keratoconus

19

Click here to load reader

Upload: kevinasuwandi

Post on 14-Nov-2015

10 views

Category:

Documents


0 download

DESCRIPTION

zxzx

TRANSCRIPT

Abstrak

Keratoconus ( KC ) adalah ectasia paling umum dari kornea dan merupakan alasan umum untuk transplantasi kornea. Strategi terapi yang dapat menghentikan perkembangan penyakit ini dan memodifikasi patogenesis yang mendasari menjadi semakin populer di kalangan ilmuwan. Akumulasi data merupakan bukti kuat dari peran genetik dalam patogenesis KC. Lokus yang berbeda telah diidentifikasi, dan mutasi tertentu juga telah dipetakan untuk penyakit ini. Selain itu, sifat biofisik kornea itu sendiri yang membuat ia sesuai dengan jaringan untuk terapi gen. Keistimewaan dari terapi ini adalah peningkatan kekebalan tubuh dan ex vivo stabilitas. Keuntungan terbaru di vektor, selain kemampuan untuk memodulasi lingkungan kornea untuk menerima gen sasaran untuk jangka waktu lama, terapi ini juga memberikan harapan yang besar untuk hasil luar biasa.

Kata kunci : Kornea , terapi gen , genetika , keratoconus

PengenalanKeratoconus (KC) adalah penyakit yang berhubungan dengan peradangan progresif kornea. Penyakit ini biasanya dimulai pada masa pubertas dan manifestasinya terlihat pada usia 30 hingga 40 tahun.[ 1 ] KC dianggap sebagai ectasia kornea yang paling umum [ 2 ] dengan insiden diperkirakan dalam masyarakat yang berbeda berkisar dari 5 sampai 20 dari 10.000 orang dan prevalensi 54 dari 100.000 dilaporkan menurut studi yang berbeda. [ 3 ] , [ 4 ] KC dianggap memiliki dasar genetik. Banyak gen termasuk sistem penglihatan homeoboks 1 ( VSX1 ) gen , superoxide dismutase 1 ( SOD1 ) gen dan lysyl oksidase ( LOX ), dan mutasi genetik yang terkait dengan KC dalam beberapa penelitian . Studi hubungan di keluarga dengan KC, studi hubungan genome - wide dan studi kembar juga menemukan bahwa ada kecenderungan genetik untuk KC . [ 5 ] , [ 6 ] , [ 7 ] , [ 8 ] , [ 9 ] , [ 10 ] Temuan ini memberikan ide untuk terapi gen sebagai pilihan pengobatan yang mungkin untuk KC.

MetodeTujuan pembuatan karya tulis ilmiah ini adalah untuk menjelaskan bahwa terapi gen dapat digunakan untuk pengobatan keratoconus. Kami mencari data-data dari literatur berbahasa Inggris dengan ulasan dan referensi yang menyertainya. Kata-kata pencarian utama diantaranya: genetik KC, terapi gen dari KC, pengobatan genetik KC, perspektif KC, studi molekuler dari KC, manajemen dan pilihan pengobatan KC, diagnosis KC. Selain itu, kutipan dari pencarian di atas juga disertakan.

PatogenesisPatofisiologi pasti KC sampai sekarang belum diketahui. Interaksi antara faktor lingkungan dan genetik tampaknya berperan. Pada pasien yang rentan faktor lingkungan seperti trauma, ultraviolet atau atopi memicu kaskade inflamasi yang menyebabkan degenerasi stroma kornea. [11]

Ketidakseimbangan antara agen pro-inflamasi dan agen anti-inflamasi telah ditemukan. Pada keratinosit kornea dari KC pasien, Interleukin 1 reseptor ditemukan empat kali lebih dari keratinosit normal. Sitokin ini menginduksi apoptosis keratinosit dan mengatur proliferasi keratinosit dan diferensiasi. [12], [13] adhesi antar-molekul 1, Vascular adhesi sel molekul-1 dan interleukin 6 bahkan dapat mencapai 40 kali, sedangkan ekspresi agen anti-inflamasi seperti interleukin 10 yang nyata berkurang. [14]

