brg-s-t-d-rd 85+835-1x30

Upload: aziz-ul-hakeem

Post on 26-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    1/19

    PRESTRESSED CONCRETE BRIDGEAT KM 85 + 835

    ON TOPI DARBAND ROAD

    INTRODUCTION

    This document is prepared for the Prestressed Pre Cast Girders and R.C.C. deck slab bridgesituated on SWAB T!P "ARBA#" road at KM 85 + 835. This document is submitted as part ofthe Contract Agreement bet$een the Consultants %&S '(B)R C!#S*+T#G )#G#))RS ,'C)-and the Client #AT!#A+ (G(WA A*T(!RT ,#(A- for design of the SWAB T!P "ARBA#" road. AASHTO LRFD 1994, ,BR"G) ")SG# SP)C/CAT!#S- is the go0erningcode1 $here there are some ambiguities in the go0erning code1 specifications of AAS(T! standard2334 code are preferred ,footnotes are pro0ided throughout the document $here standardspecifications are used-.

    1. GENERAL INFORMATION

    1.1 DESIGN SPECIFICATION

    2.2.22.2.2 AAS(T! +R/" code 2335 ,BR"G) ")SG# SP)C/CAT!#S-

    2.2.62.2.6 AAS(T! Standard specifications 2334.

    2.2.72.2.7 Pakistan Code of Practice for (igh$a8 Bridges ,PCP(B- 2349.

    1.2 DESIGN PHILOSOPHY L!"!# $#%#&$, S&'. 1.3.2 () AASHTO LRFD 1994*

    2.6.22.6.2 Ser0ice limit state ,/le:ural design of PC Girders and stabilit8 check of the abutments-.

    2.6.62.6.6 Strength limit state ,"esign of all the structural components e:cept PC girders-.

    2.6.62.6.6 /atigue limit state ,"esign of PC girders-.

    1.3 LIE LOADS

    2.7.22.7.2 Single +ane of %ilitar8 Class 9; +oading ,PCP(B1 2349.-.

    2.7.62.7.6 Class A +oading ,PCP(B-.

    2.7.62.7.6 (S6;7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    2/19

    2.7.62.7.6 "esign +ane +oad plus "esign Truck,(+ 371 AAS(T! +R/" 2335-.

    2.7.62.7.6 "esign +ane +oad plus "esign Tandem ,(+ 371 AAS(T! +R/" 2335-.

    1.4 HYDROLOGICAL INFORMATION S&'. 2. () AASHTO LRFD*

    2.5.22.5.2 Catchment area 2.2> 'm6.

    2.5.62.5.6 "ischarge,2;; 8ears- 6;.3 m7&sec.

    2.5.72.5.7 Time of concentration ;.767 hrs.

    2.5.52.5.5 Scour "epth$ith respect to (./.+. 2.6 meters.

    2.5.>2.5.> Coefficient of run off ;.4

    2.5.42.5.4 +ace8 s silt factor 5.9>

    #oteD The finished road ele0ations determine height of the BridgeE (./.+. sho$n on the dra$ingsis the flood that can pass easil8 under the Bridge.

    1.5 GEOTECHNICAL INFORMATION

    2.>.22.>.2 *nit $eight of the soil under the abutment foundation soil 297;; # &m7.

    2.>.62.>.6 Angle of internal friction of the granular backfill 7>

    2.>.72.>.7 Presumpti0e allo$able bearing capacit8 ,RefD AAS(T! +R/" code- ;.>9 to ;.34 %Pa.

    2.>.52.>.5 Recommended 0alue to be used for the general geolog8anticipated at the bridge site ,0er8 dense gra0el sand mi:ture- ;.49 %Pa.

    #oteD Presumpti0e allo$able bearing capacit8 is b8 no mean a substitute for proper soilin0estigation. Therefore1 it is recommended that a proper geotechnical in0estigation must be carriedout to finaliFe the bearing capacit8 at the time of construction stage.

    Rational formula for discharges ,(8drolog8 in Practice b8 )leFabeth %. Sha$ pp&639-.(8drolog8 in Practice b8 )liFabeth %. Sha$ pp&63?-.RefD +ace8 s scour depth euation for regime channels.

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    3/19

    2. SUPER STRUCTURE DESIGN

    2.1 GENERAL IFORMATIONS ABOUT BRIDGE GEOMETRY ,Sec. 6.7.6 AAS(T! +R/"-

    6.2.26.2.2 #o. of Spans 2

    6.2.66.2.6 )ach Span +ength 7; meters.

