keandalan 2.pptx

Upload: febriantoutomo

Post on 14-Apr-2018

267 views

Category:

Documents


5 download

TRANSCRIPT

  • 7/27/2019 Keandalan 2.pptx

    1/63

    1

    Fundamentals of Reliability Engineering

    and Applications

    Dr. E. A. Elsayed

    Department of Industrial and Systems Engineering

    Rutgers University

    ([email protected])

    Systems Engineering DepartmentKing Fahd University of Petroleum and Minerals

    KFUPM, Dhahran, Saudi Arabia

    April 20, 2009

  • 7/27/2019 Keandalan 2.pptx

    2/63

    2

    Reliability Engineering

    Outline

    Reliability definition

    Reliability estimation

    System reliability calculations

    2

  • 7/27/2019 Keandalan 2.pptx

    3/63

    3

    Reliability Importance

    One of the most important characteristics of a product, itis a measure of its performance with time (Transatlanticand Transpacific cables)

    Products recalls are common (only after time elapses). InOctober 2006, the Sony Corporation recalled up to 9.6million of its personal computer batteries

    Products are discontinued because of fatal accidents(Pinto, Concord)

    Medical devices and organs (reliability of artificial organs)

    3

  • 7/27/2019 Keandalan 2.pptx

    4/63

    4

    Reliability Importance

    Business data

    4

    Warranty costs measured in million dollars for several large

    American manufacturers in 2006 and 2005.

    (www.warrantyweek.com)

  • 7/27/2019 Keandalan 2.pptx

    5/63

    Maximum Reliability level

    Reliability

    WithRepairs

    Time

    NoRepairs

    Some Initial Thoughts

    Repairable and Non-Repairable

    Another measure of reliability is availability (probability

    that the system provides its functions when needed).

    5

  • 7/27/2019 Keandalan 2.pptx

    6/63

    Some Initial Thoughts

    Warranty

    Will you buy additional warranty? Burn in and removal of early failures.

    (Lemon Law).

    Time

    Failu

    reRate

    Early FailuresConstantFailure Rate

    IncreasingFailureRate

    6

  • 7/27/2019 Keandalan 2.pptx

    7/63

    7

    Reliability Definitions

    Reliabilityis a time dependent characteristic.

    It can only be determined after an elapsed time but

    can be predicted at any time.

    It is the probability that a product or service will

    operate properly for a specified period of time (design

    life) under the design operating conditions withoutfailure.

    7

  • 7/27/2019 Keandalan 2.pptx

    8/63

    8

    Other Measures of Reliability

    Availabilityis used for repairable systems

    It is the probability that the system is operationalat any random time t.

    It can also be specified as a proportion of timethat the system is available for use in a given

    interval (0,T).

    8

  • 7/27/2019 Keandalan 2.pptx

    9/63

    9

    Other Measures of Reliability

    Mean Time To Failure (MTTF):It is the averagetime that elapses until a failure occurs.

    It does not provide information about the distribution

    of the TTF, hence we need to estimate the varianceof the TTF.

    Mean Time Between Failure (MTBF):It is theaverage time between successive failures.

    It is used for repairable systems.

    9

  • 7/27/2019 Keandalan 2.pptx

    10/63

    10

    Mean Time to Failure: MTTF

    1

    1

    n

    i

    i

    MTTF tn

    0 0( ) ( )MTTF tf t dt R t dt

    Time t

    R(t)

    1

    0

    1

    22 is better than 1?

    10

  • 7/27/2019 Keandalan 2.pptx

    11/63

    11

    Mean Time Between Failure: MTBF

    11

  • 7/27/2019 Keandalan 2.pptx

    12/63

    12

    Other Measures of Reliability

    Mean Residual Life (MRL):It is the expected remaininglife, T-t, given that the product, component, or a system

    has survived to time t.

    Failure Rate (FITs failures in 109hours):The failure rate in

    a time interval [ ] is the probability that a failure per

    unit time occurs in the interval given that no failure has

    occurred prior to the beginning of the interval.

    Hazard Function:It is the limit of the failure rate as the

    length of the interval approaches zero.

