Page 132: Kompendium Ketahanan Energi

ENERGI ALTERNATIF

The term alternative energy is commonly used. It does in our global society simply refer to the use of other sources of energy other than

primary energy sources like fossil fuel. When we talk about fossil fuels coal, natural gas and oil are the main elements. They are used to

generate electricity, heating and to power our massive transport sector.

http://www.renewablepowernews.com/archives/1413

Page 133: Kompendium Ketahanan Energi

BIOMASABiomass is also a very popular alternative source of energy. The energy is derived from burning plants, and it is one of man’s first sources of energy. Very recently, wood was still the primary sources for heat, and it can still be seen as being the main one in developing countries. However, in the developed countries wood is

mostly used for aesthetic purposes. Nevertheless, there are still roughly around 2 billion people in developing nations that use wood for “heating and cooking”.

Moreover, biomass does also have some other derivates such as “bio-diesel and ethanol”. These are direct substitutes for oil in the automobile industry.

http://www.renewablepowernews.com/archives/1413

Biomass can be converted to other usable forms of energy like methane

gas or transportation fuels like ethanol and biodiesel. Rotting garbage, and

agricultural and human waste, release methane gas—also called "landfill gas" or "biogas." Crops like corn and sugar cane can be fermented to produce the transportation fuel, ethanol. Biodiesel,

another transportation fuel, can be produced from left-over food products

like vegetable oils and animal fats. Also, Biomass to liquids (BTLs) and

cellulosic ethanol are still under research.

Sumber: http://en.wikipedia.org/wiki/Biomass

Page 134: Kompendium Ketahanan Energi

APA SAJA MANFAAT ENERGI-HIJAU

Green energy is becoming progressively more popular day by day as it provides myriads of benefits. It is a sustainable, reliable and comprehensive source of energy that requires little or no maintenance and is beneficial in

the long run.

Using green energy is an extremely reliable way to save your monthly expenditures on electricity bills. It is a renewable form of energy that utilizes

sunlight to produce electricity.

http://helpmesun.blogspot.com/2011/01/what-are-benefits-of-green-energy.html

Page 135: Kompendium Ketahanan Energi

ENERGI MATAHARI

Solar energy is beneficial for our health as it neither pollutes the environment nor does it

release any harmful substances into the air. In this article,

I will discuss some of the most effective benefits of this renewable energy so you can easily

understand the importance of this reliable alternative source.

http://helpmesun.blogspot.com/2011/01/what-are-benefits-of-green-energy.html

Page 136: Kompendium Ketahanan Energi

DEPARTEMEN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA

SIARAN PERS NOMOR : 24/HUMAS DESDM/2008Tanggal : April 2008

Sumber: http://esdm.go.id/siaran-pers/55-siaran-pers/1687-membangun-ketahanan-energi-nasional.html …… diunduh 25/3/2012

MEMBANGUN KETAHANAN ENERGI NASIONAL 

Ketahanan Energi merupakan pilar penting Ketahanan Ekonomi. Bersama Ketahanan Budaya, Ketahanan Sosial dan Ketahanan Politik, maka Ketahanan Ekonomi merupakan unsur utama Ketahanan Nasional. Untuk itu Rapat Paripurna Kabinet tanggal 7 April 2008 yang dipimpin Presiden Susilo Bambang Yudhoyono secara khusus membahas Sistem Ketahanan Energi.

Sistem Ketahanan Energi sangat penting bagi sebuah negara seperti Indonesia. Selain sebagai kemampuan merespon dinamika perubahan energi global (eksternal) juga sebagai kemandirian

untuk menjamin ketersediaan energi (internal). Sistem Ketahanan Energi mengacu pada Kebijakan Pengembangan Energi sesuai Undang-Undang Energi Nomor 30 Tahun 2007, energi

memiliki peran bagi peningkatan Kegiatan Ekonomi dan Ketahanan Nasional.Pemerintah telah mengubah paradigma kebijakan dari Supply Side Policy (SSP) menjadi Demand Side Policy (DSP). Sistem Ketahanan Energi dibangun oleh SSP dan DSP. SSP mengatur Jaminan Pasokan dalam bentuk Eksplorasi-Produksi dan Konservasi (Optimasi)

Produksi. Sedang DSP mendorong Kesadaran Masyarakat untuk melakukan Diversifikasi dan Konservasi (Efisiensi).

SSP dan DSP menjadi landasan kebijakan Harga Energi dalam bentuk Subsidi Langsung yang dilakukan secara bertahap. Kebijakan subsidi bahan bakar minyak (BBM) saat ini sudah

memasuki Tahap V. Pada tahap ini masih ada tiga jenis BBM (Minyak Tanah, Premium dan Minyak Solar) yang sebagian harganya disubsidi. Selanjutnya pada dua tahap lagi subsidi harga

BBM sudah tidak ada lagi.Kebijakan harga energi sesuai mekanisme pasar telah terbukti menekan pengaruh oil shock secara nyata pada negara-negara yang telah menerapkannya. Selain itu juga didukung oleh

kebijakan penerapan pengembangan energi alternatif (diversifikasi) dan efisiensi energi (konservasi).

Saat ini cadangan dan produksi energi Indonesia terdiri Minyak Bumi dengan sumber daya 56,6 miliar barel, cadangan 8,4 miliar barel,

produksi 348 juta barel dan rasio cadangan/produksi 24 tahun. Gas bumi dengan sumber daya 334,5 TSCF, cadangan 165 TSCF, produksi 2,79 TSCF dan rasio cadangan/produksi 59 tahun.

