knt linier eq

Upload: nadisel

Post on 03-Apr-2018

234 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 KNT Linier Eq

    1/114

    KOMPUTASI NUMERIK

    TERAPAN (KNT) - TK-091356

    Sistem Persamaan Linear

  • 7/27/2019 KNT Linier Eq

    2/114

    Sistem Persamaan Linier

    Sistem persamaan aljabar linier sering timbul pada

    perumusan persoalan di berbagai bidang.

    Contoh bidang teknik kimia : Stok bahan untuk suatu industri kimia,

    Neraca massa pada tiap-tiap plate (stage) kolom

    absorpsi,

    Optimasi proses-proses

    Penyelesaian persamaan differensial parsial, dan banyak

    lagi pemakaian yang lain

  • 7/27/2019 KNT Linier Eq

    3/114

    Stok bahan untuk suatu industri kimia,

    Neraca massa pada tiap-tiap plate (stage) kolom

    absorpsi,

    Optimasi proses-proses

    Penyelesaian persamaan differensial parsial, dan banyak

    lagi pemakaian yang lain

  • 7/27/2019 KNT Linier Eq

    4/114

    Sistem Persamaan Linier

    Pada kuliah sebelumnya kita fokus pada

    persoalan mencari nilai x yang memenuhi

    persamaan tunggal f(x) = 0

    Sekarang kita akan membahas kasus

    penentuan nilai-nilai x1, x2, .....xn, yang

    secara simultan memenuhi suatu setpersamaan linier

  • 7/27/2019 KNT Linier Eq

    5/114

    Sistem Persamaan Linier

    Persamaan simultanf1(x1, x2, .....xn) = 0

    f2(x1, x2, .....xn) = 0

    .............f3(x1, x2, .....xn) = 0

    Set Persamaan Linier

    a11x1 + a12x2 +...... a1nxn =c1

    a21x1 + a22x2 +...... a2nxn =c2..........

    an1x1 + an2x2 +...... annxn =cn

  • 7/27/2019 KNT Linier Eq

    6/114

    Matrix

    Set elemen horizontal disebut baris (row)

    Set elemen vertikal disebut kolom (column)

    Indeks pertama menunjukan nomor baris

    Indeks kedua menunjukan nomor kolom

    A

    a a a a

    a a a a

    a a a a

    n

    n

    m m m mn

    11 12 13 1

    21 22 23 2

    1 2 3

    ...

    ...

    . . . ....

  • 7/27/2019 KNT Linier Eq

    7/114

    mnmmm

    n

    n

    aaaa

    aaaa

    aaaa

    A

    .......

    ...

    ...

    321

    2232221

    1131211

    Matrix memiliki m baris dan n kolom.

    Disebut matrix dimensi m cross n (m x n)

    note

    subscript

    Matrix

  • 7/27/2019 KNT Linier Eq

    8/114

    A

    a a a a

    a a a a

    a a a a

    n

    n

    m m m mn

    11 12 13 1

    21 22 23 2

    1 2 3

    ...

    ...

    . . . .

    ...

    row 2

    column 3

    Catatan skema yangkonsisten dengan

    subskrip yang

    menunjukkan baris,

    kolom

    Matrix

  • 7/27/2019 KNT Linier Eq

    9/114

    Vektor baris : m = 1

    Vektor kolom : n=1 Matrix square : m = n

    B b b bn 1 2 .......

    C

    c

    c

    cm

    1

    2

    .

    .

    Aa a a

    a a a

    a a a

    11 12 13

    21 22 23

    31 32 33

    Matrix

  • 7/27/2019 KNT Linier Eq

    10/114

    Aa a a

    a a a

    a a a

    11 12 13

    21 22 23

    31 32 33

    Matrix dengan diagonal terdiri dari elemen-elemen :a11 a22 a33

    Matrix simetris

    Matrix diagonal

    Matrix identitas (identity)

    Matrix segitiga atas (upper triangular)

    Matrix segitiga bawah (lower triangular)

    Banded matrix

    upper

    lowerbandwitdth

    elemen diagonal 1 dan nol yang lain

    Matrix

  • 7/27/2019 KNT Linier Eq

    11/114

    Matrix Simetris

    A

    5 1 21 3 7

    2 7 8

    aij = aji untuk semua i danj

  • 7/27/2019 KNT Linier Eq

    12/114

    Matrix Diagonal

    A

    a

    a

    a

    a

    11

    22

    33

    44

    0 0 0

    0 0 0

    0 0 0

    0 0 0

    Square matrix dengan semua elemen diluar

    main diagonal adalah zero

  • 7/27/2019 KNT Linier Eq

    13/114

    Matrix Identity

    A

    1 0 0 0

    0 1 0 0

    0 0 1 0

    0 0 0 1

    Simbol [I] digunakan untuk menunjukan matrix identitas.

    Matrix diagonal semua elemen main diagonal adalah 1 dan

    elemen-elemen yang lain bernilai zero

  • 7/27/2019 KNT Linier Eq

    14/114

    Upper Triangle Matrix

    Aa a a

    a a

    a

    11 12 13

    22 23

    33

    0

    0 0

    Elemen-elemen dibawah main diagonal adalah zero

  • 7/27/2019 KNT Linier Eq

    15/114

    Lower Triangular Matrix

    A

    5 0 0

    1 3 0

    2 7 8

    Semua elemen diatas main diagonal adalah

    zero

  • 7/27/2019 KNT Linier Eq

    16/114

    Banded Matrix

    Aa aa a a

    a a a

    a a

    11 12

    21 22 23

    32 33 34

    43 44

    0 00

    0

    0 0

    Semua elemen adalah zero kecuali elemen-elemen

    band yang berpusat pada main diagonal

  • 7/27/2019 KNT Linier Eq

    17/114

    Aturan Operasi Matrix

    Penjumlahan/Pengurangan

    aij + bij = cij

    Penjumlahan/Pengurangan : komutatif

    [A] + [B] = [B] + [A]

    Penjumlahan/Pengurangan : asosiatif

    [A] + ([B]+[C]) = ([A] +[B]) + [C]

  • 7/27/2019 KNT Linier Eq

    18/114

    Aturan Operasi Matrix

    Perkalian matrix [A] dgn skalar g sama denganperkalian setiap elemen [A] dengan g

    B g A

    ga ga ga

    ga ga ga

    ga ga ga

    n

    n

    m m mn

    11 12 1

    21 22 2

    1 2

    . . .