    1 2t t

    1( ) [ | ] ( )

    ( ) tL t E T t T t f d t

    R t

    12

  • 7/27/2019 Keandalan 2.pptx

    13/63

    13

    Basic Calculations

    0

    1

    0 0

    0

    ( ), ( )

    ( ) ( ) ( ) , ( ) ( )

    ( )

    n

    i

    fi

    f sr

    s

    t

    n tMTTF f tn n t

    n t n tt R t P T t

    n t t n

    Suppose n0 identical units are subjected to atest. During the interval (t, t+t), we observed

    nf(t) failed components. Let ns(t) be the

    surviving components at time t, then the MTTF,

    failure density, hazard rate, and reliability attime t are:

    13

  • 7/27/2019 Keandalan 2.pptx

    14/63

    14

    Basic Definitions Contd

    The unreliability F(t) is

    ( ) 1 ( )F t R t

    Example: 200 light bulbs were tested and the failures in1000-hour intervals are

    Time Interval (Hours) Failures in the

    interval

    0-1000

    1001-2000

    2001-3000

    3001-4000

    4001-5000

    5001-6000

    6001-7000

    100

    40

    20

    15

    10

    8

    7

    Total 200

    14

  • 7/27/2019 Keandalan 2.pptx

    15/63

    15

    Calculations

    Time

    Interval

    Failure Density

    ( )f t x 410

    Hazard rate

    ( )h t x 410

    0-1000

    1001-2000

    2001-3000

    6001-7000

    3

    1005.0

    200 10

    3

    402.0

    200 10

    3

    201.0

    200 10

    ..

    3

    70.35

    200 10

    3

    1005.0

    200 10

    3

    404.0

    100 10

    3

    203.33

    60 10

    3

    710

    7 10

    Time Interval

    (Hours)

    Failures

    in the

    interval

    0-10001001-2000

    2001-3000

    3001-4000

    4001-5000

    5001-6000

    6001-7000

    10040

    20

    15

    10

    8

    7

    Total 200

    15

  • 7/27/2019 Keandalan 2.pptx

    16/63

    16

    Failure Density vs. Time

    1 2 3 4 5 6 7 x 103

    Time in hours

    16

    10-4

  • 7/27/2019 Keandalan 2.pptx

    17/63

    17

    Hazard Rate vs. Time

    1 2 3 4 5 6 7 103

    Time in Hours

    17

    10-4

  • 7/27/2019 Keandalan 2.pptx

    18/63

    18

    Calculations

    Time Interval Reliability ( )R t

    0-1000

    1001-2000

    2001-3000

    6001-7000

    200/200=1.0

    100/200=0.5

    60/200=0.33

    0.35/10=.035

    Time Interval

    (Hours)

    Failures

    in the

    interval

    0-1000

    1001-20002001-3000

    3001-4000

    4001-5000

    5001-6000

    6001-7000

    100

    4020

    15

    10

    8

    7

    Total 200

    18

  • 7/27/2019 Keandalan 2.pptx

    19/63

    19

    Reliability vs. Time

    1 2 3 4 5 6 7 x 103

    Time in hours

    19

  • 7/27/2019 Keandalan 2.pptx

    20/63

    20

    Exponential Distribution

    Definition

    ( ) exp( )f t t

    ( ) exp( ) 1 ( )R t t F t

    ( ) 0, 0t t

    (t)

    Time

    20

  • 7/27/2019 Keandalan 2.pptx

    21/63

    21

    Exponential Model Contd

    1MTTF

    2

    1Variance

    12Median life (ln )

    Statistical Properties

    21

    6Failures/hr5 10

    MTTF=200,000 hrs or 20 years

    Median life =138,626 hrs or 14

    years

  • 7/27/2019 Keandalan 2.pptx

    22/63

    22

    Empirical Estimate ofF(t)and R(t)

    When the exact failure times of units is known, weuse an empirical approach to estimate the reliability

    metrics. The most common approach is the Rank

    Estimator. Order the failure time observations (failure

    times) in an ascending order:

    1 2 1 1 1... ...

    i i i n n t t t t t t t

  • 7/27/2019 Keandalan 2.pptx

    23/63

    23

    Empirical Estimate ofF(t)and R(t)

    is obtained by several methods

    1. Uniform naive estimator

    2. Mean rank estimator

    3. Median rank estimator (Bernard)

    4. Median rank estimator (Blom)

    ( )iF t

    i

    n

    1

    i

    n

    0 3

    0 4

    .