Batubara dengan sumber daya 90,5 miliar ton, cadangan 18,7 miliar ton dan produksi 201 juta ton, sedangkan rasio cadangan/produksi

93 tahun. Coal bed methane (CBM) dengan sumber daya 453 TSCF. Tenaga air 75,67 GW, panas bumi 27 GW, mikro hydro 0,45 GW, biomass 49,81 GW, tenaga surya 4,8 kWh/m2/day, tenaga angin

9,29 GW dan uranium 3 GW untuk 11 tahun (hanya di Kalan, Kalimantan Barat).

Page 137: Kompendium Ketahanan Energi

DEPARTEMEN ENERGI DAN SUMBER DAYA MINERAL REPUBLIK INDONESIA

SIARAN PERS NOMOR : 24/HUMAS DESDM/2008Tanggal : April 2008

Sumber: http://esdm.go.id/siaran-pers/55-siaran-pers/1687-membangun-ketahanan-energi-nasional.html …… diunduh 25/3/2012

MEMBANGUN KETAHANAN ENERGI NASIONAL 

Saat ini rasio elektrifikasi telah mencapai 64 %. Upaya pemenuhan kebutuhan listrik dilakukan baik dari sisi penyediaan maupun sisi kebutuhan. Program jangka pendek sisi penyediaan

antara lain dengan mempercepat pergantian HSD menjadi MFO, mempercepat pasokan gas untuk PLTGU Muara Tawar, menurunkan susut jaringan dan meningkatkan efisiensi

administrasi, penambahan kapasitas baru, pemanfaatan captive power, optimasi kapasitas terpasang dan penyelesaian dan peningkatan jaringan interkoneksi.

Sedang dari sisi kebutuhan berupa pengendalian pertumbuhan beban terutama beban puncak, penerapan tarif non subsidi untuk pelanggan mampu, sambungan baru dilakukan selektif, sosialisasi penghematan penggunaan listrik dan pemberian bantuan Lampu Hemat Energi

(LHE) sebanyak 50 juta untuk potensi penurunan beban puncak 1.500 MW serta penurunan losses dengan peningkatan penertiban pencurian listrik.

Adapun program jangka menengah dan panjang berupa diversifikasi penggunaan energi primer BBM ke non BBM untuk proyek percepatan PLTU 10 ribu MW. Serta peningkatan partisipasi

swasta atau Independent Power Producers (IPP) dalam penyediaan tenaga listrik.Untuk penyediaan atau ketahanan stok BBM pada tahun 2008: Premium adalah 17 hari (17,2

juta KiloLiter-KL), Kerosene 21 hari (7,6 juta KL), Solar & Biosolar 18 hari (22,1 juta KL), Pertamax 35 hari (0,6 juta KL), Pertamax Plus 100 hari (0,2 juta KL), IDO 20 hari (0,5 juta KL)

dan MFO 20 hari (5,3 juta KL) dan LPG 6,75 hari (25,118 Metrik Ton).

Dari sisi pemenuhan BBM, saat ini pemerintah telah memberikan ijin usaha pembangunan kilang. Ijin usaha pengolahan diberikan kepada PT Trans Pacific

Petrochemical (100 ribu BOPD). Sedangkan ijin usaha sementara diberikan kepada PT Intanjaya Agromegah Abadi, PT Petroref Utama Nusantara, PT Kilang Muba, PT

Elnusa, PT Situbondo Refinery Industri dan PT Tri Wahana Universal. Total kapasitas 2.006 ribu BOPD.

Sedang kan sisi kebutuhan untuk jangka pendek dilakukan konversi minyak tanah ke LPG, memberlakukan sistem subsidi tertutup dengan kartu kendali untuk minyak

tanah, penggunaan smart card untuk Premium dan Solar. Selain itu juga mengembangkan Bahan Bakar Nabati, pemanfaatan gas untuk transportasi dan

pemanfaatan panas bumi dan energi baru dan terbarukan. Adapun jangka menengah/panjang berupa gasifikasi batubara dan pemanfaatan coal bed

methane.

Kepala Biro Hukum dan Humas

Page 138: Kompendium Ketahanan Energi

PANEN ENERGI SURYA

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

POTENSI ENERGI SURYA

All Energy is Solar Energy, Let’s harvest it directly, use itfor providing comfort via Energy, Hot Water, Heating, etc.

Enough solar energy hits the earth in one hour to power the worldfor a year! This is a fantastic renewable, clean resource, how

can we use it for our advantage.

PANEL ENERGI SURYA

1. Type - mono, poly, amorphous, ribbon, bipv, concentrated, silicon or copper based

2. Function to generate POWER - move electrons3. Density - wattage per square foot4. Efficiency - conversion of light to energy5. Durability - withstand the elements6. Physical properties, heat tolerance, mounting, wiring, grounding, spacing7. Appearance, form and function, dual use deployment8. Manufacturer and availability, warranty, useful life

Page 139: Kompendium Ketahanan Energi

PANEN ENERGI SURYA

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

PENGGUNAAN ENERGI RUMAH

TIPS HEMAT ENERGI LISTRIK1. Matikan lampu penerangan pada ruangan yang mendapatkan penerangan sinar

matahari2. Penerangan dinyalakan seperlunya termasuk AC dan air mancur3. Penerangan jalan agar dipadamkan pukul 06.00 dan dihidupkan saat magrib4. Pada gedung yang menggunakan AC agar membatasi jam operasi dari pukul