    . . .

    . . . . . .

    . . . . . .

    . . . . . .

    . . .

  • 7/27/2019 KNT Linier Eq

    19/114

    Aturan Operasi Matrix

    Perkalian dua buah matrix dinyatakan sbg

    [C] = [A][B]

    n = dimensi kolom [A]

    n = dimensi baris [B]

    c a bij ik kjk

    N

    1

    Harus sama

    Syarat :

  • 7/27/2019 KNT Linier Eq

    20/114

    Cara sederhana untuk cek apakah

    perkalian matrix bisa atau tidak

    [A] m x n [B] n x k = [C] m x k

    Dimensi interior

    harus sama

    Dimensi eksterior sesuai dengan

    dimensi matrix yang dihasilkan

  • 7/27/2019 KNT Linier Eq

    21/114

    Perkalian Matrix

    Perkalian matriks bersifat asosiatif

    ([A][B])[C] = [A]([B][C])

    Perkalian matriks bersifat distributif([A] + [B])[C] = [A][C] + [B][C]

    Perkalian umumnya tidak komutatif

    [A][B] [B][A]

  • 7/27/2019 KNT Linier Eq

    22/114

    Matrix Inverse [A]

    IAAAA 11

  • 7/27/2019 KNT Linier Eq

    23/114

    Transpose [A] :

    A

    a a a

    a a a

    a a a

    t

    m

    m

    n n mn

    11 21 1

    12 22 2

    1 2

    . . .

    . . .

    . . . . . .

    . . . . . .

    . . . . . .

    . . .

    Refleksi A thd main diagonal

    Baris A menjadi kolom AT

    Kolom A menjadibaris A

    T

    Matrix : Transpose [A]

    http://en.wikipedia.org/wiki/Main_diagonalhttp://en.wikipedia.org/wiki/Main_diagonal
  • 7/27/2019 KNT Linier Eq

    24/114

    Determinants

    Ditulis sebagai det A or |A|

    Untuk matrix 2 x 2

    bcaddc

    ba

  • 7/27/2019 KNT Linier Eq

    25/114

    Determinants

    Ada beberapa skema yang digunakan untuk menghitung

    determinant suatu matrix

    gunakan minordan cofactors matrix

    Minor : minor dari sebuah entry aij adalah determinant dari

    submatrix yg diperoleh penghapusan baris ke-i dan kolom ke-j

    Cofactor: cofactor dari entry aijdari matrix A (n x n) adalah

    perkalian (-1)i+j dan minor dari aij

  • 7/27/2019 KNT Linier Eq

    26/114

    minor of aa a aa a a

    a a a

    32

    11 12 13

    21 22 23

    31 32 33

    Minor : minor dari sebuah entry aij adalah determinant dari

    submatrix yg diperoleh penghapusan baris ke-i dan kolom ke-j

    Contoh : minor dari a32untuk matrix 3x3 :

    Untuk elemen

    a32 baris ke-iadalah baris 3

  • 7/27/2019 KNT Linier Eq

    27/114

    minor of a

    a a a

    a a a

    a a a

    32

    11 12 13

    21 22 23

    31 32 33

    Untuk elemen a32 kolom ke-j adalah kolom 2

    Minor : minor dari sebuah entry aij adalah determinant dari

    submatrix yg diperoleh penghapusan baris ke-i dan kolom ke-j

    Contoh : minor dari a32untuk matrix 3x3 :

  • 7/27/2019 KNT Linier Eq

    28/114

    minor of a

    a a a

    a a a

    a a a

    32

    11 12 13

    21 22 23

    31 32 33

    minor of a

    a a a

    a a a

    a a a

    a a

    a aa a a a32

    11 12 13

    21 22 23

    31 32 33

    11 13

    21 23

    11 23 13 21

    Minor : minor dari sebuah entry aij adalah determinant dari

    submatrix yg diperoleh penghapusan baris ke-i dan kolom ke-j

    Contoh : minor dari a32untuk matrix 3x3 :

  • 7/27/2019 KNT Linier Eq

    29/114

  • 7/27/2019 KNT Linier Eq

    30/114

    minor of aa a aa a a

    a a a

    a a

    a aa a a a31

    11 12 13

    21 22 23

    31 32 33

    12 13

    22 23

    12 23 22 13

    Cofactor : Aij, cofactor dari entry aij dari matrix A (n x n) adalah

    perkalian dari (-1)i+j dan minoraij

    Misal hitung A31untuk matrix 3x3

    Pertama hitung minor a31

  • 7/27/2019 KNT Linier Eq

    31/114

    A a a a a313 1

    12 23 22 131

    minor of aa a aa a a

    a a a

    a a

    a aa a a a31

    11 12 13

    21 22 23

    31 32 33

    12 13

    22 23

    12 23 22 13

    Cofactor : Aij, cofactor dari entry aij dari matrix A (n x n) adalah

    perkalian dari (-1)i+j dan minoraij

    Misal hitung A31untuk matrix 3x3

    Pertama hitung minor a31

  • 7/27/2019 KNT Linier Eq

    32/114

    Minordan cofactordigunakan untuk menghitung determinant dari

    suatu matrix.

    Misal matrix n x n diekspan disekitar baris ke-i

    ininiiii AaAaAaA ......2211

    Ekspansi disekitar kolom ke-j

    njnjjjjj AaAaAaA ......2211

    (untuk setiap satu nilai i)

    (untuk setiap satu nilaij)

  • 7/27/2019 KNT Linier Eq

    33/114

    D

    a a a

    a a aa a a

    a

    a a

    a a a

    a a

    a a a

    a a

    a a

    11 12 13

    21 22 23

    31 32 33

    11

    22 23

    32 33

    12

    21 23

    31 33

    13

    21 22

    31 32

    322232211331

    3123332112

    21

    1322231211

    11

    1

    11det

    aaaaa

    aaaaaaaaaa

  • 7/27/2019 KNT Linier Eq

    34/114

    Hitung determinan matrix 3x3 dibawah.pertama, hitung menggunakan baris ke-1.