    .

    i

    n

    3 8

    1 4

    /

    /

    i

    n

  • 7/27/2019 Keandalan 2.pptx

    24/63

    24

    Empirical Estimate ofF(t)and R(t)

    Assume that we use the mean rank estimator

    24

    1

    ( )1

    1 ( ) 0,1,2,...,

    1

    i

    i i i

    iF t

    n

    n iR t t t t i n

    n

    Since f(t) is the derivative ofF(t), then

    11

    ( ) ( )( )

    .( 1)

    1 ( )

    .( 1)

    i ii i i i

    i

    i

    i

    F t F tf t t t tt n

    f tt n

  • 7/27/2019 Keandalan 2.pptx

    25/63

    25

    Empirical Estimate ofF(t)and R(t)

    25

    1

    ( ) .( 1 )

    ( ) ln ( ( )

    i

    i

    i i

    t t n i

    H t R t

    Example:

    Recorded failure times for a sample of 9 units are

    observed at t=70, 150, 250, 360, 485, 650, 855,

    1130, 1540. Determine F(t), R(t), f(t), ,H(t)( )t

  • 7/27/2019 Keandalan 2.pptx

    26/63

    26

    Calculations

    26

    i t (i) t(i+1) F=i/10 R=(10-i)/10 f=0.1/t =1/(t.(10-i)) H(t)0 0 70 0 1 0.001429 0.001429 0

    1 70 150 0.1 0.9 0.001250 0.001389 0.10536052

    2 150 250 0.2 0.8 0.001000 0.001250 0.22314355

    3 250 360 0.3 0.7 0.000909 0.001299 0.35667494

    4 360 485 0.4 0.6 0.000800 0.001333 0.51082562

    5 485 650 0.5 0.5 0.000606 0.001212 0.69314718

    6 650 855 0.6 0.4 0.000488 0.001220 0.91629073

    7 855 1130 0.7 0.3 0.000364 0.001212 1.2039728

    8 1130 1540 0.8 0.2 0.000244 0.001220 1.60943791

    9 1540 - 0.9 0.1 2.30258509

  • 7/27/2019 Keandalan 2.pptx

    27/63

    27

    Reliability Function

    27

    Reliability

    Time

  • 7/27/2019 Keandalan 2.pptx

    28/63

    28

    Probability Density Function

    28

    y = 0.0014e-0.002xR = 0.9949

    DensityFunction

    Time

  • 7/27/2019 Keandalan 2.pptx

    29/63

    29

    Failure Rate

    Constant

    29

    Failure Rate

    Time

  • 7/27/2019 Keandalan 2.pptx

    30/63

    30

    Exponential Distribution: Another

    Example

    Given failure data:

    Plot the hazard rate, if constant then use the

    exponential distribution with f(t), R(t) and h(t) asdefined before.

    We use a software to demonstrate these steps.

    30

  • 7/27/2019 Keandalan 2.pptx

    31/63

    31

    Input Data

    31

  • 7/27/2019 Keandalan 2.pptx

    32/63

    32

    Plot of the Data

    32

  • 7/27/2019 Keandalan 2.pptx

    33/63

    33

    Exponential Fit

    33

    E ti l A l i

  • 7/27/2019 Keandalan 2.pptx

    34/63

    Exponential Analysis

  • 7/27/2019 Keandalan 2.pptx

    35/63

    35

    Go Beyond Constant Failure Rate

    - Weibull Distribution (Model) and

    Others

    35

  • 7/27/2019 Keandalan 2.pptx

    36/63

    36

    The General Failure Curve

    Time t

    1

    Early LifeRegion

    2

    Constant Failure RateRegion3

    Wear-OutRegion

    Failu

    reRate

    0

    ABC

    Module

    36

  • 7/27/2019 Keandalan 2.pptx

    37/63

    37

    Related Topics (1)

    Time t

    1

    Early LifeRegion

    Failur

    eRate

    0

    Burn-in:

    According to MIL-STD-883C,

    burn-in is a test performed to

    screen or eliminate marginalcomponents with inherent

    defects or defects resulting

    from manufacturing process.

    37

  • 7/27/2019 Keandalan 2.pptx

    38/63

    38

    21

    Motivation Simple Example

    Suppose the life times (in hours) of severalunits are: 1 2 3 5 10 15 22 28

    1 2 3 5 10 15 22 28 10.75 hours8

    MTTF

    3-2=1 5-2=3 10-2=8 15-2=13 22-2=20 28-2=26

    1 3 8 13 20 26(after 2 hours) 11.83 hours >

    6MRL MTTF

    After 2 hours of burn-in

  • 7/27/2019 Keandalan 2.pptx

    39/63

    39

    Motivation - Use of Burn-in

    Improve reliability using cull eliminator

    1

    2

    MTTF=5000 hours

    Company

    Company

    After burn-inBefore burn-in

    39

  • 7/27/2019 Keandalan 2.pptx

    40/63

    40

    Related Topics (2)

    Time t

    3

    Wear-OutRegion

    Haza

    rdRate

    0

    Maintenance:An important assumption for

    effective maintenance is that

    component has an

    increasing failure rate.