Interleukin 1 memiliki peran dalam modulasi ekspresi metalloproteinase. [13] Disparitas antara proteinase dan aktivitas inhibitor proteinase juga telah dipastikan [15] dan dapat menyebabkan degradasi stroma kornea; sebagai temuan patologis utama di KC. Telah ditemukan bahwa pada mata keratoconic, proteinase inhibitor seperti 2-macroglobulin dan 1-antiprotease secara signifikan berkurang dari mata yang normal [16] dan aktivitas yang lebih tinggi dari lisosomal dan enzim katabolik seperti proteinase telah dilaporkan. [17]

DiagnosaDiagnosa KC ditegakkan dari pemeriksaan slit lamp, pemeriksaan klinis dan pencitraan topografi kornea. Pada pemeriksaan slit lamp, didapatkan adanya penonjolan sel kerucut kornea, Vogt striae, cincin Fleischer, tanda Munson, tanda Rizzuti, bekas luka kornea dan refleks scissoring oleh retinoscopy.

Keratoconus dan Dasar GenetikMeskipun penyakit ini sebagian besar termasuk dominan autosomal herediter, namun kasus KC dapat muncul secara sporadis dan poligenik. [23] Fenomena genetik yang kompleks membuat identifikasi gen penyebab menjadi sulit. Salah satu strategi untuk mengalokasikan gen penyebabnya adalah analisis linkage. Pertama perlu dilakukan identifikasi daerah mana dari kromosom yang terkena yang mungkin gen penyebab. Setelah mendefinisikan wilayah kromosom, gen dipetakan dengan wilayah yang akan diklarifikasi. [36], [37], [38], [39]Gen VSX1 yang pertama kali ditemukan pada tahun 2002, [46] adalah gen homeoboks yang mengikat wilayah kontrol merah / hijau pigmen penglihatan cluster gen dan berperan untuk mengatur ekspresi kerucut opsin. Mutasi yang berbeda dari gen ini telah diidentifikasi dalam beberapa perkembangan anomali endotelium bersama dengan beberapa keluarga dengan KC [46], [47], [48], [49] [50] pada 80 pasien keratoconic, VSX1 disimpulkan menjadi gen penting dalam autosomal dominan KC. Gen kandidat lain yang menarik bagi para peneliti dalam patogenesis KC adalah SOD1 pada kromosom 21. [58]

Cornea, a Good Candidate for Gene Therapy Past and Future

Corneal gene therapy as a powerful method that can modify the ultrastructure of the cell protein is potentially helpful in many of hereditary and acquired corneal abnormalities.

In 1994, Mashhour et al. transferred successfully gene to the cornea with the application of adenovirus as a vector. [59] Since then, new aspects were recognized for this apparatus. Transferring cytokines, growth factors and enzymes to the cornea in a sustained concentration that is hardly if at all achievable with systemic administration along with knock down of defective genes and inducing the functional genes are only part of the presumed advantages. [60],[61]

In preclinical studies, outstanding results for this method have been obtained. Researchers found promising results in the prevention and treatment of major corneal issues like herpetic stromal keratitis (HSK), corneal graft rejection, neovascularization and haze. [61],[62],[63],[64],[65],[66] This method has also been postulated for other corneal abnormality like KC [67] and corneal dystrophies. [68],[69]

There are lots of intrinsic characters that make the cornea an ideal candidate for gene therapy. One of these important characters is the exceptional policy of the immune system towards this tissue in comparison to others, the so-called immune privilege.

Excessive inflammation that is considered to be a very useful strategy against microorganism and is one of the routine immune response to combat the offending enemy is extremely harmful to cornea. This inflammation easily causes opacities in the cornea that affects the vision significantly.