06.00 s/d 16.00 (kecualai ada kegiatan yang harus lembur)5. Pada gedung yang menggunakan lift agar membatasi jam operasional lift dari

pukul 06.00 s/d 16.00 apabila terpaksa untuk kegiatan lembur agar membatasi jumlah lift yang di operasikan

6. Upayakan semaksimal mungkin seluruh kegiatan dan pekerjaan selesai pada jam kerja agar dapat mengurangi jam lembur secara siknifikan

7. Batasi pemasangan baru AC split di tiap ruangan apabila telah tersedia AC sentral

8. Piket/Perwira jaga, agar melakukan pengawasan secara ketat terhadap penggunaan listrik di satker masing-masing khususnya setelah jam kerja.(sumber: http://koarmabar.tnial.mil.id/document/read/276/tips-hemat-energi-listrik)

Page 140: Kompendium Ketahanan Energi

HARVESTING SOLAR ENERGY

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

Solar & Wind Hybrid Systems

Panel Surya - Pembangkit Listrik Tenaga Surya

Membangkitkan listrik sendiri di rumah?Hal ini dimungkinkan dengan pemasangan panel surya / solar cell, panel surya - solar cell mengubah sinar matahari menjadi listrik. Listrik tersebut disimpan di dalam aki, aki menghidupkan lampu.

Panel Surya Pembangkit Listrik Tenaga Surya

Page 141: Kompendium Ketahanan Energi

PANEN ENERGI SURYA

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

KOMPONEN SISTEM ENERGI SURYA1. Solar Panels2. Charge Controllersfusing, wiring3. Batteries4. Inverters5. Mounting6. Wiring, grounding7. Monitoring

Page 142: Kompendium Ketahanan Energi

HARVESTING SOLAR ENERGY

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

Grid tie Solar Systems1. Easiest type of solar electric system, no batteries or maintenance

required2. Solar Panels, mounting, wiring/fusing, inverters DC to AC, 95%

efficient3. Sense grid, if it goes down your system goes down4. Cost 7 to 10.00 per watt, minimum size of 1250 watts for around

$12,000 installed5. Tax Credit of $2000 for homeowners, 30% for business owners-

though 2008

PEMANAS AIR ENERGI SURYA

1. Solar water heating and air heating is the most effective and economical use of solar energy.

2. Drainback Solar Hot water systems provide 85% of your hot water3. Systems start at $2500 and typically cost $3500 to $4500 installed.4. Savings of $30 to $75 per month, Last 15 to 20 years.5. The Sun is an effective source of heat for water for home, pools, hot tubs

and process heat6. $2000 tax credit through 2008 for homeowners, 30% unlimited tax credit

for business

Page 143: Kompendium Ketahanan Energi

PANEN ENERGI SURYA

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

PEMANAS AIR ENERGI SURYA

Page 144: Kompendium Ketahanan Energi

PANEN ENERGI SURYA

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

PENGHANGAT KOLAM RENANG ENERGI SURYA

1. Solar Pool heating extends swimming season by 2 to 3 months2. black polyethelene panels use sun energy directly to heat pool

water3. can raise temp 10 to 14 degrees4. 50 to 70% of pool surface area in panels5. facing south, using pool pump, automatic or manual6. very effective, cost $3500 to $5000

PENGHANGAT UIDARA ENERGI SURYA

1. Very effective heating source2. Uses solar energy directly to heat home3. Black metal box that you blow air through4. Heat in day, insulate well to preserve it5. Can be a home made appliance6. Build into the home walls via tromble wall or thermal windows

facing south7. Use the sun when you need it and keep it out when you don’t

Page 145: Kompendium Ketahanan Energi

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

Penghangan Udara Energi Surya

PANEN ENERGI SURYA

Page 146: Kompendium Ketahanan Energi

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

POMPA AIR ENERGI SURYA

1. High efficiency pumps can replace AC pumps which are energy hogs DC is more efficient

2. Pump direct, may need a battery system for 24 hour pumping,3. ideal for livestock, ponds, aerators, cabins, homes4. Also solar pool pumps to replace AC pool pumps which are also

energy hogs5. Tax Credits, Grants for rural properties

Top Ten Energy Smart Products

1. Solar Hot Water for lasting energy savings2. Energy Efficient Lighting3. Radiant Barrier- Reduce attic temperature4. Attic Fans5. Skylights-Tubular and traditional6. Solar Air Heaters7. Plug strips-timers/Programmable Thermostat8. Insulation/Windows9. Passive Design to optimize the solar contribution10. Thermal Shades to block unwanted sunlight

PANEN ENERGI SURYA

Page 147: Kompendium Ketahanan Energi

PANEN ENERGI SURYA

Sumber: John Miggins, Harvest Solar Energy “renewable solutions to everyday needs” www.harvestsolar.net…… diunduh 25/3/2012

Putting it all together1. Solar Energy is easy to harvest, directly, indirectly and make

environmental, economic and sustainable sense2. Grid tie is easiest- $7 to $8.00 per watt3. Battery based systems are also available for back-up or remote

applications, gate openers, attic fans, pumping4. What you spend will insulate you from higher energy bills in the future

and make a statement for renewable energy now and in the future5. Aesthetics, Function, Color, simplicity, we can do it all.6. Go Solar now and REAP the benefits for 25 years

Harvest Solar $2000 Tax Credit Program1. Energy Audit to determine needs2. Solar Hot Water Heater or Solar Electric System3. Attic Fans4. Radiant Barrier-Insulation for attic5. Skylights for lighting and venting6. Programmable Thermostats7. Light Bulb Package8. Whole House fan

Page 148: Kompendium Ketahanan Energi

EFFISIENSI PENGGUNAAN ENERGI

1. Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 86.2. Invest in clean technology says IEA report3. The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy

Sumber: …… diunduh 25/3/2012

Efficient energy use, sometimes simply called energy efficiency, is using less energy to provide the same level of energy service. An example would be insulating a home to use

less heating and cooling energy to achieve the same temperature. Another example would be installing fluorescent lights and/or skylights instead of incandescent lights to attain the same level of illumination. Efficient energy use is achieved primarily by means of a more

efficient technology or process rather than by changes in individual behaviour.[1]

Energy efficient buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third, and help controlling global emissions of

greenhouse gases, according to the International Energy Agency.[2]

Energy efficiency and renewable energy are said to be the “twin pillars” of sustainable energy policy.[3]

However, there are many problems in calculating energy usage, and even bigger problems when discussing environmental impact.