    6.2.76.2.7 Total Span +ength 7; meters.

    6.2.56.2.5 )ffecti0e Span +ength 63.7 meters.

    6.2.>6.2.> Ske$ Angle ;

    6.2.46.2.4 T8pe of Superstructure Pre Cast Prestressed Concrete

    Girders and RCC "eck Slab.

    6.2.96.2.9 #o. of Girders per Span 5

    6.2.?6.2.? Clear Width of the Bridge 97;; mm.

    6.2.36.2.3 Total Width of the Bridge 3;>; mm.

    6.2.2;6.2.2; #o. of "iaphragms per Span >

    6.2.226.2.22 T8pe of guardrail R.C.C. solid $all t8pe guardrail.

    #oteD "etailed dimensions of the PC girders1 diaphragms1 deck slab1 foot paths ,safet8 curbs-and railings are sho$n on the dra$ings.

    2.2 GENERAL IFORMATIONS ABOUT DESIGN PARAMETERS R&)- AASHTO LRFD*

    2.2.12.2.1 Resistance factors1 ,Sec. >.>.5.6.2-.

    6.6.2.26.6.2.2 /le:ure and tension of reinforced concrete ;.3;

    6.6.2.66.6.2.6 Shear and torsion in normal densit8 concrete ;.3;

    6.6.2.76.6.2.7A:ial compression $ith spirals and ties ;.9>

    6.6.2.56.6.2.5 Bearing on concrete ;.9;

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    4/19

    2.2.22.2.2 +oad modifiers ,Sec. 2.7.7 >- DStrength Ser0ice /atigue

    6.6.6.26.6.6.2 "uctilit81 n" 2.; 2.; 2.;6.6.6.66.6.6.6 Redundanc81 nR 2.; 2.; 2.;6.6.6.76.6.6.7 !perational importance1 n 2.; #&A #&A

    2.2.32.2.3 +oad combinations and +oad factorsD /ollo$ing limit states are in0estigated.

    6.6.7.26.6.7.2 Ser0ice limit state

    6.6.7.66.6.7.6 Strength +imit State

    6.6.7.76.6.7.7 /atigue +imit State

    2.2.42.2.4 +i0e load distribution factors ,per lane- areD

    6.6.5.26.6.5.2

    /or bending moment in interior girders ,Table 5.4.6.6.6b.26.6.>.2 /or /atigue +imit State ,Sec. 7.4.6.2- IMF%#! 2> H

    6.6.>.66.6.>.6 /or all other limit states IM 77 H

    2.3 STRUCTURAL BEHAIOR

    6.7.26.7.2 T8pe of the Structure Simpl8 supported

    6.7.66.7.6 nteraction bet$een the Girder and "eck Slab Acting as 7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    5/19

    6.7.76.7.7 nteraction bet$een "iaphragm1 Girder and The diaphragms are primaril8 acting"eck Slab as bracing element.

    6.7.56.7.5 Structural model for bridge design B&%" /!0& "(-The use of

    "istribution /actors recommended b8AAS(T! +R/" takes into accountstructural interaction among 0ariousgirders and deck slab. The "./Js. areeither based on 6 " Grillage modelor 7 < " /inite )lement anal8sis ofeccentricall8 stiffened shell assembl8.

    2.42.4 MATERIAL PROPERTIES

    6.5.26.5.2 Concrete used in the PC girders Class " concrete of 6? da8s c8lindercompressi0e strength of 7>; kg&cm6

    ,7> %Pa.-.

    6.5.66.5.6 Strength of concrete at transfer %inimum 6?; kg&cm6 ,6? %pa.-.

    6.5.76.5.7 Concrete used in the deck slab1 diaphragms1 Class A concrete of 6? da8sCurbs1 railings1 back $alls1 $ing $alls1 c8linder compressi0e strength of

    transoms and rollo0ers and footings. 62; kg&cm6 ,62 %Pa.-.

    6.5.56.5.5 (igh strength steel used in the PC girders Stress reli0ed lo$ rela:ationgrade 69; ,2?4; %Pa.- 9 $ire strands1conforming to AST% A6.5.> Stress in the high strength steel at transfer 9; H of the ultimatestrength ,i.e. ;.9fpu-

    6.5.46.5.4 #ormal reinforcement steel Grade 4; ,525 %Pa- deformed roundbars confirming to AST% A.