The margination of the inflammatory cells is restricted by a blood ocular barrier. Even after entrance the activity of these cells becomes suspiciously inhibited. Endothelial cells express molecules that inhibit complement activation and subsequently the opsonization and destructive effect of the complement cascade. Presenting the antigens to immune cells is also modified in this tissue and corneal cells express comparatively lower histocompatibility complex of both classes (I and II). Lymphatic drainage as a pathway to present the antigens to dendritic cells in lymph nodes are lacking as well and fas ligands that are presented on the surface of the corneal cells induce apoptosis in activated T cells And for reasons that are poorly understood, presenting B cells do not secrete complement fixating immunoglobulins M and immunoglobulins G2. [70],[71]

These features give a unique property to the cornea for accommodating the gene vectors without consequent immunogenicity and thus will guarantees longer gene expression.

Other properties like the stability ex vivo are particularly of significant importance. [64],[72] This feature makes the successful manipulation for gene therapy out of the body possible.

Easily accessible [64],[72],[73],[74] and anesthetized [75] along with transparency, [64],[65],[72] which makes direct observation of the procedure progress effortless, are other technical facilities that this tissue offers to ophthalmologists.

Technique

Basics of the techniques are the same as gene therapy in other tissues. Gene that its downstream products are desirable is transferred to an appropriate vector. The vector is then injected into the tissue in a particular way to obtain and enter the target cell and with the application of the protein synthesis machinery of the cell, gene translation starts.

An optimal vector must suit for the purpose of the gene therapy and a property that is essential for one vector might be useless and even harmful for another. However as a rule, the less immunogenic be a vector, the better. Besides, vectors that can carry larger sequence are often preferred under equal condition, and the ability to express both in proliferative and non-proliferative cells is another functional feature.

At the present time, there are viral and non-viral vectors. Adenovirus, Herpes simplex virus, Lentiviruses, Retroviruses and Adeno-associated virus is among the most popular viral vectors [76],[77],[],[78],[79],[80],[81] and Naked DNA, Cationic liposomes, Minimalistic immunologically defined gene expression vectors as well as Polyethylenimines and Polyamidoamine dendrimers are among the non-viral biologic methods. [81],[82],[83]

Physical methods have also moved forward and progressed in recent years. Electroporation, Sonoporation and Gene gun have been utilized with real success. [84],[85],[86],[87],[88]

Details of vectors and physical methods are beyond the scope of this paper.

Conclusion

Excessive body of documents indicates the role of genes in the pathogenesis of KC and further investigations are to complete this complex puzzle. As discussed above, despite a very comprehensive genetic analysis, no single gene was discovered as the disease causing gene. And to the time of finding the gene (s), despite progress in gene delivery and control of the microenvironment of the cornea, the application of gene therapy in the treatment of the KC remains in future prospect.

References

1.Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998;42:297-319.

2.Romero-Jimnez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: A review. Cont Lens Anterior Eye 2010;33:157-66.

3.Hofstetter HW. A keratoscopic survey of 13,395 eyes. Am J Optom Arch Am Acad Optom 1959;36:3-11.

4.Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol 1986;101:267-73.

5.Karimian F, Aramesh S, Rabei HM, Javadi MA, Rafati N. Topographic evaluation of relatives of patients with keratoconus. Cornea 2008;27:874-8.

6.Kaya V, Utine CA, Altunsoy M, Oral D, Yilmaz OF. Evaluation of corneal topography with Orbscan II in first-degree relatives of patients with keratoconus. Cornea 2008;27:531-4.

7.Wheeler J, Hauser MA, Afshari NA, Allingham RR, Liu Y. The Genetics of Keratoconus: A Review. Reprod Syst Sex Disord 2012.

8.Saee-Rad S, Hashemi H, Miraftab M, Noori-Daloii MR, Chaleshtori MH, Raoofian R, et al. Mutation analysis of VSX1 and SOD1 in Iranian patients with keratoconus. Mol Vis 2011;17:3128-36.

9.Bykhovskaya Y, Li X, Epifantseva I, Haritunians T, Siscovick D, Aldave A, et al. Variation in the lysyl oxidase (LOX) gene is associated with keratoconus in family-based and case-control studies. Invest Ophthalmol Vis Sci 2012;53:4152-7.