There are various different motivations to improve energy efficiency. Reducing energy use reduces energy costs and may

result in a financial cost saving to consumers if the energy savings offset any additional costs of implementing an energy efficient

technology. Reducing energy use is also seen as a key solution to the problem

of reducing emissions. According to the International Energy Agency, improved energy efficiency in

buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third, and help control

global emissions of greenhouse gases.[3]

Page 149: Kompendium Ketahanan Energi

5. Energy-Efficient Buildings: Using whole building design to reduce energy consumption in homes and offices

Sumber: …… diunduh 25/3/2012

Energy efficient appliancesModern energy-efficient appliances, such as refrigerators, freezers, ovens, stoves,

dishwashers, and clothes washers and dryers, use significantly less energy than older appliances. Current energy efficient refrigerators, for example, use 40 percent less energy than conventional models did in 2001. Modern power management systems also reduce

energy usage by idle appliances by turning them off or putting them into a low-energy mode after a certain time. Many countries identify energy-efficient appliances using an

Energy Star label.[5]

Energy efficiency and renewable energy are said to be the “twin pillars” of a sustainable energy policy. Both strategies must be developed concurrently in

order to stabilize and reduce carbon dioxide emissions. Efficient energy use is essential to slowing the energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If

energy use grows too rapidly, renewable energy development will chase a receding target. Likewise, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total carbon emissions; a

reduction in the carbon content of energy sources is also needed. A sustainable energy economy thus requires major commitments to both

efficiency and renewables

(http://en.wikipedia.org/wiki/Efficient_energy_use)

EFISIENSI PENGGUNAAN ENERGI

EFFISIENSI PENGGUNAAN ENERGI

Page 150: Kompendium Ketahanan Energi

5. Energy-Efficient Buildings: Using whole building design to reduce energy consumption in homes and offices6. CFL savings calculator, Green Energy Efficient Homes

Sumber: …… diunduh 25/3/2012

Energy efficient building designA building’s location and surroundings play a key role in regulating its temperature and

illumination. For example, trees, landscaping, and hills can provide shade and blue air. In cooler climates, designing buildings with an east-west orientation to increase the number of south-facing windows minimizes energy use, by maximizing passive solar heating. Tight

building design, including energy-efficient windows, well-sealed doors, and additional thermal insulation of walls, basement slabs, and foundations can reduce heat loss by 25 to

50 percent.Dark roofs may become up to 70°F hotter than the most reflective white surfaces, and

they transmit some of this additional heat inside the building. US Studies have shown that lightly colored roofs use 40 percent less energy for cooling than buildings with darker roofs. White roof systems save more energy in sunnier climates. Advanced electronic

heating and cooling systems can moderate energy consumption and improve the comfort of people in the building.[5]

Proper placement of windows and skylights and use of architectural features that reflect light into a building, can reduce the need for artificial lighting. Compact fluorescent lights

use two-thirds less energy and may last 6 to 10 times longer than incandescent light bulbs. Newer fluorescent lights produce a natural light, and in most applications they are cost

effective, despite their higher initial cost, with payback periods as low as a few months[6]. However, those ideals may not always be achieved in practice, because lifetime depends

on the frequency of usage. In addition, CFLs emit UV light which can harm paintings, textiles and pigments. They also respond more slowly when switched on, so may

represent a safety hazard in halls and stairways for example. While incandescent bulbs do contribute to the space heating of a building, the heat that they produce, being electrically

produced, is probably more expensive and certainly more carbon-intensive than, for example, gas-fired heating.

Furthermore, any heat that such bulbs produce during the summer is likely to be unwanted and may lead to yet more electrical demand for space cooling. Increased use of natural and task lighting have been shown by one study to increase productivity in schools

and offices.[5] However, fluorescent lighting can be harsh, and the flicker can induce migraine, so caution is needed when replacing incandescent lights. Modern compact

fluorescent lighting can produce a warmer and less harsh light.

EFFISIENSI PENGGUNAAN ENERGI

Page 151: Kompendium Ketahanan Energi

EFFICIENT ENERGY USE

7. Creating Energy Efficient Offices - Electrical Contractor Fit-out ArticleSumber: …… diunduh 25/3/2012

Energy efficient building designEffecive energy-efficient building design can include the use of low cost Passive Infra Reds (PIRs) to switch-off lighting when areas are unnoccupied such as toilets, corridors or even office areas out-of-hours. In addition, lux levels can be monitored using daylight sensors

linked to the building's lighting scheme to switch on/off or dim the lighting to pre-defined levels to take into account the natural light and thus reduce consumption.

Building Management Systems (BMS) link all of this together in one centralised computer to control the whole building's lighting and

power requirements.