    6.5.96.5.9 %odulus of elasticit8 of prestressing steel strands )p 2391;;; %Pa.

    6.5.?6.5.? %odulus of elasticit8 of reinforcing steel )s 6;;1;;; %Pa.

    6.5.36.5.3 %odulus of elasticit8 of concrete

    )c 5?;;K cf

    %Pa.

    2.5 GEOMETRICAL PROPERTIES OF THE PC GIRDERS

    Sec. >.5.6.6 AAS(T! +R/" 2335.Sec. >.5.7.6 AAS(T! +R/" 2335.

    Sec. >.5.6.5 AAS(T! +R/" 2335.

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    6/19

    6.>.26.>.2 (eight of the Girder 29;; mm.

    6.>.66.>.6 Top flange $idth >;; mm.

    6.>.76.>.7

    Bottom flange $idth

    4;; mm.

    6.>.56.>.5 Web thickness 29; mm.

    6.>.>6.>.> )ffecti0e flange $idth Beff 6.66> meters.

    6.>.46.>.4 Cross sectional area of the Beam Ag >246>; mm6.

    6.>.96.>.9 "epth of the #eutral A:is of .?6.>.? "epth of the #eutral A:is of the Composite section C mm.

    6.>.36.>.3 %oment of inertia of the .2; %oment of inertia of the Composite section c.25.2.6.6 of AAS(T! +R/" 2335-Sec. ?.2;.2.21 AAS(T! standard 2334 I Sec. 5.4.6.4.21 AAS(T! +R/" 2335.

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    7/19

    6.4.26.4.2 Ser0ice dead load moment due to self $eight of the girder %girder 277; '# m.

    6.4.66.4.6 Ser0ice dead load moment due to $eight of the deck slab %slab 2254 '# m.

    6.4.76.4.7 Ser0ice dead load moment due to $eight of the $earing coarse1

    safet8 curbs and railings. %s.i.d. 5?4 '# m.

    6.4.56.4.5 Ser0ice li0e load moment ,including 77 H d8namic allo$ance- %+.+. 65>> '# m

    #oteD (+ 371 AAS(T! +R/" 2335 code pro0isions for ma:< li0e load moment go0erns.

    2.2. PRESTRESSED CONCRETE GIRDER DESIGN INFORMATION.

    6.9.26.9.2 T8pe of prestressing steel used 9 $ire strands of Grade 69;,2?4; %Pa.-

    6.9.66.9.6 "iameter of the strand 26.9 mm ,;.>L-

    6.9.76.9.7 Area of the prestressing steel ,> tendons&7> strands- Ap 75>> mm6.

    6.9.56.9.5 #o. of tendons per girder >

    6.9.>6.9.> #o. of strands per tendon 9

    #oteD #et stresses in all the tendons after transfer of prestress force to girders is .)67. Also1 net Macking force in each tendon immediatel8 after transfer of prestress force isD

    F( 9 KN.

    2.82.8 NET ACKING FORCE IN THE TENDONS BEFORE RELEASE AND CORRESPONDINGELONGATION OF THE TENDONS.

    Tendon #o. /orce in the Tendons )longation of steel ineach tendon ,mm-'# 'g

    2 39? 33977 662

    6 3?> 2;;544 666

    7 336 2;2234 6655 2;;; 2;2366 664

    > 2;;9 2;6455 66?

    2.92.9 PRESTRESS LOSSES IN THE TENDONS

    6.3.26.3.2 +oss due to elastic shortening of concrete 7.5;? H.

    Weigh in motion records at 0arious bridge sites of pakistan indicates a truck configuration of 7 Ton,Abbre0iated as P'7A5> b8 'h8ber Consulting )ngineers- $ill also cause 655> '# m. This include 6> H impact.

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    8/19

    6.3.66.3.6 +oss due shrinkage of concrete 7.667 H.

    6.3.76.3.7 +oss due to creep of concrete ?.23? H

    6.3.56.3.5

    +oss due to rela:ation of steel 2.743 H.

    6.3.>6.3.> +oss due to anchorage set&take up 7.;>? H.

    6.3.46.3.4 /rictional losses /rictional losses aredifferent for each tendondue to difference in lengthand angular change of thetendons.