    Kemudian coba menggunakan baris ke-2n.

    516

    234

    971

    Contoh

  • 7/27/2019 KNT Linier Eq

    35/114

    Sifat-sifat Determinan

    det A = det AT

    Bila semua entry dari baris dan kolom

    adalah zero, maka det A = 0

    Bila dua rows or two kolom adalah identik,

    maka det A = 0

  • 7/27/2019 KNT Linier Eq

    36/114

    Bagaimana merepresentasikan suatu

    sistem persamaan linier kedalam matrix

    [A]{X} = {C}

    dimana {X} dan {C} adalah vektor kolom

  • 7/27/2019 KNT Linier Eq

    37/114

    44.0

    67.0

    01.0

    5.03.01.0

    9.115.0

    152.03.0

    }{}{

    44.05.03.01.0

    67.09.15.0

    01.052.03.0

    3

    2

    1

    321

    321

    321

    x

    x

    x

    CXA

    xxx

    xxx

    xxx

  • 7/27/2019 KNT Linier Eq

    38/114

    Metode Grafik

    2 Persamaan, 2 Tak Diketahui

    a x a x c

    a x a x c

    x

    a

    a

    x

    c

    a

    x

    a

    a

    x

    c

    a

    11 1 12 2 1

    21 1 22 2 2

    2

    11

    121

    1

    12

    2

    21

    22

    1

    2

    22

    x2

    x1

    ( x1, x2 )

  • 7/27/2019 KNT Linier Eq

    39/114

    3 2 18

    2 2

    32

    9

    1

    21

    1 2

    1 2

    2 1

    2 1

    x x

    x x

    x x

    x x

    x2

    x1

    ( 4 , 3 )

    3

    2

    2

    1

    9

    1

    Cek: 3(4) + 2(3) = 12 + 6 = 18

  • 7/27/2019 KNT Linier Eq

    40/114

    Bagaimana kita tahu apakah sistem ini ill-

    condition.

    bila determinan adalah zero, slopes adalah

    identical a x a x c

    a x a x c

    11 1 12 2 1

    21 1 22 2 2

    Susun ulang persamaan-persamaan ini shg kita memiliki

    versi alternatif dalam bentuk garis lurus

    Misal :x2 = (slope) x1 + intercept

    Mulailah dengan mempertimbangkan sistem dimana

    slopenya adalah identik

  • 7/27/2019 KNT Linier Eq

    41/114

    xa

    a

    xc

    a

    xa

    ax

    c

    a

    211

    12

    11

    12

    221

    22

    12

    22

    Bila slope hampir sama (ill-conditioned)

    a

    a

    a

    a

    a a a a

    a a a a

    11

    12

    21

    22

    11 22 21 12

    11 22 21 12 0

    a a

    a aA

    11 12

    21 22

    det

    Bukankah ini determinan?

  • 7/27/2019 KNT Linier Eq

    42/114

    Bila determinan adalah zero slopes adalah sama.Ini dapat diartikan :

    - Tidak ada solusi

    - Solusi banyak tak terbatas (infinite number

    of solutions)

    Bila determinant mendekati zero, system dikatakan ill-

    conditioned.

    Jadi sepertinya kita harus menggunakan cek determinansistem sebelum perhitungan lebih lanjut dilakukan.

  • 7/27/2019 KNT Linier Eq

    43/114

    Contoh

    Tentukan apakah matrix berikut dalam kondisi ill-conditioned.

    12

    22

    5.22.19

    7.42.37

    2

    1

    x

    x

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    44/114

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    Bila diketahui satu sistem persamaan aljabar linier sembarang, adatiga kemungkinan hal yang terjadi, yaitu :

    1. Sistem mempunyai jawab yang unik (uniq ue).

    x + 2 y = 6

    x + y = 1 x = -4 dan y = 5Penyelesaian

    2. Sistem tak mempun yai jawaban sebagai con toh :

    2x + 4y = 12

    x + 2y = 10

    3. Sistem mempunyai tak berhin gga jawaban.

    x + y = 12x + 2y = 2

    Dua garis berpotongan

    Dua garis sejajar

    Dua garis berimpit

    Determinan matriks koefisien = 0

    Determinan matriks koefisien = 0

    Syarat sistim mempunyai satu jawaban unik: determinan matriks koefisien 0

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    45/114

    SISTIM PERSAMAAN-PERSAMAAN LINEAR

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAAN

    a11 x1 + a12 x2 + ........... + a1n xn = c1

    a21 x1 + a22 x2 + ........... + a2n xn = c2

    an1 x1 + an2 x2 + ........... + ann xn = cn

    cxA

    nnnnnn

    n

    n

    n

    aaaaa

    aaaaa

    aaaaa

    aaaaa

    A

    ..........

    ..............................................

    ..............................................

    ............

    ...........

    ..........

    4321

    334333231

    224232221

    114131211

    nx

    x

    x

    x

    x

    .

    .

    3

    2

    1

    nc

    c

    c

    c

    c

    .

    .

    3

    2

    1

  • 7/27/2019 KNT Linier Eq

    46/114

    Metode Matrix

    Gauss elimination

    Matrix inversion

    Gauss Seidel

    LU decomposition

    Aa a a

    a a a

    a a a

    11 12 13

    21 22 23

    31 32 33

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    47/114

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAAN

    SISTIM PERSAMAAN-PERSAMAAN LINEAR

    METODA-METODA:

    METODA LANGSUNG: ELIMINASI GAUSS

    GAUSS YORDAN

    LU-DECOMPOSITION

    MATRIXS INVERSION

    METODA TAK LANGSUNG: YACOBI

    GAUSS-SEIDEL

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    48/114

    PENYELESAIAN SISTIM PERSAMAAN-

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    Metoda Eliminasi Gauss

    nnnnnnnn

    nn

    nn

    nn

    nn

    cxaxaxaxaxa

    cxaxaxaxaxa

    cxaxaxaxaxa

    cxaxaxaxaxa

    cxaxaxaxaxa

    ...................................