Smart meters are slowly being adopted by the commerial sector to highlight to staff and for internal monitoring purposes the

building's energy usage in a dynamic presentable format. The use of Power Quality Analysers can be introduced into an existing

building to assess usage, harmonic distortion, peaks, swells and interruptions amongst others to ultimately make the building more

energy-efficient.

Page 152: Kompendium Ketahanan Energi

8. Industrial Energy Efficiency: Using new technologies to reduce energy use in industry and manufacturing

Sumber: …… diunduh 25/3/2012

Energy efficiency for industryIn industry, when electricity is generated, the heat which is produced as a by-product can

be captured and used for process steam, heating or other industrial purposes. Conventional electricity generation is about 30 percent efficient, whereas combined heat

and power (also called cogeneration) converts up to 90 percent of the fuel into usable energy.

Advanced boilers and furnaces can operate at higher temperatures while burning less fuel. These technologies are more efficient and produce fewer pollutants.

Over 45 percent of the fuel used by US manufacturers is burnt to make steam. The typical industrial facility can reduce this energy usage 20 percent (according to the

US Department of Energy) by insulating steam and condensate return lines, stopping steam leakage, and maintaining steam traps.

Electric motors usually run on a constant flow of energy, but an adjustable speed drive can vary the motor’s energy output to match the load. This achieves energy savings ranging

from 3 to 60 percent, depending on how the motor is used. Motor coils made of superconducting materials can also reduce energy losses. Motors may also benefit from

voltage optimisation.

Many industries use compressed air for sand blasting, painting, or other tools. According to the US Department of

Energy, optimizing compressed air systems by installing variable speed drives, along with preventive maintenance

to detect and fix air leaks, can improve energy efficiency 20 to 50 percent.

EFFISIENSI PENGGUNAAN ENERGI

Page 153: Kompendium Ketahanan Energi

EFFICIENT ENERGY USE

9. Automotive Efficiency: Using technology to reduce energy use in passenger vehicles and light trucks10. Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 86.

Sumber: …… diunduh 25/3/2012

ENERGY EFFICIENT VEHICLESFurther information: Automotive market and Alternative propulsion

Using improved aerodynamics to minimize drag can increase vehicle fuel efficiency.Reducing vehicle weight can significantly also improve fuel economy.

More advanced tires, with decreased tire to road friction and rolling resistance, can save gasoline. Fuel economy can be improved over three percent by keeping tires inflated to

the correct pressure. Replacing a clogged air filter can improve a cars fuel consumption by as much as 10 percent.

Another growing trend in automotive efficiency is the rise of hybrid and electric cars. Hybrids, like the Toyota Prius, use regenerative braking to recapture energy that would

dissipate in normal cars; the effect is especially pronounced in city driving. plug-in hybrids also have electrical plugs, which makes it possible to drive for limited distances without

burning any gasoline; in this case, energy efficiency is dictated by whatever process (coal-burning, hydroelectric, etc) created the power. Plug-ins can typically drive for around 40

mile purely on electricity without recharging; if the battery runs low, a gas engine kicks in allowing for extended range. Finally, all-electric cars are also growing in popularity; the Tesla Roadster sports car is the only high-performance all-electric car currently on the

market, and others are in design.

. Fuel efficient vehicles may reach twice the fuel efficiency of the average automobile. Cutting-edge designs, such as

the diesel Mercedes-Benz Bionic concept vehicle have achieved a fuel efficiency as high as 84 miles per US gallon

(2.8 L/100 km; 101 mpg-imp), four times the current conventional automotive average.

Page 154: Kompendium Ketahanan Energi

11. Diesendorf, Mark (2007). Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 87.

Sumber: …… diunduh 25/3/2012

ENERGY CONSERVATIONEnergy conservation is broader than energy efficiency in that it encompasses

using less energy to achieve a lesser energy service, for example through behavioural change, as well as encompassing energy efficiency. Examples of

conservation without efficiency improvements would be heating a room less in winter, driving less, or working in a less brightly lit room. As with other

definitions, the boundary between efficient energy use and energy conservation can be fuzzy, but both are important in environmental and

economic terms. This is especially the case when actions are directed at the saving of fossil fuels.

adalah tindakan mengurangi jumlah penggunaan energi. Penghematan energi dapat dicapai dengan penggunaan energi secara efisien dimana manfaat yang sama

diperoleh dengan menggunakan energi lebih sedikit, ataupun dengan mengurangi konsumsi dan kegiatan yang menggunakan energi. Penghematan energi dapat

menyebabkan berkurangnya biaya, serta meningkatnya nilai lingkungan, keamanan negara, keamanan pribadi, serta kenyamanan. Organisasi-organisasi serta

perseorangan dapat menghemat biaya dengan melakukan penghematan energi, sedangkan pengguna komersial dan industri dapat meningkatkan efisiensi dan

keuntungan dengan melakukan penghemaan energi.Penghematan energi adalah unsur yang penting dari sebuah kebijakan energi. Penghematan energi menurunkan konsumsi energi dan permintaan energi per

kapita, sehingga dapat menutup meningkatnya kebutuhan energi akibat pertumbuhan populasi. Hal ini mengurangi naiknya biaya energi, dan dapat mengurangi kebutuhan pembangkit energi atau impor energi. Berkurangnya

permintaan energi dapat memberikan fleksibilitas dalam memilih metode produksi energi.