    Wobble coefficient k 5.362; per ft-

    Cur0ature coefficient ;.6>

    /rictional losses in the tendons are gi0en belo$D

    /rictional loss in Tendon #o. 2 ?.426

    /rictional loss in Tendon #o. 6 3.522

    /rictional loss in Tendon #o. 7 2;.6;4

    /rictional loss in Tendon #o. 5 2;.334

    /rictional loss in Tendon #o. > 22.9?7

    #oteD +osses1 Macking force and elongation gi0en here are 0alid onl8 for NL 9,%Pa- @2727

    ):treme fiber stresses in compression > K f &ci ,%Pa- 243

    6.2;.66.2;.6 Stresses in the Girder at Working +oad Condition&Ser0ice +oad Condition,at mid section-.

    Sec. 3.24.21 AAS(T! standard 2334. #oteD Oalue of the Wobble coefficient gi0en in Sec. >.3.>.6.6b of AAS(T!+R/" 2335 code is 9.5> times less than the 0alue gi0en b8 AAS(T! standard 2334 code. We ha0e adopted theConser0ati0e ,AS(T! standard- 0alue. We are in the process to confirm it from the AAS(T! code authorit8

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    9/19

    T8pe of Stresses Applied Stresses'#&m6

    Code +imiting Stress Oalues'#&m6

    ):treme fiber stresses in tension @ 25?2.5>> ;.> K ,f &cg-;.>,%Pa-@ 6374

    ):treme fiber stresses in compression < 22777.;3; ;.5> K f &cg ,%Pa- >27.9>

    #oteD All the stresses are checked at the mid '# m.

    6.22.76.22.7 )ffecti0e depth for shear ,Sec. >.?.6.9- d0 254? mm.

    6.22.56.22.5 )ffecti0e $idth of the $eb ,Sec. >.?.6.9- b0 25> mm.

    6.22.>6.22.> Angle of the tendon force $ith the C.L.of the girder ,a0erage- 2;

    6.22.46.22.4 Area of concrete at the end block Ag ?99;; mm6.

    6.22.96.22.9 "epth of neutral a:is at the end block cg 22;2.?3? mm.

    6.22.?6.22.? %oment of inertia of the girder at the end g 6.;32;22mm5.

    6.22.36.22.3 Angle of inclination of diagonal compressi0e stresses 6>.6>

    6.22.2;6.22.2; /actor indicating abilit8 of diagonall8 cracked concrete to

    transmit tension >.;3>

    6.22.226.22.22 Shear capacit8 of the concrete Oc >6?.>7 '#.

    6.22.266.22.26 Shear capacit8 of the girder due to Prestress force in the girder Op 44> '#.

    6.22.276.22.27 Trans0erse reinforcement 2; stirrups 7;; mm c&c.

    6.22.256.22.25 Shear carried b8 the trans0erse reinforcement Os 42; '#.

    6.22.2>6.22.2> #ominal shear capacit8 of the girder On Oc@Os@Op 2?;5 '#.

    6.22.246.22.24 )ffecti0e shear resisting capacit8 of the girder Or K On 2465 '#.

    Sec. >.3.5.2 To Sec. >.3.5.6.2 AAS(T! +R/" 2335. A shear force of 266? '# is caused b8 77>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    10/19

    6.22.296.22.29 Ratio of the shear resisting capacit8 to ultimate applied shear 1.34

    2.122.12 DESIGN OF POST : TENSIONED ANCHORAGE ;ONE S&'. 5.1.9*

    2.12.1 D&$!;; mm.

    6.26.2.36.26.2.3 Center to center spacing of anchorages s 69> mm.

    6.26.2.2;6.26.2.2; #umber of tendons in a ro$ n >

    6.26.2.226.26.2.22 +imiting stress from the appro:imate anal8sis f ca mm ,both faces-

    6.26.2.296.26.2.29 Bursting reinforcement for Tburst6 ? 24 bars 4> mm ,both faces-

    2.12.2 D&$!;; mm6.

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    11/19

    6.26.6.66.26.6.6 Gross area of the bearing plate Ag >;46> mm6.

    6.26.6.76.26.6.7 )ffecti0e net area of the bearing plate Ab 546;9 mm6.

    6.26.6.56.26.6.5

    /actored bearing resistance of the anchorage Pr 26?4 '#.

    6.26.6.>6.26.6.> Ratio of the bearing resistance P r to ultimate Macking force Pu 1.19

    2.132.13 DEFLECTION IN THE PC GIRDERS

    6.27.26.27.2 "eflection due to li0e load and its d8namic effect @ 24.99 mm.