    ..............................................................................................................

    ..............................................................................................................

    ..............................................................................................................

    ...................................

    ..................................

    ...................................

    ..................................

    44332211

    44444343242141

    33434333232131

    22424323222121

    11414313212111

    Ada dua tahap: Tahap Eliminasi dan Tahap Substitusi Kembali

    Tahap Eliminasi

    Terdiri dari n-1 langkah eliminasi dengan tujuan eliminasi x1, x2, ., xn-1

    berturut-turut dari sistim persamaan-persamaan berikut.

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    49/114

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    )1()1(

    4

    )1(

    43

    )1(

    32

    )1(

    2

    )1(

    4

    )1(

    44

    )1(

    443

    )1(

    432

    )1(

    42

    )1(

    3

    )1(

    34

    )1(

    343

    )1(

    332

    )1(

    32

    )1(2

    )1(24

    )1(243

    )1(232

    )1(22

    11414313212111

    ...................................

    ..............................................................................................................

    ..............................................................................................................

    ..............................................................................................................

    ...................................

    ..................................

    ...................................

    ..................................

    nnnnnnn

    nn

    nn

    nn

    nn

    cxaxaxaxa

    cxaxaxaxa

    cxaxaxaxa

    cxaxaxaxa

    cxaxaxaxaxa

    Metoda Eliminasi GaussLangkah Eliminasi ke-1: Eliminasi x1 dari persamaan 2 sampai dengan n, caranya, kurangkan

    persamaan (i) dengan persamaan (1) dikalikan ai1/a11, i= 2,..,n

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    50/114

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    )2()2(

    4

    )2(

    43

    )2(

    3

    )2(

    4

    )2(

    44

    )2(

    443

    )2(

    43

    )2(

    3

    )2(

    34

    )2(

    343

    )2(

    33

    )1(

    2

    )1(

    24

    )1(

    243

    )1(

    232

    )1(

    22

    11414313212111

    ...................................

    ..............................................................................................................

    ..............................................................................................................

    ..............................................................................................................

    ...................................

    ..................................

    ...................................

    ..................................

    nnnnnn

    nn

    nn

    nn

    nn

    cxaxaxa

    cxaxaxa

    cxaxaxa

    cxaxaxaxa

    cxaxaxaxaxa

    Metoda Eliminasi GaussLangkah Eliminasi ke-2: Eliminasi x2 dari persamaan 3 sampai dengan n, caranya, kurangkan

    persamaan (i) dengan persamaan (2) dikalikan ai2/a22, i= 3,..,n

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    51/114

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    )1()1(

    )2(

    1

    )2(

    ,11

    )2(

    1,1

    )3(

    4

    )3(

    44

    )3(

    44

    )2(

    3

    )2(

    34

    )2(

    343

    )2(

    33

    )1(

    2

    )1(

    24

    )1(

    243

    )1(

    232

    )1(

    22

    11414313212111

    ..............................................................................................................

    ..............................................................................................................

    ...................................

    .....................................................................

    ..................................

    n

    nn

    n

    nn

    n

    nn

    n

    nnn

    n

    nn

    nn

    nn

    nn

    nn

    cxa

    cxaxa

    cxaxa

    cxaxaxacxaxaxaxa

    cxaxaxaxaxa

    Metoda Eliminasi GaussLangkah Eliminasi ke-(n-1):

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    52/114

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAAN

    SISTIM PERSAMAAN-PERSAMAAN LINEAR

    )1(

    )1()1(

    )1()(

    rrr

    r

    rj

    r

    irrij

    rij

    aaaaa

    )1(

    )1()1(

    )1()(

    rrr

    r

    ir

    r

    rri

    ri

    aaccc

    Metoda Eliminasi Gauss

    Formula Umum Eliminasi

    r =1,2,., n-1.

    i = r+1, ., n.

    j = r+1, .., n

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    53/114

    PENYELESAIAN SISTIM PERSAMAAN-

    PERSAMAAN

    Tahap Substitusi Kembali

    1........,,2,1,/

    ...................................................

    ..................................................

    /

    /

    )1(

    1

    )1()1(

    )2(

    1,1

    )2(

    ,1

    )2(

    11

    )1()1(

    nnjaxacx

    axacx

    acx

    j

    jj

    n

    ji

    i

    j

    ji

    j

    jj

    n

    nnn

    n

    nn

    n

    nn

    n

    nn

    n

    nn

    SISTIM PERSAMAAN-PERSAMAAN LINEAR

    Metoda Eliminasi Gauss

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    54/114

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    i=1,N;

    Pertukaran Baris

    Start

    Jumlah Persamaan, N

    Baca aij

    i=1,N;

    Baca ci

    r=1, N-1

    i=r+1, N

    j=r+1, N

    aij=aij-air.arj/arr

    ci=ci-cr.air/arr

    xn=cn/ann

    j=1,N-1;

    i=N-j; Jum=0

    k=i+1,N

    Jum=Jum+aik.xk

    xi=(ci-Jum)/aii

    i=1,N

    Cetak

    End

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    55/114

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    y

    y

    y

    T

    T

    T

    P=r+1L=r

    L=PP=P+1 |aPr|>|aLr|

    P=N

    m=r

    Temp=armarm=aLm

    aLm=Temp

    P=P+1

    n=N

    Temp=crcr=cL

    cL=Temp

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    56/114

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    Contoh soal 3-1 :Cari x1 , x2 , dan x3 dari persamaan berikut dengan cara Eliminasi Gauss.