Penghematan energi atau konservasi energi

EFFISIENSI PENGGUNAAN ENERGI

Page 155: Kompendium Ketahanan Energi

12. The Twin Pillars of Sustainable Energy: Synergies between Energy Efficiency and Renewable Energy Technology and Policy

(American Council for an Energy-Efficient Economy)Sumber: …… diunduh 25/3/2012

Sustainable energyEnergy efficiency and renewable energy are said to be the “twin pillars” of a

sustainable energy policy. Both strategies must be developed concurrently in order to stabilize and reduce carbon dioxide emissions in our lifetimes. Efficient energy use is

essential to slowing the energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too rapidly, renewable energy

development will chase a receding target. Likewise, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total carbon emissions; a

reduction in the carbon content of energy sources is also needed. A sustainable energy economy thus requires major commitments to both efficiency and renewables.

Energy conversion efficiency is the ratio between the useful output of an energy conversion machine and the input, in energy terms. The useful

output may be electric power, mechanical work, or heat.Energy conversion efficiency is not defined uniquely, but instead depends

on the usefulness of the output. All or part of the heat produced from burning a fuel may become rejected waste heat if, for example, work is the

desired output from a thermodynamic cycle.Generally, energy conversion efficiency is a dimensionless number

between 0 and 1.0, or 0 to 100%. Efficiencies may not exceed 100%, e.g., for a perpetual motion machine. However, other effectiveness measures

that can exceed 1.0 are used for heat pumps and other devices that move heat rather than convert it.

EFFISIENSI PENGGUNAAN ENERGI

Page 156: Kompendium Ketahanan Energi

KONSERVASI ENERGI

Sumber: …… diunduh 25/3/2012

Energy conservation is the practice of decreasing the quantity of energy used. It may be achieved through efficient energy use, in which case energy use is decreased while achieving a similar outcome, or by reduced consumption of energy services. Energy

conservation may result in increase of financial capital, environmental value, national security, personal security, and human comfort. Individuals and organizations that are direct consumers of energy may want to conserve energy in order to reduce

energy costs and promote economic security. Industrial and commercial users may want to increase efficiency and thus maximize profit.

Electrical energy conservation is an important element of energy policy. Energy conservation reduces the energy consumption and energy demand per capita, and thus

offsets the growth in energy supply needed to keep up with population growth. This reduces the rise in energy costs, and can reduce the need for new power plants, and energy imports. The reduced energy demand can provide more flexibility in choosing

the most preferred methods of energy production.

By reducing emissions, energy conservation is an important part of lessening climate change. Energy conservation

facilitates the replacement of non-renewable resources with renewable energy.

Energy conservation is often the most economical solution to energy shortages, and is a more environmentally benign

alternative to increased energy production.

Page 157: Kompendium Ketahanan Energi

KONSERVASI ENERGI

Sumber: …… diunduh 25/3/2012

TransportationThe transportation includes all vehicles used for personal or freight transportation. Of the energy used in this sector, approximately 65% is consumed by gasoline-powered

vehicles, primarily personally owned. Diesel-powered transport (trains, merchant ships, heavy trucks, etc.) consumes about 20%, and air traffic consumes most of the remaining

15%.

Another focus in gasoline conservation is reducing the number of miles driven. An estimated 40% of American automobile use is associated with daily commuting. Many

urban areas offer subsidized public transportation to reduce commuting traffic, and encourage carpooling by providing designated high-occupancy vehicle lanes and lower

tolls for cars with multiple riders. In recent years telecommuting has also become a viable alternative to commuting for some jobs, but in 2003 only 3.5% of workers were telecommuters. Ironically, hundreds of thousands of American and European workers

have been replaced by workers in Asia who telecommute from thousands of miles away.

Fuel economy-maximizing behaviors also help reduce fuel consumption. Among the most effective are moderate (as opposed to aggressive) driving, driving at lower speeds,

using cruise control, and turning off a vehicle's engine at stops rather than idling. A vehicle's gas mileage decreases rapidly highway speeds, normally above 55 miles per hour (though the exact number varies by vehicle). This is because aerodynamic forces

are proportionally related to the square of an object's speed (when the speed is doubled, drag quadruples). According to the U.S. Department of Energy (DOE), as a rule of thumb, each 5 mph (8.0 km/h) you drive over 60 mph (97 km/h) is similar to paying

an additional $0.30 per gallon for gas

The exact speed at which a vehicle achieves it's highest efficiency varies based on the vehicle's drag coefficient, frontal area, surrounding air speed, and the efficiency and

gearing of a vehicle's drive train and transmission.

Page 158: Kompendium Ketahanan Energi

KONSERVASI ENERGI

1. US Dept. of Energy, "Annual Energy Report" (July 2006), Energy Flow diagram2. US Dept. of Energy, "Annual Energy Outlook" (February 2006), Table A2

Sumber: …… diunduh 25/3/2012

Sektor PermukimanThe residential sector refers to all private residences, including single-family homes, apartments,

manufactured homes and dormitories. Energy use in this sector varies significantly across the country, due to regional climate differences and different regulation. On average, about half of the energy used

in U.S. homes is expended on space conditioning (i.e. heating and cooling).The efficiency of furnaces and air conditioners has increased steadily since the energy crises of the

1970s. The 1987 National Appliance Energy Conservation Act authorized the Department of Energy to set minimum efficiency standards for space conditioning equipment and other appliances each year,

based on what is "technologically feasible and economically justified". Beyond these minimum standards, the Environmental Protection Agency awards the Energy Star designation to appliances that

exceed industry efficiency averages by an EPA-specified percentage.

Despite technological improvements, many American lifestyle changes have put higher demands on heating and cooling resources. The average size of homes built in the United States has increased significantly, from 1,500 sq ft (140 m2) in 1970 to 2,300 sq ft (210 m2) in 2005. The single-person

household has become more common, as has central air conditioning: 23% of households had central air conditioning in 1978, that figure rose to 55% by 2001.