    6.27.66.27.6 "eflection due to initial pretress force < 53.;4 mm.

    6.27.76.27.7 "eflection due to $eight of the girder @ 66.6?? mm.

    6.27.56.27.5 "eflection due to $eight of the deck slab @ 23.622 mm.

    6.27.>6.27.> "eflection due to $eight of the curbs1 railings and $earing coarse @ 7.4>2 mm.

    6.27.46.27.4 #et deflection at $orking load condition @ 22.3> mm.

    6.27.96.27.9Allo$able deflection due to total loads for simpl8 supported structures @ 42.;5 mm.

    6.27.?6.27.?Allo$able deflection due to li0e load and its d8namic effect 74.47 mm.

    #oteD #et deflection is $ithin the allo$able limits.

    2.142.14 DESIGN OF DECK SLAB R&)- AASHTO LRFD*

    6.25.26.25.2 %inimum depth of the deck slab ,Sec. 3.9.2.21 AAS(T! +R/" 2335- 29> mm.

    6.25.66.25.6 Thickness of the deck slab 6;; mm.

    6.25.76.25.7 Width of strip for positi0e moment ,@%- 2??7.9> mm.

    6.25.56.25.5 Width of strip for negati0e moment , mm.

    6.25.>6.25.> Primar8 Reinforcement steel used Grade 4; steel ,AST% A 42>-

    6.25.46.25.4 Secondar8 Reinforcement steel used Grade 5; steel ,AST% A 42>-,"istribution and shrinkage steel-

    Sec.?.3.7.21 AAS(T! standard 2334 I Sec. 6.>.6.4.61 AAS(T! +R/" 2335.

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    12/19

    6.25.96.25.9 Ser0ice dead load positi0e moment 6.2 '# m.

    6.25.?6.25.? Ser0ice dead load negati0e moment 3.65 '# m.

    6.25.36.25.3

    Ser0ice +i0e load positi0e 2?.65 '# m.

    6.25.2;6.25.2;Ser0ice li0e load negati0e moment 65.74 '# m.

    6.25.226.25.22*ltimate li0e load positi0e moment 76 '# m.

    6.25.266.25.26*ltimate li0e load negati0e momentQ 56.47 '# m.

    6.25.276.25.27Total ser0ice load positi0e moment 6;.75 '# m.

    6.25.256.25.25Total ser0ice load negati0e moment 77.4 '# m.

    6.25.2>6.25.2>*ltimate positi0e moment 75.47 '# m.

    6.25.246.25.24*ltimate negati0e moment >5.2? '# m.

    6.25.296.25.29%ain positi0e reinforcement 24 7;; mm c&c.

    6.25.2?6.25.2?%ain negati0e reinforcement 24 29> mm c&c.

    #oteD %ain reinforcement ,positi0e and negati0e- is to be placed at 29> mm center to center.

    6.25.236.25.23"istribution steel&reinforcement 2; 26> mm c&c.

    6.25.6;6.25.6;Shrinkage steel&reinforcement 2; 6;; mm c&c.

    6.25.626.25.62*ltimate positi0e moment capacit8 of the deck slab %d,@0e- 45.27 '# m.

    6.25.666.25.66*ltimate negati0e moment capacit8 of the deck slab %d,

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    13/19

    6.2>.66.2>.6 (eight of the diaphragm 2.9;; m

    6.2>.76.2>.7 Width of the diaphragm 6;; mm.

    6.2>.56.2>.5

    Structural action D Primaril8 used as bracing element for stabilit8 and nominal+ongitudinal and trans0erse reinforcement is pro0ided in both faces ,i.e top andbottom-.

    3. SUB STRUCTURE DESIGN

    3.1 GENERAL INFORMATION

    7.2.27.2.2 T8pe of abutment Coarse Rubble %asonr8.

    7.2.67.2.6

    Width of the abutment at the top ;.3> meters.

    7.2.77.2.7 Width of the CR% $all at the bottom 5.>> meters.

    7.2.57.2.5 +ength of the CR% $all 3.;> meters.

    7.2.>7.2.> (eight of the CR% $all 22.;6 meters.

    7.2.47.2.4 Total (eight of abutment ,to the deck +e0el- 25.>> meters.

    7.2.97.2.9 T8pe of footing R.C.C. !pen&Spread footing.

    7.2.?7.2.? Width of foundation 9.3> meters.