    3 x1 - x2 + 2 x3 = 12

    x1 + 2 x2 + 3 x3 = 11

    2 x1 - 2 x2 - x3 = 2

    Penyelesaian :

    13

    23

    13

    12

    2:1-2-2

    11:321

    12:21-3BB

    BB

    27

    43

    6-:3

    7-

    3

    4-0

    7:3

    7

    3

    70

    12:21-3

    BB

    2-:1-00

    7:3

    7

    3

    70

    12:21-3

    2

    73

    7

    3

    7

    1223

    3

    32

    321

    x

    xx

    xxx

    33/22112

    13

    7/2

    3

    77

    2

    1

    2

    3

    x

    x

    x

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    57/114

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    Metoda ini pada dasarnya mirip dengan metoda Eliminasi -Gauss,

    perbedaannya hanya tahap Eliminasi dan tahap substitusi kembali

    dilaksanakan bersamaan.

    METODA GAUSS YORDAN

    Algoritma :1). Untuk i = 1 s/d N laksanakan :

    aij = aij / aii

    akj = akj - aki . aij

    ck

    = ck

    - aki

    . ci

    j = 1, 2, n

    k= 1, 2, n

    2). xi = ci , i = 1, 2, ....... n.

    PENYELESAIAN SISTIM PERSAMAAN-

  • 7/27/2019 KNT Linier Eq

    58/114

    PENYELESAIAN SISTIM PERSAMAAN

    PERSAMAANSISTIM PERSAMAAN-PERSAMAAN LINEAR

    Metoda Gauss Yordan juga bisa dinyatakan dalam bentuk OperasiMatrix seperti contoh berikut,

    Contoh 3-2 :

    Selesaikan sistim perssamaan berikut dengan metoda Gauss - Yordan,

    2 x2 + x4 = 02 x1 + 2 x2 + 3 x3 + 2 x4 = -2

    4 x1 - 3 x2 + + x4 = -7

    6 x1 + x2 - 6 x3 - 5 x4 = 6

    6:5-6-16

    7-:103-4

    2-:2322

    0:1020

    Penyelesaian

    0:1020

    7-:103-4

    2-:2322

    6:5-6-16

    0:1020

    11-:13/3411/3-0

    4-:11/355/30

    1:5/6-1-1/61B1 B2

    B1/6

    B2 B1*2

    B3 B1*4

  • 7/27/2019 KNT Linier Eq

    59/114

    Cramers Rule

    Tidak efisien untuk menyelesaikan

    persamaan linier yang besar

    Berguna untuk menjelaskan beberapa

    masalah yang terkait dengan penyelesaian

    persamaan linier.

    bxAb

    bb

    x

    xx

    aaa

    aaaaaa

    3

    2

    1

    3

    2

    1

    333231

    232221

    131211

  • 7/27/2019 KNT Linier Eq

    60/114

    Cramers Rule

    Untuk menyelesaikanxitempatkan {b}

    dalam kolom ke-i

    x

    A

    b a a

    b a a

    b a a

    x

    A

    a b a

    a b a

    a b a

    1

    1 12 13

    2 22 23

    3 32 33

    2

    11 1 13

    21 2 23

    13 3 33

    1 1

  • 7/27/2019 KNT Linier Eq

    61/114

    xA

    b a a

    b a a

    b a a

    xA

    a b a

    a b a

    a b a

    xA

    a a b

    a a b

    a a b

    1

    1 12 13

    2 22 23

    3 32 33

    2

    11 1 13

    21 2 23

    13 3 33

    3

    11 12 1

    21 22 2

    13 32 3

    1 1

    1

    Cramers Rule

    Untuk menyelesaikanxi

    tempatkan {b} dalam

    kolom ke-i

  • 7/27/2019 KNT Linier Eq

    62/114

    Cramers Rule

    33231

    22221

    11211

    3

    33331

    23221

    13111

    2

    33323

    23222

    13121

    1

    1

    11

    baa

    baa

    baa

    Ax

    aba

    aba

    aba

    Ax

    aab

    aab

    aab

    Ax

    Untuk menyelesaikanxi

    tempatkan {b} dalam

    kolom ke-i

  • 7/27/2019 KNT Linier Eq

    63/114

    Use Gauss Elimination to solve the following set

    of linear equations

    3 13 50

    2 6 45

    4 8 4

    2 3

    1 2 3

    1 3

    x x

    x x x

    x x

    EXAMPLE

    (solution in notes)

  • 7/27/2019 KNT Linier Eq

    64/114

    3 13 50

    2 6 45

    4 8 4

    2 3

    1 2 3

    1 3

    x x

    x x x

    x x

    SOLUTION

    First write in matrix form, employing short handpresented in class.

    0 3 13 50

    2 6 1 454 0 8 4

    We will clearly run into

    problems of division

    by zero.

    Use partial pivoting

  • 7/27/2019 KNT Linier Eq

    65/114

    0 3 13 50

    2 6 1 454 0 8 4

    Pivot with equation

    with largest an1

  • 7/27/2019 KNT Linier Eq

    66/114

    0 3 13 50

    2 6 1 454 0 8 4

    4 0 8 4

    2 6 1 45

    0 3 13 50

  • 7/27/2019 KNT Linier Eq

    67/114

    0 3 13 50

    2 6 1 454 0 8 4

    4 0 8 4

    2 6 1 45

    0 3 13 50

    4 0 8 40 6 3 43

    0 3 13 50

    Begin developingupper triangular matrix

  • 7/27/2019 KNT Linier Eq

    68/114

    4 0 8 4

    0 6 3 43

    0 3 13 50

    4 0 8 4

    0 6 3 43

    0 0 14 5 285

    285

    14 51966

    43 3 1966

    68149

    4 8 1966

    42 931

    3 8149 13 1966 50

    3 2

    1

    . .

    .

    ..

    ..

    ..

    . .

    x x

    x

    CHECK

    okay...end of

    problem

  • 7/27/2019 KNT Linier Eq

    69/114

    GAUSS-JORDAN

    Variation of Gauss elimination

    Primary motive for introducing this method is that

    it provides and simple and convenient method for

    computing the matrix inverse.