As furnace efficiency gets higher, there is limited room for improvement--efficiencies above 85% are now common. However, improving the building envelope through better or more insulation, advanced windows, etc., can allow larger improvements. The passive house approach produces superinsulated buildings that approach zero net energy consumption. Improving the building envelope can also be

cheaper than replacing a furnace or air conditioner.

Even lower cost improvements include weatherization, which is frequently subsidized by utilities or state/federal tax credits, as are programmable thermostats. Consumers have also been urged to adopt

a wider indoor temperature range (e.g. 65 °F (18 °C) in the winter, 80 °F (27 °C) in the summer).

One underutilized, but potentially very powerful means to reduce household energy consumption is to provide real-time feedback to homeowners so they can effectively alter their energy using behavior.

Recently, low cost energy feedback displays, such as The Energy Detective or wattson [1], have become available. A study of a similar device deployed in 500 Ontario homes by Hydro One [2] showed an

average 6.5% drop in total electricity use when compared with a similarly sized control group.

Standby power used by consumer electronics and appliances while they are turned off accounts for an estimated 5 to 10% of household electricity consumption, adding an estimated $3 billion to annual

energy costs in the USA. "In the average home, 75% of the electricity used to power home electronics is consumed while the products are turned off.

Page 159: Kompendium Ketahanan Energi

KONSERVASI ENERGI

4. http://www.nytimes.com/2008/11/09/opinion/09gore.html?ex=1383886800&en=d122cebad6bb8596&ei=5124Sumber: …… diunduh 25/3/2012

. Home energy consumption averagesHome heating systems, 30.7%

Water heating, 13.5%Home cooling systems, 11.5%

Lighting, 10.3%Refrigerators and freezers, 8.2%

Home electronics, 7.2%Clothing and dish washers, 5.6% (includes clothes dryers, does not include hot water)

Cooking, 4.7%Computers, 0.9%

Other, 4.1% (includes small electrics, heating elements, motors, pool and hot tub heaters, outdoor grills, and natural gas outdoor lighting)

Non end-user energy expenditure, 3.3%[4]

Energy usage in some homes may vary widely from these averages. For example, milder regions such as the southern U.S. and Pacific coast of the USA need far less energy for space conditioning than New York City or Chicago. On the other hand, air conditioning

energy use can be quite high in hot-arid regions (Southwest) and hot-humid zones (Southeast) In milder climates such as San Diego, lighting energy may easily consume up

to 40% of total energy. Certain appliances such as a waterbed, hot tub, or pre-1990 refrigerator use significant amounts of electricity. However, recent trends in home

entertainment equipment can make a large difference in household energy use. For instance a 50" LCD television (average on-time= 6 hours a day) may draw 300 Watts less

than a similarly sized plasma system.

In most residences no single appliance dominates, and any conservation efforts must be directed to numerous areas in order to achieve substantial energy savings. However, Ground, Air and Water

Source Heat Pump systems are the more energy efficient, environmentally clean, and cost-effective space conditioning and domestic hot water systems available (Environmental Protection

Agency), and can achieve reductions in energy consumptions of up to 69%.

Page 160: Kompendium Ketahanan Energi

KONSERVASI ENERGI

5. http://www.nytimes.com/2008/11/09/opinion/09gore.html?ex=1383886800&en=d122cebad6bb8596&ei=5124 Sumber: …… diunduh 25/3/2012

Best building practicesCurrent best practices in building design, construction and retrofitting result

in homes that are profoundly more energy conserving than average new homes. This includes insulation and energy-efficient windows and lighting [5].

See Passive house, Superinsulation, Self-sufficient homes, Zero energy building, Earthship, MIT Design Advisor, Energy Conservation

Code for Indian Commercial Buildings.Smart ways to construct homes such that minimal resources are used to

cooling and heating the house in summer and winter respectively can significantly reduce energy costs.

Energy conservation is broader than energy efficiency in including active efforts to decrease energy consumption, for example through behavioural change, in addition to using energy more efficiently. Examples of conservation without

efficiency improvements are heating a room less in winter, using the car less, or enabling energy saving modes on a computer. As with other definitions, the

boundary between efficient energy use and energy conservation can be fuzzy, but both are important in environmental and economic terms. This is especially the case when actions are directed at the saving of fossil fuels. (Diesendorf, Mark,

2007. Greenhouse Solutions with Sustainable Energy, UNSW Press, p. 87.)

Energy conservation is a challenge requiring policy programmes, technological development and behavioral change to go hand in hand. Many energy

intermediary organisations, for example governmental or non-governmental organisations on local, regional, or national level, are working on often publicly

funded programmes or projects to meet this challenge .