10.Burdon KP, Vincent AL. Insights into keratoconus from a genetic perspective. Clin Exp Optom 2013;96:146-54.

11.Cristina Kenney M, Brown DJ. The cascade hypothesis of keratoconus. Cont Lens Anterior Eye 2003;26:139-46.

12.Wilson SE, He YG, Weng J, Li Q, McDowall AW, Vital M, et al. Epithelial injury induces keratocyte apoptosis: Hypothesized role for the interleukin-1 system in the modulation of corneal tissue organization and wound healing. Exp Eye Res 1996;62:325-7.

13.Bureau J, Fabre EJ, Hecquet C, Pouliquen Y, Lorans G. Modification of prostaglandin E2 and collagen synthesis in keratoconus fibroblasts, associated with an increase of interleukin 1 alpha receptor number. C R Acad Sci III 1993;316:425-30.

14.Lema I, Durn JA, Ruiz C, Dez-Feijoo E, Acera A, Merayo J. Inflammatory response to contact lenses in patients with keratoconus compared with myopic subjects. Cornea 2008;27:758-63.

15.Sawaguchi S, Yue BY, Sugar J, Gilboy JE. Lysosomal enzyme abnormalities in keratoconus. Arch Ophthalmol 1989;107:1507-10.

16.Sawaguchi S, Twining SS, Yue BY, Chang SH, Zhou X, Loushin G, et al. Alpha 2-macroglobulin levels in normal human and keratoconus corneas. Invest Ophthalmol Vis Sci 1994;35:4008-14.

17.Godel V, Blumenthal M, Iaina A. Congenital Leber amaurosis, keratoconus, and mental retardation in familial juvenile nephronophtisis. J Pediatr Ophthalmol Strabismus 1978;15:89-91.

18.Smolin G, Thoft RA. The Cornea. Scientific Foundations and Clinical Practice. 1 st ed. Boston: Little Brown; 1983. p. 21-5.

19.Zimmermann DR, Fischer RW, Winterhalter KH, Witmer R, Vaughan L. Comparative studies of collagens in normal and keratoconus corneas. Exp Eye Res 1988;46:431-42.

20.Gordon MO, Steger-May K, Szczotka-Flynn L, Riley C, Joslin CE, Weissman BA, et al. Baseline factors predictive of incident penetrating keratoplasty in keratoconus. Am J Ophthalmol 2006;142:923-30.

21.Watson SL, Ramsay A, Dart JK, Bunce C, Craig E. Comparison of deep lamellar keratoplasty and penetrating keratoplasty in patients with keratoconus. Ophthalmology 2004;111:1676-82.

22.Sray WA, Cohen EJ, Rapuano CJ, Laibson PR. Factors associated with the need for penetrating keratoplasty in keratoconus. Cornea 2002;21:784-6.

23.Chang HY, Chodosh J. The genetics of keratoconus. Semin Ophthalmol 2013;28:275-80.

24.Etzine S. Conical cornea in identical twins. S Afr Med J 1954;28:154-5.

25.Gonzalez V, McDonnell PJ. Computer-assisted corneal topography in parents of patients with keratoconus. Arch Ophthalmol 1992;110:1413-4.

26.Hammerstein W. Genetics of conical cornea (author's transl). Albrecht Von Graefes Arch Klin Exp Ophthalmol 1974;190:293-308.

27.Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol 1984;28:293-322.

28.Parker J, Ko WW, Pavlopoulos G, Wolfe PJ, Rabinowitz YS, Feldman ST. Videokeratography of keratoconus in monozygotic twins. J Refract Surg 1996;12:180-3.

29.Falls HF, Allen AW. Dominantly inherited keratoconus. J Genet Hum 1969;17:317-24.

30.Ihalainen A. Clinical and epidemiological features of keratoconus genetic and external factors in the pathogenesis of the disease. Acta Ophthalmol Suppl 1986;178:1-64.

31.Redmond KB. The role of heredity in keratoconus. Trans Ophthalmol Soc Aust 1968;27:52-4.