    When an unknown is eliminated, it is eliminatedfrom all other equations, rather than just the

    subsequent one

  • 7/27/2019 KNT Linier Eq

    70/114

    GAUSS-JORDAN

    All rows are normalized by dividing them by their

    pivot elements

    Elimination step results in and identity matrix

    rather than an UT matrix

    Aa a a

    a a

    a

    11 12 13

    22 23

    33

    0

    0 0 A

    1 0 0 0

    0 1 0 0

    0 0 1 0

    0 0 0 1

  • 7/27/2019 KNT Linier Eq

    71/114

    1 0 00 1 0

    0 0 1

    1

    1

    2

    3

    1

    2 2

    3 3

    ||

    |

    cc

    c

    x c

    x c

    x c

    n

    n

    n

    n

    n

    n

    Graphical depiction of Gauss-Jordan

    a a a ca a a c

    a a a c

    c

    cc

    n

    n

    n

    11 12 13 1

    21 22 23 2

    31 32 33 3

    2

    3

    1 0 0

    0 1 00 0 1

    1

    ||

    |

    |

    ||

    ' ' '

    ' ' ' '

  • 7/27/2019 KNT Linier Eq

    72/114

    Matrix Inversion

    [A] [A] -1 = [A]-1 [A] = I

    One application of the inverse is to solve

    several systems differing only by {c}

    [A]{x} = {c}

    [A]-1[A] {x} = [A]-1{c}

    [I]{x}={x}= [A]-1{c}

    One quick method to compute the inverse isto augment [A] with [I] instead of {c}

  • 7/27/2019 KNT Linier Eq

    73/114

    Graphical Depiction of the Gauss-Jordan

    Method with Matrix Inversion

    A I

    a a a

    a a a

    a a a

    a a a

    a a a

    a a a

    I A

    11 12 13

    21 22 23

    31 32 33

    11

    1

    12

    1

    13

    1

    21

    1

    22

    1

    23

    1

    311

    321

    331

    1

    1 0 0

    0 1 0

    0 0 1

    1 0 0

    0 1 0

    0 0 1

    Note: the superscript

    -1 denotes thatthe original values

    have been converted

    to the matrix inverse,

    not 1/aij

  • 7/27/2019 KNT Linier Eq

    74/114

    LU Decomposition Methods

    Elimination methods

    Gauss eliminationGauss Jordan

    LU Decomposition Methods

  • 7/27/2019 KNT Linier Eq

    75/114

    Naive LU Decomposition

    [A]{x}={c}

    Suppose this can be rearranged as an upper

    triangular matrix with 1s on the diagonal

    [U]{x}={d}

    [A]{x}-{c}=0 [U]{x}-{d}=0

    Assume that a lower triangular matrix existsthat has the property

    [L]{[U]{x}-{d}}= [A]{x}-{c}

  • 7/27/2019 KNT Linier Eq

    76/114

    Naive LU Decomposition

    [L]{[U]{x}-{d}}= [A]{x}-{c}

    Then from the rules of matrix multiplication

    [L][U]=[A] [L]{d}={c}

    [L][U]=[A] is referred to as the LU

    decomposition of [A]. After it isaccomplished, solutions can be obtained

    very efficiently by a two-step substitution

    procedure

  • 7/27/2019 KNT Linier Eq

    77/114

    Consider how Gauss elimination can be

    formulated as an LU decomposition

    U is a direct product of forward

    elimination step if each row is scaled bythe diagonal

    Ua a

    a

    1

    0 1

    0 0 1

    12 13

    23

  • 7/27/2019 KNT Linier Eq

    78/114

    Although not as apparent, the matrix [L] is also

    produced during the step. This can be readily

    illustrated for a three-equation system

    a a a

    a a a

    a a a

    x

    x

    x

    c

    c

    c

    11 12 13

    21 22 23

    31 32 33

    1

    2

    3

    1

    2

    3

    The first step is to multiply row 1 by the factor

    fa

    a21

    21

    11

    Subtracting the result from the second row eliminates a21

  • 7/27/2019 KNT Linier Eq

    79/114

    a a a

    a a a

    a a a

    x

    x

    x

    c

    c

    c

    11 12 13

    21 22 23

    31 32 33

    1

    2

    3

    1

    2

    3

    Similarly, row 1 is multiplied by

    fa

    a31

    31

    11

    The result is subtracted from the third row to eliminate a31In the final step for a 3 x 3 system is to multiply the modified

    row by

    fa

    a32

    32

    22

    '

    'Subtract the results from the third

    row to eliminate a32

  • 7/27/2019 KNT Linier Eq

    80/114

    The values f21, f31, f32 are in fact the elements

    of an [L] matrix

    L ff f

    1 0 0

    1 0

    1

    21

    31 32

    CONSIDER HOW THIS RELATES TO THE

    LU DECOMPOSITION METHOD TO SOLVEFOR {X}

  • 7/27/2019 KNT Linier Eq

    81/114

    [A] {x} = {c}

    [U][L]

    [L] {d} = {c}

    {d}

    [U]{x}={d} {x}

  • 7/27/2019 KNT Linier Eq

    82/114

    Crout Decomposition

    Gauss elimination method involves two

    major steps

    forward elimination

    back substitution

    Efforts in improvement focused on

    development of improved elimination

    methods One such method is Crout decomposition

  • 7/27/2019 KNT Linier Eq

    83/114

    Crout Decomposition

    Represents and efficient algorithm for decomposing [A]

    into [L] and [U]

    l

    l l

    l l l

    u u

    u

    a a a

    a a a

    a a a

    11

    21 22

    31 32 33

    12 13

    23

    11 12 13

    21 22 23

    31 32 33

    0 0

    0

    1

    0 1

    0 0 1

  • 7/27/2019 KNT Linier Eq

    84/114

    l

    l l

    l l l

    u u

    u

    a a a

    a a a

    a a a

    11

    21 22

    31 32 33

    12 13

    23

    11 12 13

    21 22 23

    31 32 33

    0 0

    0

    1

    0 1

    0 0 1

    Recall the rules of matrix multiplication.