    7.2.37.2.3 +ength of footing 22.5> meters.

    7.2.2;7.2.2; "epth of footing 2;;; mm.

    7.2.227.2.22 T8pe of pads )lastomeric Bearing Pads

    #oteD "etailed dimensions of the abutment1 abutment footing1 $ing $alls1 back $all1 transom1and rollo0er are sho$n on the dra$ings

    3.23.2 STABILITY ANALYSIS OF THE ABUTMENTS.

    7.6.27.6.2 Weight of the structure ,including $eight of the footing and backfill- on the footing 24327 '#.

    7.6.67.6.6 Total stabiliFing force ,$eight of footing is not included- 2>66; '#.

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    14/19

    7.6.77.6.7 Total stabiliFing moment about toe of the CR% $all >5237 '# m.

    7.6.57.6.5 Total sliding force 5626 '#.

    7.6.>7.6.>

    Total o0erturning moment about toe of the CR% $all 67696 '# m.

    7.6.47.6.4 Coefficient of friction bet$een the CR% $all and footing ;.5>

    3.2.3.2. /actor of safet8 against sliding ,/.!.S.-sliding 1.3

    7.6.?7.6.? /actor of safet8 against o0erturning ,/.!.S.- o.t. 2.33

    3.2.13.2.1 PRESSURE DISTRIBUTION AT BASE OF THE FOOTING.

    7.6.2.27.6.2.2 Stresses at toe of the footing >ma: < ;.6? %Pa..

    7.6.2.67.6.2.6 Stresses at heel of the footing >min < ;.2 %Pa.

    7.6.2.77.6.2.7 Presumpti0e allo$able bearing capacit8 ,RefD AAS(T! +R/"- .5 #( .9 MP%.

    7.6.2.57.6.2.5 Recommended 0alue of use ;.49 %Pa.

    7.6.2.>7.6.2.> Ratio of presumpti0e allo$able B.C. to ma: stress at toe of footing 6.5

    #oteD A pressure distribution diagram is sho$n on the ne:t page.

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    15/19

    P=&$$7=& D!$#=!?7#!(0 D!%7 '#.

    7.7.2.57.7.2.5 Width of bearing pad W 5;; mm.

    7.7.2.>7.7.2.> +ength of bearing pad + >>; mm.

    7.7.2.47.7.2.4 Thickness of interior la8ers of elastomer hri 2; mm.

    C6=>7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    16/19

    7.7.2.97.7.2.9 Total thickness of the elastomer ,la8ers- hrt 7; mm.

    7.7.2.?7.7.2.? Shape factor of each la8er Si 22.>93

    7.7.2.37.7.2.3 Shear modulus of the elastomer G 2.25 %Pa.

    7.7.2.2;7.7.2.2; Applied compressi0e stress due to total load s 7.95 %Pa.

    7.7.2.227.7.2.22Applied compressi0e stress due to li0e load + 2.?92 %Pa.

    7.7.2.267.7.2.26 +imiting compressi0e stress for the total load 62.326 %Pa.

    7.7.2.277.7.2.27 +imiting compressi0e stress for the li0e load ?.926 %Pa.

    7.7.2.257.7.2.25 /actor of safet8 against failure due to total load compressi0e stress >.?4

    7.7.2.2>7.7.2.2> /actor of safet8 against failure due to li0e load compressi0e stress 5.44

    7.7.2.247.7.2.24 Compressi0e strain i 6.6 H

    7.7.2.297.7.2.29 Compressi0e deflection ;.55 mm.

    7.7.2.2?7.7.2.2? +imiting compressi0e deflection +imiting 7.6 mm.

    7.7.2.237.7.2.23 /actor of safet8 against failure due compressi0e deflection 9.7

    7.7.2.6;7.7.2.6; Total shear deformation s 25.94 mm.

    7.7.2.6;7.7.2.6; +imiting Oalue for shear deformation ,2

    th- 2> mm.

    3.3.23.3.2 DESIGN OF GIRDER SEATRTRANSOM

    7.7.6.27.7.6.2 Width of the transom 3>; mm.

    7.7.6.67.7.6.6 "epth of the transom 4;; mm.

    7.7.6.77.7.6.7 )ffecti0e depth of the transom >4; mm.

    7.7.6.57.7.6.5 %inimum area of steel 29>4 mm6.