KONSERVASI ENERGI

Page 161: Kompendium Ketahanan Energi

KONSERVASI ENERGI

US Dept. of Energy, "Buildings Energy Data Book" (August 2005), sec. 1.3.3Susan L. Burks, Managing your Migraine, Humana Press, New Jersey (1994) ISBN 0-89603-277-9Cambridge Handbook of Psychology, Health and Medicine, edited by Andrew Baum, Robert West, John Weinman, Stanton Newman, Chris McManus, Cambridge University Press (1997) ISBN 0-521-43686-9L. Pijnenburg, M. Camps and G. Jongmans-Liedekerken, Looking closer at assimilation lighting, Venlo, GGD, Noord-Limburg (1991)Igor Knez, Effects of colour of light on nonvisual psychological processes, Journal of Environmental Psychology, Volume 21, Issue 2, June 2001, Pages 201-208

SEKTOR KOMERSIAL

The commercial sector consists of retail stores, offices (business and government), restaurants, schools and other workplaces. Energy in this sector has the same basic end

uses as the residential sector, in slightly different proportions. Space conditioning is again the single biggest consumption area, but it represents only about 30% of the energy use of

commercial buildings. Lighting, at 25%, plays a much larger role than it does in the residential sector. Lighting is also generally the most wasteful component of commercial

use. A number of case studies indicate that more efficient lighting and elimination of over-illumination can reduce lighting energy by approximately fifty percent in many

commercial buildings.Commercial buildings can greatly increase energy efficiency by thoughtful design, with

today's building stock being very poor examples of the potential of systematic (not expensive) energy efficient design. Commercial buildings often have professional

management, allowing centralized control and coordination of energy conservation efforts. As a result, fluorescent lighting (about four times as efficient as incandescent) is

the standard for most commercial space, although it may produce certain adverse health effects.

Potential health concerns can be mitigated by using newer fixtures with electronic ballasts rather than older magenetic ballasts. As most buildings have consistent hours of

operation, programmed thermostats and lighting controls are common. However, too many companies believe that merely having a computer controlled Building automation

system guarantees energy efficiency.

Solar heat loading through standard window designs usually leads to high demand for air conditioning in summer months.

Page 162: Kompendium Ketahanan Energi

KONSERVASI ENERGI

11. California Energy Commission, "California's Water-Energy Relationship" (November 2005), p.8

Sumber: …… diunduh 25/3/2012

SEKTOR INDUSTRIThe industrial sector represents all production and processing of goods, including

manufacturing, construction, farming, water management and mining. Increasing costs have forced energy-intensive industries to make substantial efficiency improvements in the past 30 years. For example, the energy used to produce steel and paper products has been cut 40% in that time frame, while petroleum/aluminum refining and cement production have reduced their usage by about 25%. These reductions are largely the

result of recycling waste material and the use of cogeneration equipment for electricity and heating.

Another example for efficiency improvements is the use of products made of High temperature insulation wool (HTIW) which enables predominantly industrial users to operate thermal treatment plants at temperatures between 800 and 1400°C. In these high-temperature applications, the consumption of primary energy and the associated

CO2 emissions can be reduced by up to 50% compared with old fashioned industrial installations. The application of products made of High temperature insulation Wool is

becoming increasingly important against the background of the currently dramatic rising cost of energy.

The energy required for delivery and treatment of fresh water often constitutes a significant percentage of a region's electricity and natural gas usage (an estimated 20% of California's total energy use is water-related.)

In light of this, some local governments have worked toward a more integrated approach to energy and water conservation efforts.

To conserve energy, some industries have begun using solar panels to heat their water.

Unlike the other sectors, total energy use in the industrial sector has declined in the last decade. While this is partly due to conservation efforts,

it's also a reflection of the growing trend for U.S. companies to move manufacturing operations overseas.

Page 163: Kompendium Ketahanan Energi

KONSERVASI ENERGI

12. Wackernagel, Mathis and William Rees, 1997, "Perpetual and structural barriers to investing in natural capital: economics from an ecological footprint perspective." Ecological Economics, Vol.20 No.3 p3-24.

13. Lumina Technologies Inc., Santa Rosa, Ca., Survey of 156 California commercial buildings energy use, August, 1996

14. Best Buy Optimas Award Winner for 200715. European Commission of the Institute for Environment and Sustainability, "Electricity Consumption and

Efficiency Trends in the Enlarged European Union http://re.jrc.ec.europa.eu/energyefficiency/pdf/EnEff%20Report%202006.pdf]", 2006

16. The Difficulties of Energy Efficiency. "The Elusive Negawatt http://www.economist.com/displaystory.cfm?story_id=11326549]", 2008

Sumber: …… diunduh 25/3/2012

ISU-ISU KONSERVASI ENERGICritics and advocates of some forms of energy conservation make the following

arguments:Standard economic theory suggests that technological improvements that increase

energy efficiency will tend to increase, rather than reduce energy use. This is called the Jevons Paradox and it is said to occur in two ways. Firstly, increased energy efficiency

makes the use of energy relatively cheaper, thus encouraging increased use. Secondly, increased energy efficiency leads to increased economic growth, which pulls up energy

use in the whole economy. This does not imply that increased fuel efficiency is worthless. Increased fuel efficiency enables greater production and a higher quality of

life (Wackernagel, Mathis and William Rees, 1997).Some retailers argue that bright lighting stimulates purchasing. Health studies have

demonstrated that headache, stress, blood pressure, fatigue and worker error all generally increase with the common over-illumination present in many workplace and

retail settings (Davis, 2001), (Bain, 1997). It has been shown that natural daylighting increases productivity levels of workers, while reducing energy consumption (Lumina

Technologies Inc., 1996).The use of telecommuting by major corporations is a significant opportunity to conserve

energy, as many Americans now work in service jobs that enable them to work from home instead of commuting to work each day (Best Buy Optimas Award Winner for

2007). Electric motors consume more than 60% of all electrical energy generated and are

responsible for the loss of 10 to 20% of all electricity converted into mechanical energy (European Commission of the Institute for Environment and Sustainability, 2006).

Consumers are often poorly informed of the savings of energy efficient products. The research one must put into conserving energy often is too time consuming and costly

when there are cheaper products and technology available using today's fossil fuels (The Difficulties of Energy Efficiency, 2008).