    The first step is to multiply the rows of [L] by the

    first column of [U]

    a l la la l

    11 11 11

    21 21

    31 31

    1 0 0 0 0

    Thus the first

    column of [A]is the first column

    of [L]

  • 7/27/2019 KNT Linier Eq

    85/114

    l

    l l

    l l l

    u u

    u

    a a a

    a a a

    a a a

    11

    21 22

    31 32 33

    12 13

    23

    11 12 13

    21 22 23

    31 32 33

    0 0

    0

    1

    0 1

    0 0 1

    Next we multiply the first row of [L] by the column

    of [U] to get

    l a

    l u a

    l u a

    11 11

    11 12 12

    11 13 13

  • 7/27/2019 KNT Linier Eq

    86/114

    l a

    l u al u a

    u

    a

    l

    ua

    l

    ua

    lfor j nj

    j

    11 11

    11 12 12

    11 13 13

    12

    12

    11

    1313

    11

    1

    1

    11

    2 3

    , ,.....

    l

    l ll l l

    u u

    u

    a a a

    a a aa a a

    11

    21 22

    31 32 33

    12 13

    23

    11 12 13

    21 22 23

    31 32 33

    0 0

    0

    1

    0 10 0 1

    Once the first row of [U] is established

    the operation can be represented concisely

  • 7/27/2019 KNT Linier Eq

    87/114

    l a for i n

    u al

    for j n

    For j n

    l a l u for i j j n

    u

    a l u

    lfor k j j n

    l a l u

    i il

    jj

    ij ij ik kjk

    j

    jk

    jk ji ik

    i

    j

    jj

    nn nn nk kn

    k

    n

    1

    11

    11

    1

    1

    1

    1

    1

    1

    1 2

    2 3

    2 3 1

    1

    1 2

    , ,.....,

    , , .....

    , ......

    , ,.....

    , ....

  • 7/27/2019 KNT Linier Eq

    88/114

    The Substitution Step

    [L]{[U]{x}-{d}}= [A]{x}-{c}

    [L][U]=[A]

    [L]{d}={c}

    [U]{x}={d}

    Recall our earlier graphical depiction of the

    LU decomposition method

  • 7/27/2019 KNT Linier Eq

    89/114

    [A] {x} = {c}

    [U][L]

    [L] {d} = {c}

    {d}

    [U]{x}={d} {x}

  • 7/27/2019 KNT Linier Eq

    90/114

    dc

    l

    d

    c l d

    l

    for i n

    Back substitution recall U x d

    x d

    x d u x for i n n n

    i

    i ij j

    j

    i

    ii

    n n

    i i ij j

    j i

    n

    11

    11

    1

    1

    1

    2 3

    1 2

    , ,......

    , ,.....

    P t d t tif th

  • 7/27/2019 KNT Linier Eq

    91/114

    Parameters used to quantify the

    dimensions of a banded system.

    BW = band width

    HBW = half band width

    BW

    HBW

    Diagonal

    Thomas Algorithm

  • 7/27/2019 KNT Linier Eq

    92/114

    Thomas Algorithm

    As with conventional LU decomposition methods, thealgorithm consist of three steps

    - decomposition

    - forward substitution

    - back substitution

    Want a scheme to reduce the large inefficient use of

    storage involved with banded matrices

    Consider the following tridiagonal system

  • 7/27/2019 KNT Linier Eq

    93/114

    a a

    a a a

    a a a

    a a aa a

    x

    x

    x

    x

    c

    c

    c

    c

    n n n n n n

    n n nn n n

    11 12

    21 22 23

    32 33 34

    1 2 1 1 1

    1

    1

    2

    3

    1

    2

    3

    . . .

    . . .

    . . .

    .

    .

    .

    .

    .

    .

    .

    ., , ,

    ,

    Note how this tridiagonal system require the storage of a large

    number of zero values.

  • 7/27/2019 KNT Linier Eq

    94/114

    f g

    e f g

    e f g

    e f g

    e f

    e

    e

    e

    f

    f

    f

    f

    g

    g

    g

    n n n

    n n n n

    1 1

    2 2 2

    3 3 3

    1 1 1

    2

    3

    1

    2

    3

    1

    2

    3

    0

    0

    . . .

    . . .

    . . .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    Note that we have changed our notation of as to e,f,g

    In addition we have changed our notation of cs to r

  • 7/27/2019 KNT Linier Eq

    95/114

    0

    0

    0

    0

    2

    3

    1

    2

    3

    1

    2

    3

    12 13

    21 22 23

    31 32 33

    1 2

    e

    e

    e

    f

    f

    f

    f

    g

    g

    g

    b b

    b b b

    b b b

    b bn n n n

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    . . .

    . . .

    . . .

    . . .

    Storage is even further reduced if the matrix is banded and

    symmetric. Only elements on the diagonal and in the upper

    half need be stored.

    Storage can

    be accomplishedby either storage

    as vector (e,f,g)

    or as a compact

    matrix [B]

  • 7/27/2019 KNT Linier Eq

    96/114

    Gauss Seidel Method

    An iterative approach

    Continue until we converge within some pre-

    specified tolerance of error

    Round off is no longer an issue, since you

    control the level of error that is acceptable

    Fundamentally different from Gauss eliminationthis is an approximate, iterative method

    particularly good for large number of equations

  • 7/27/2019 KNT Linier Eq

    97/114

    Gauss-Seidel Method

    If the diagonal elements are all nonzero, the

    first equation can be solved for x1

    Solve the second equation for x2, etc.

    x c a x a x a xa

    n n1

    1 12 2 13 3 1

    11

    To assure that you understand this, write the equation for x2

  • 7/27/2019 KNT Linier Eq

    98/114

    x

    c a x a x a x

    a

    xc a x a x a x

    a

    x c a x a x a xa

    x c a x a x a xa

    n n

    n n

    n n

    nn n n nn n

    nn

    1

    1 12 2 13 3 1

    11

    2

    2 21 1 23 3 2

    22

    3

    3 31 1 32 2 3

    33

    1 1 3 2 1 1

    G S id l M th d

  • 7/27/2019 KNT Linier Eq

    99/114

    Gauss-Seidel Method

    Start the solution process by guessingvalues of x

    A simple way to obtain initial guesses is to

    assume that they are all zero Calculate new values of xi starting with

    x1 = c1/a11

    Progressively substitute through theequations

    Repeat until tolerance is reached

  • 7/27/2019 KNT Linier Eq

    100/114

    x c a x a x a

    x c a x a x ax c a x a x a

    x c a a a

    c

    a x

    x c a x a a x

    x c a x a x a x

    1 1 12 2 13 3 11

    2 2 21 1 23 3 22

    3 3 31 1 32 2 33

    1 1 12 13 11

    1

    11 1

    2 2 21 1 23 22 2

    3 3 31 1 32 2 33 3

    0 0

    0

    /

    //

    / '

    ' / '

    ' ' / '

  • 7/27/2019 KNT Linier Eq

    101/114

    Given the following augmented matrix,complete one iteration of the Gauss

    Seidel method.