    7.7.6.>7.7.6.> %oment of inertia of the transom 2.9)@2; mm5.

    7.7.6.47.7.6.4 %odulus of elasticit8 of the transom concrete ) 62?72 %Pa.

    7.7.6.?7.7.6.? /le:ural rigidit8 of the transom ) 7972;7 '#7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    17/19

    7.7.6.37.7.6.3 Reinforcement steel 26 24 bars uniforml8 distributed.

    #oteD The transom is pro0ided as a rigid element to distribute the load of super structure at topof the abutment $all ,CR% $all-. ts fle:ural rigidit8 is more than sufficient to distribute the loaduniforml8 o0er the abutment and to take care for an8 localiFed differential settlement in CR% $all.

    3.3.33.3.3 DESIGN OF THE ING ALLS

    7.7.7.27.7.7.2 Thickness of the $ing $all 7;; mm.

    7.7.7.67.7.7.6 )ffecti0e depth of $ing $all 64; mm.

    7.7.7.57.7.7.5 *ltimate moment on the interface of $ing $all and back$all ?4.5 '# m.

    7.7.7.>7.7.7.> %inimum area of steel 273; mm6.

    7.7.7.47.7.7.4 %oment capacit8 of the $ing $all $ith As cm.

    7.7.5.77.7.5.7 )ffecti0e depth of the back$all 67.> cm.

    7.7.5.57.7.5.5 %inimum area of steel 5.36 cm6&m

    7.7.5.>7.7.5.> %oment capacit8 of the section $ith As

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    18/19

    7.7.5.47.7.5.4 Ratio of ultimate moment capacit8 and ultimate applied moment 2.97

    7.7.5.97.7.5.9 %ain reinforcement steel 26 6>; mm c&c. ,B./.-

    7.7.5.?7.7.5.? Shrinkage steel 26 6>; mm c&c. ,B./.-

    7.7.5.37.7.5.3 *ltimate shear at base of the Back$all 6?.;6 '#.

    7.7.5.2;7.7.5.2; *ltimate shear capacit8 of the back$all 2>;.?4 '#.

    7.7.5.227.7.5.22Ratio of the ultimate shear capacit8 to ultimate applied shear >.7?

    3.3.53.3.5 DESIGN OF THE ABUTMENT FOOTING.

    7.7.>.27.7.>.2 Width of the footing 9.3> meters.

    7.7.>.67.7.>.6 +ength of the footing 22.5> meters.

    7.7.>.77.7.>.7 "epth of the footintg 2;;; mm.

    7.7.>.57.7.>.5 .Clear co0er for the fle:ural steel 9> mm.

    7.7.>.>7.7.>.> )ffecti0e depth of the footing 326.> mm.

    7.7.>.47.7.>.4Applied punching shear on the footing 6>663 '#.

    7.7.>.97.7.>.9 Punching shear capacit8 of the footing 7669; '#.

    7.7.>.?7.7.>.? Ratio of the punching shear capacit8 to applied punching shear 2.5?

    7.7.>.37.7.>.3Applied beam shear >3;6 '#.

    7.7.>.2;7.7.>.2; Beam shear capacit8 of the footing 9;33 '#.

    7.7.>.227.7.>.22Ratio of the beam shear capacit8 to the applied beam shear 2.6

    7.7.>.267.7.>.26 *ltimate moment1 in shorter direction1 at face of the support %u2 352 '#.277.7.>.27 Reinforcement steel pro0ided in shorter direction 6> 2>; mm c&c.

    7.7.>.257.7.>.25 *ltimate moment capacit8 in shorter direction %d2 2;4> '#m&m.

    7.7.>.2>7.7.>.2> Ratio of the ultimate moment capacit8 to ultimate applied moment n shorter direction 2.27

    7.7.>.247.7.>.24 *ltimate moment1 in longer direction1 at face of the support %u6 52? '#7>=32;;9=2>;=2>;=BRG

  • 7/25/2019 BRG-S-T-D-RD 85+835-1X30

    19/19

    7.7.>.297.7.>.29 Reinforcement steel pro0ided longer direction 6; 29; mm c&c.

    7.7.>.2?7.7.>.2? *ltimate moment capacit8 in longer direction %d6 427 '#m&m.

    7.7.>.237.7.>.23 Ratio of the ultimate moment capacit8 to ultimateapplied moment in longer direction 2.544

    23