32.Cullen JF, Butler HG. Mongolism (down's syndrome) and keratoconus. Br J Ophthalmol 1963;47:321-30.

33.Beckh U, Schnherr U, Naumann GO. Autosomal dominant keratoconus as the chief ocular symptom in Lobstein osteogenesis imperfecta tarda. Klin Monbl Augenheilkd 1995;206:268-72.

34.Elder MJ. Leber congenital amaurosis and its association with keratoconus and keratoglobus. J Pediatr Ophthalmol Strabismus 1994;31:38-40.

35.Wachtmeister L, Ingemansson SO, Mller E. Atopy and HLA antigens in patients with keratoconus. Acta Ophthalmol (Copenh) 1982;60:113-22.

36.Brancati F, Valente EM, Sarkozy A, Fehr J, Castori M, Del Duca P, et al. A locus for autosomal dominant keratoconus maps to human chromosome 3p14-q13. J Med Genet 2004;41:188-92.

37.Gajecka M, Radhakrishna U, Winters D, Nath SK, Rydzanicz M, Ratnamala U, et al. Localization of a gene for keratoconus to a 5.6-Mb interval on 13q32. Invest Ophthalmol Vis Sci 2009;50:1531-9.

38.Hutchings H, Ginisty H, Le Gallo M, Levy D, Stosser F, Rouland JF, et al. Identification of a new locus for isolated familial keratoconus at 2p24. J Med Genet 2005;42:88-94.

39.Nowak DM, Gajecka M. The genetics of keratoconus. Middle East Afr J Ophthalmol 2011;18:2-6.[PUBMED]

40.Tang YG, Rabinowitz YS, Taylor KD, Li X, Hu M, Picornell Y, et al. Genomewide linkage scan in a multigeneration Caucasian pedigree identifies a novel locus for keratoconus on chromosome 5q14.3-q21.1. Genet Med 2005;7:397-405.

41.Tyynismaa H, Sistonen P, Tuupanen S, Tervo T, Dammert A, Latvala T, et al. A locus for autosomal dominant keratoconus: Linkage to 16q22.3-q23.1 in Finnish families. Invest Ophthalmol Vis Sci 2002;43:3160-4.

42.Burdon KP, Coster DJ, Charlesworth JC, Mills RA, Laurie KJ, Giunta C, et al. Apparent autosomal dominant keratoconus in a large Australian pedigree accounted for by digenic inheritance of two novel loci. Hum Genet 2008;124:379-86.

43.Karolak JA, Kulinska K, Nowak DM, Pitarque JA, Molinari A, Rydzanicz M, et al. Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian families with keratoconus. Mol Vis 2011;17:827-43.

44.Hughes AE, Dash DP, Jackson AJ, Frazer DG, Silvestri G. Familial keratoconus with cataract: Linkage to the long arm of chromosome 15 and exclusion of candidate genes. Invest Ophthalmol Vis Sci 2003;44:5063-6.

45.Semina EV, Mintz-Hittner HA, Murray JC. Isolation and characterization of a novel human paired-like homeodomain-containing transcription factor gene, VSX1, expressed in ocular tissues. Genomics 2000;63:289-93.

46.Hon E, Greenberg A, Kopp KK, Rootman D, Vincent AL, Billingsley G, et al. VSX1: A gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet 2002;11:1029-36.

47.Eran P, Almogit A, David Z, Wolf HR, Hana G, Yaniv B, et al. The D144E substitution in the VSX1 gene: A non-pathogenic variant or a disease causing mutation? Ophthalmic Genet 2008;29:53-9.

48.Mintz-Hittner HA, Semina EV, Frishman LJ, Prager TC, Murray JC. VSX1 (RINX) mutation with craniofacial anomalies, empty sella, corneal endothelial changes, and abnormal retinal and auditory bipolar cells. Ophthalmology 2004;111:828-36.

49.Mok JW, Baek SJ, Joo CK. VSX1 gene variants are associated with keratoconus in unrelated Korean patients. J Hum Genet 2008;53:842-9.