    2 3 1 2

    4 1 2 2

    3 2 1 1

    EXAMPLE

    G S id l M th d

  • 7/27/2019 KNT Linier Eq

    102/114

    Gauss-Seidel Method

    convergence criterion a i

    i

    j

    i

    j

    i

    j s

    x x

    x,

    1

    100

    as in previous iterative procedures in finding the roots,we consider the present and previous estimates.

    As with the open methods we studied previously with one

    point iterations

    1. The method can diverge

    2. May converge very slowly

    C i i f

  • 7/27/2019 KNT Linier Eq

    103/114

    Convergence criteria for two

    linear equations

    u x xc

    a

    a

    ax

    v x xc

    a

    a

    ax

    consider the partial derivatives of u and v

    u

    x

    u

    x

    a

    a

    v

    x

    a

    a

    v

    x

    1 21

    11

    12

    11

    2

    1 22

    22

    21

    22

    2

    1 2

    12

    11

    1

    21

    22 2

    0

    0

    ,

    ,

    Convergence criteria for two

  • 7/27/2019 KNT Linier Eq

    104/114

    Convergence criteria for two

    linear equations

    u x xc

    a

    a

    ax

    v x x ca aa x

    consider the partial derivatives of u and v

    u

    x

    u

    x

    a

    a

    v

    x

    a

    a

    v

    x

    1 21

    11

    12

    11

    2

    1 2 2

    22

    21

    22

    1

    1 2

    12

    11

    1

    21

    22 2

    0

    0

    ,

    ,

    Class question:

    where do these

    formulas come from?

    Convergence criteria for two linear

  • 7/27/2019 KNT Linier Eq

    105/114

    Convergence criteria for two linear

    equations cont.

    u

    x

    v

    x

    uy

    vy

    1

    1

    Criteria for convergence

    where presented earlier

    in class materialfor nonlinear equations.

    Noting that x = x1 and

    y = x2

    Substituting the previous equation:

    Convergence criteria for two linear

  • 7/27/2019 KNT Linier Eq

    106/114

    Convergence criteria for two linear

    equations cont.

    a

    a

    a

    a

    21

    22

    12

    11

    1 1

    This is stating that the absolute values of the slopes must

    be less than unity to ensure convergence.

    Extended to n equations:

    a a where j n excluding j iii ij 1,

    Convergence criteria for two linear

  • 7/27/2019 KNT Linier Eq

    107/114

    Convergence criteria for two linear

    equations cont.

    a a where j n excluding j iii ij 1,

    This condition is sufficient but not necessary; for convergence.

    When met, the matrix is said to be diagonally dominant.

  • 7/27/2019 KNT Linier Eq

    108/114

    x2

    x1

    Review the concepts

    of divergence andconvergence by graphically

    illustrating Gauss-Seidel

    for two linear equations

    u x x

    v x x

    :

    :

    11 13 286

    11 9 99

    1 2

    1 2

  • 7/27/2019 KNT Linier Eq

    109/114

    x2

    x1

    Note: we are converging

    on the solution

    v x x

    u x x

    :

    :

    11 9 99

    11 13 286

    1 2

    1 2

  • 7/27/2019 KNT Linier Eq

    110/114

    x2

    x1

    Change the order of

    the equations: i.e. change

    direction of initialestimates

    This solution is diverging!

    u x x

    v x x

    :

    :

    11 13 286

    11 9 99

    1 2

    1 2

    I f C

  • 7/27/2019 KNT Linier Eq

    111/114

    Improvement of Convergence

    Using Relaxation

    This is a modification that will enhance slow convergence.

    After each new value of x is computed, calculate a new valuebased on a weighted average of the present and previous

    iteration.

    x x xinew

    inew

    iold

    1

    Improvement of Convergence Using

  • 7/27/2019 KNT Linier Eq

    112/114

    Improvement of Convergence Using

    Relaxation

    if = 1unmodified

    if 0 < < 1 underrelaxationnonconvergent systems may converge

    hasten convergence by dampening out oscillations

    if 1< < 2 overrelaxation

    extra weight is placed on the present value

    assumption that new value is moving to the correct

    solution by too slowly

    x x xinew inew iold 1

  • 7/27/2019 KNT Linier Eq

    113/114

    Jacobi Iteration

    Iterative like Gauss Seidel

    Gauss-Seidel immediately uses the value of

    xi in the next equation to predict x i+1 Jacobi calculates all new values of xis to

    calculate a set of new xi values

    Graphical depiction of difference between Gauss-Seidel and Jacobi

  • 7/27/2019 KNT Linier Eq

    114/114

    FIRST ITERATION

    x c a x a x a x c a x a x a

    x c a x a x a x c a x a x a

    x c a x a x a x c a x a x a

    SECOND ITERATION

    x c a x a x a x c a x a x a

    x c a x a x a x c a x

    1 1 12 2 13 3 11 1 1 12 2 13 3 11

    2 2 21 1 23 3 22 2 2 21 1 23 3 22

    3 3 31 1 32 2 33 3 3 31 1 32 2 33

    1 1 12 2 13 3 11 1 1 12 2 13 3 11

    2 2 21 1 23 3 22 2 2 21 1

    / /

    / /

    / /

    / /

    /

    a x a23 3 22/

    / /