    Why?

    40

  • 7/27/2019 Keandalan 2.pptx

    41/63

    41

    Weibull Model

    Definition

    1

    ( ) exp 0, 0, 0t t

    f t t

    ( ) exp 1 ( )

    t

    R t F t

    1

    ( ) ( ) / ( )t

    t f t R t

    41

  • 7/27/2019 Keandalan 2.pptx

    42/63

    42

    Weibull Model Cont.

    1/

    0

    1(1 )tMTTF t e dt

    2

    2 2 1(1 ) (1 )Var

    1/Median life ((ln2) )

    Statistical properties

    42

  • 7/27/2019 Keandalan 2.pptx

    43/63

    43

    Weibull Model

    43

  • 7/27/2019 Keandalan 2.pptx

    44/63

    44

    Weibull Analysis: Shape Parameter

    44

  • 7/27/2019 Keandalan 2.pptx

    45/63

    45

    Weibull Analysis: Shape Parameter

    45

  • 7/27/2019 Keandalan 2.pptx

    46/63

    46

    Weibull Analysis: Shape Parameter

    46

  • 7/27/2019 Keandalan 2.pptx

    47/63

    47

    Normal Distribution

    47

  • 7/27/2019 Keandalan 2.pptx

    48/63

    Weibull Model

    1

    ( ) ( ) .

    t

    h t

    ( )1( ) ( )

    tt

    f t e

    0

    ( )1( ) ( )

    t

    F t e d

    ( )

    ( ) 1

    t

    F t e

    ( )

    ( )t

    R t e

    I t D t

  • 7/27/2019 Keandalan 2.pptx

    49/63

    Input Data

  • 7/27/2019 Keandalan 2.pptx

    50/63

    Plots of the Data

    Weibull Fit

  • 7/27/2019 Keandalan 2.pptx

    51/63

    Weibull Fit

    Test for Weibull Fit

  • 7/27/2019 Keandalan 2.pptx

    52/63

    Test for Weibull Fit

    Parameters for Weibull

  • 7/27/2019 Keandalan 2.pptx

    53/63

    Parameters for Weibull

    Weibull Analysis

  • 7/27/2019 Keandalan 2.pptx

    54/63

    Weibull Analysis

    E l 2 I t D t

  • 7/27/2019 Keandalan 2.pptx

    55/63

    Example 2: Input Data

  • 7/27/2019 Keandalan 2.pptx

    56/63

    Example 2: Plots of the Data

    Example 2: Weibull Fit

  • 7/27/2019 Keandalan 2.pptx

    57/63

    Example 2: Weibull Fit

    Example 2:Test for Weibull Fit

  • 7/27/2019 Keandalan 2.pptx

    58/63

    Example 2:Test for Weibull Fit

    Example 2: Parameters for Weibull

  • 7/27/2019 Keandalan 2.pptx

    59/63

    Example 2: Parameters for Weibull

    Weibull Analysis

  • 7/27/2019 Keandalan 2.pptx

    60/63

    Weibull Analysis

  • 7/27/2019 Keandalan 2.pptx

    61/63

    61

    Versatility of Weibull Model

    Hazard rate:

    Time t

    1

    Constant Failure RateRegion

    HazardR

    ate

    0

    Early LifeRegion

    0 1

    Wear-OutRegion

    1

    1

    ( ) ( ) / ( ) tt f t R t

    61

  • 7/27/2019 Keandalan 2.pptx

    62/63

    62

    ( ) 1 ( ) 1 exp

    1ln ln ln ln

    1 ( )

    tF t R t

    tF t

    Graphical Model Validation

    Weibull Plot

    is linear function ofln(time).

    Estimate attiusing Bernards Formula

    ( )iF t

    0.3 ( )

    0.4i

    iF t

    n

    Forn observed failure time data 1 2( , ,..., ,... )i nt t t t

    62

  • 7/27/2019 Keandalan 2.pptx

    63/63

    Example - Weibull Plot

    T~Weibull(1, 4000) Generate 50 data

    -5 0 5

    0.01

    0.02

    0.05

    0.10

    0.25

    0.50

    0.75

    0.90

    0.96

    0.99

    Probability

    Weibull Probability Plot

    0.632

    If the straight line fitsthe data, Weibulldistribution is a good

    model for the data