50.Bisceglia L, Ciaschetti M, De Bonis P, Campo PA, Pizzicoli C, Scala C, et al. VSX1 mutational analysis in a series of Italian patients affected by keratoconus: Detection of a novel mutation. Invest Ophthalmol Vis Sci 2005;46:39-45.

51.Abu-Amero KK, Kalantan H, Al-Muammar AM. Analysis of the VSX1 gene in keratoconus patients from Saudi Arabia. Mol Vis 2011;17:667-72.

52.Grnauer-Kloevekorn C, Duncker GI. Keratoconus: Epidemiology, risk factors and diagnosis. Klin Monbl Augenheilkd 2006;223:493-502.

53.Tanwar M, Kumar M, Nayak B, Pathak D, Sharma N, Titiyal JS, et al. VSX1 gene analysis in keratoconus. Mol Vis 2010;16:2395-401.

54.Valleix S, Nedelec B, Rigaudiere F, Dighiero P, Pouliquen Y, Renard G, et al. H244R VSX1 is associated with selective cone ON bipolar cell dysfunction and macular degeneration in a PPCD family. Invest Ophthalmol Vis Sci 2006;47:48-54.

55.Aldave AJ, Yellore VS, Salem AK, Yoo GL, Rayner SA, Yang H, et al. No VSX1 gene mutations associated with keratoconus. Invest Ophthalmol Vis Sci 2006;47:2820-2.

56.Tang YG, Picornell Y, Su X, Li X, Yang H, Rabinowitz YS. Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus. Cornea 2008;27:189-92.

57.Stabuc-Silih M, Strazisar M, Hawlina M, Glavac D. Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea 2010;29:172-6.

58.Udar N, Atilano SR, Brown DJ, Holguin B, Small K, Nesburn AB, et al. SOD1: A candidate gene for keratoconus. Invest Ophthalmol Vis Sci 2006;47:3345-51.

59.Mashhour B, Couton D, Perricaudet M, Briand P. In vivo adenovirus-mediated gene transfer into ocular tissues. Gene Ther 1994;1:122-6.

60.Sakamoto T, Oshima Y, Nakagawa K, Ishibashi T, Inomata H, Sueishi K. Target gene transfer of tissue plasminogen activator to cornea by electric pulse inhibits intracameral fibrin formation and corneal cloudiness. Hum Gene Ther 1999;10:2551-7.

61.Klebe S, Sykes PJ, Coster DJ, Krishnan R, Williams KA. Prolongation of sheep corneal allograft survival by ex vivo transfer of the gene encoding interleukin-10. Transplantation 2001;71:1214-20.

62.Lai CM, Brankov M, Zaknich T, Lai YK, Shen WY, Constable IJ, et al. Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization. Hum Gene Ther 2001;12:1299-310.

63.Lai YK, Shen WY, Brankov M, Lai CM, Constable IJ, Rakoczy PE. Potential long-term inhibition of ocular neovascularisation by recombinant adeno-associated virus-mediated secretion gene therapy. Gene Ther 2002;9:804-13.

64.Pleyer U, Bertelmann E, Rieck P, Hartmann C, Volk HD, Ritter T. Survival of corneal allografts following adenovirus-mediated gene transfer of interleukin-4. Graefes Arch Clin Exp Ophthalmol 2000;238:531-6.

65.Gong N, Pleyer U, Yang J, Vogt K, Hill M, Anegon I, et al. Influence of local and systemic CTLA4Ig gene transfer on corneal allograft survival. J Gene Med 2006;8:459-67.

66.Koelle DM, Ghiasi H. Prospects for developing an effective vaccine against ocular herpes simplex virus infection. Curr Eye Res 2005;30:929-42.

67.Jun AS, Larkin DF. Prospects for gene therapy in corneal disease. Eye (Lond) 2003;17:906-11.

68.Yeh P, Colby C. Corneal endothelial dystrophies. In: Foster C, Azar DT, Dohlman CH, editors. Cornea: Scientific Foundations and Clinical Practice. 4 th ed. Philadelphia: Lippincott Williams and Wilkins; 2005. p. 849-73.

69.Nishida T. Cornea. In: Krachmer J, Mannis, MJ, Holland EJ, editors. Cornea. Vol. 1. Philadelphia: Elsevier Mosby; 2005. p. 3-26.

70.Bouchard C. The ocular immune response. In: Krachmer J, Mannis MJ, Holland EJ, editors. Cornea. Vol. 1. Philadelphia: Elsevier Mosby; 2005. p. 59-93.

71.Foster C, Streilein JW. Basic immunology. In: Foster C, Azar DT, Dohlman CH, editors. The Cornea: Scientific Foundations and Clinical Practice. 4 th ed. Philadelphia: Lippincott Williams and Wilkins; 2005. p. 59-102.

72.Larkin DF, Oral HB, Ring CJ, Lemoine NR, George AJ. Adenovirus-mediated gene delivery to the corneal endothelium. Transplantation 1996;61:363-70.

73.Zhou R, Dean DA. Gene transfer of interleukin 10 to the murine cornea using electroporation. Exp Biol Med (Maywood) 2007;232:362-9.

74.Toropainen E, Hornof M, Kaarniranta K, Johansson P, Urtti A. Corneal epithelium as a platform for secretion of transgene products after transfection with liposomal gene eyedrops. J Gene Med 2007;9:208-16.

75.Stechschulte SU, Joussen AM, von Recum HA, Poulaki V, Moromizato Y, Yuan J, et al. Rapid ocular angiogenic control via naked DNA delivery to cornea. Invest Ophthalmol Vis Sci 2001;42:1975-9.

76.Lundstrom K. Gene therapy applications of viral vectors. Technol Cancer Res Treat 2004;3:467-77.

77.Lundstrom K, Boulikas T. Viral and non-viral vectors in gene therapy: Technology development and clinical trials. Technol Cancer Res Treat 2003;2:471-86.

78.Young LS, Searle PF, Onion D, Mautner V. Viral gene therapy strategies: From basic science to clinical application. J Pathol 2006;208:299-318.

79.Latchman DS. Herpes simplex virus-based vectors for the treatment of cancer and neurodegenerative disease. Curr Opin Mol Ther 2005;7:415-8.

80.Argnani R, Lufino M, Manservigi M, Manservigi R. Replication-competent herpes simplex vectors: Design and applications. Gene Ther 2005;12 Suppl 1:S170-7.

81.Nishikawa M, Takakura Y, Hashida M. Pharmacokinetics of Plasmid DNA-Based Non-viral Gene Medicine. Adv Genet 2005;53PA: 47-68.

82.Zhang EP, Franke J, Schroff M, Junghans C, Wittig B, Hoffmann F. Ballistic CTLA4 and IL-4 gene transfer into the lower lid prolongs orthotopic corneal graft survival in mice. Graefes Arch Clin Exp Ophthalmol 2003;241:921-6.

83.Mller A, Zhang EP, Schroff M, Wittig B, Hoffmann F. Influence of ballistic gene transfer on antigen-presenting cells in murine corneas. Graefes Arch Clin Exp Ophthalmol 2002;240:851-9.

84.Wells DJ. Gene therapy progress and prospects: Electroporation and other physical methods. Gene Ther 2004;11:1363-9.

85.Mehier-Humbert S, Guy RH. Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 2005;57:733-53.

86.Tanelian DL, Barry MA, Johnston SA, Le T, Smith G. Controlled gene gun delivery and expression of DNA within the cornea. Biotechniques 1997;23:484-8.

87.Sonoda S, Tachibana K, Uchino E, Okubo A, Yamamoto M, Sakoda K, et al. Gene transfer to corneal epithelium and keratocytes mediated by ultrasound with microbubbles. Invest Ophthalmol Vis Sci 2006;47:558-64.

88.Gardlk R, Plffy R, Hodosy J, Lukcs J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit 2005;11:RA110-21.