ada 325108

Upload: murdicks

Post on 02-Jun-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Ada 325108

    1/107

  • 8/10/2019 Ada 325108

    2/107

    NOTICE

    This

    ocuments

    isseminated

    nderhe

    ponsorship

    f

    he

    .S .

    Department

    ofTransportation intheinterestofinformation exchange. he

    United

    tates

    Government

    ssumes

    o

    iability

    or

    the

    ontents

    r

    se

    thereof.

    he

    United

    tates

    Government

    oes

    ot

    ndorse

    roducts

    r

    manufacturers.rade rmanufacturer's ames ppearerein olely

    because

    theyareconsideredessentialto

    the

    objectiveofthisreport.

  • 8/10/2019 Ada 325108

    3/107

    Techn ica lRepor t

    Documenta t ion

    Pag

    1.

    eport

    N o.

    DOT/FAA/AR-95/85

    2.

    Government AccessionNo .

    3.ecipient's CatalogNo .

    4.

    itlean d

    Subtitle

    A D VA NCE DP A V E M E N T

    DESIGN:

    Finite

    ElementModelingfo r

    Rigid Pavement

    Joints

    Report

    I:

    ackgroundInvestigation

    S.

    eport

    Date

    April1997

    6.

    erformingOrganization

    Code

    7.

    uthor(s)

    Michael

    I .

    Hammonsand Anastasios M .

    Ioannides

    8.

    erforming

    Organization

    Report

    No .

    9.

    erforming

    Organization

    Name

    an dAddress

    U.S.

    Army EngineerWaterways

    Experiment

    Station

    3909HallsFerry Road

    Vicksburg,

    M S

    39180 -6199

    10.Work

    Unit

    No .

    (TRAIS)

    11 .

    ontractor Grant

    No .

    DTFA03-94-X-00010

    12.ponsoring

    Agency

    N am e

    an dAddress

    U.S.

    Department

    of

    Transportation

    FederalAviationAdministration

    Officeof Aviation

    Research

    Washington,D C20591

    13.

    yp e

    of

    Report

    an d

    Period

    Covered

    Final

    Report

    14.

    ponsoring

    Agency

    Code

    AAR-410

    15 .

    upplementary

    Notes

    FA A

    William

    J.

    Hughes

    Technical

    Center

    Contract

    Officer

    (COTR)

    Technical

    Representative

    is

    Xiaogong

    Lee

    16 .

    bstract

    The

    objective

    of

    this

    researchproject

    is

    to

    develop

    an

    analytical

    model

    fo r

    rigid

    pavementjoints

    that

    ca n

    be

    implemented

    into

    advancedpavementdesign

    models.his

    reportdocuments

    a

    background

    investigation

    including

    a

    comprehensive

    reviewofrigid

    pavementjo intmodels

    ith

    articular

    mphasis n

    heir

    jo int

    ndoundationmodeling

    apabilities.

    T he

    major

    istorical

    developments

    in

    airportrigid

    pavementdesignar e

    discussed.

    losed-formsolutionsakintothosebyWestergaardwere

    derivedin

    this

    study

    fo rth emaximumresponsesonth e

    unloaded

    sideofarigidpavementslab

    edge

    capable

    ofadegreeof

    load

    transfer.

    W henusedtogether

    with

    Westergaard's

    ow nclosed-form

    equations

    fo r

    th e

    free-edge

    problem,

    th e

    formulae

    derived

    in

    thisstudy

    constitute

    a

    complete

    solutionofth eedge

    load

    transferproblem,

    ecognized

    overth e

    years

    asacriticalonsideration

    in

    rigid

    pavement

    design.he

    newlyderived

    solution

    is

    presented

    inconvenientformfo r

    routine

    engineeringapplication

    an d

    iscompared

    to

    earlier

    finite

    element

    data.

    he

    improvement

    in

    ease

    of

    application

    and

    precision

    is

    considerable.

    17 .

    Keywords

    Analysis

    Responsemodels

    Design Rigid

    pavements

    Joints

    Testing

    18.

    istribution

    Statement

    Document

    isavailabletoth epublic

    through

    th e

    National

    TechnicalInformation

    Service,Springfield,

    V A

    2161

    19.ecurity Classif.(o fthisreport)

    Unclassified

    20 .ecurity

    Classif.

    (o fthis

    page)

    Unclassified

    21 .o.

    of

    Pages

    107

    22 .

    rice

    Form

    DOT

    F1700.7

  • 8/10/2019 Ada 325108

    4/107

  • 8/10/2019 Ada 325108

    5/107

    T A B L E

    O F

    C O N T E N T S

    Page

    E X E C U T I V E

    S U M M A R Y i

    I N T R O D U C T I O N

    Background

    Object ive

    Scope

    P R O B L E M

    S T A T E M E N T

    T heRigidPave me n tSystem

    L o a dTrans fe r

    Defini t ions

    Rigid

    Pave me n t

    Foundat ions

    M o d e lRequi remen t s

    H I S T O R I C A L B A C K G R O U N D

    Genera l

    Response

    M o d e l

    0

    Cri t ica l

    Des ign

    Stresses

    0

    Accelerated

    Traff ic

    Tests 1

    Subgrade

    Characterizat ion

    2

    RigidPave me n t

    Joints

    2

    C L A S S I C A L

    R E S P O N S EM O D E L S 7

    Weste rgaardTheory

    7

    Response

    Charts

    8

    Compute r i zed

    Solut ions 9

    Weste rgaardTheoryLimita t ions 9

    ElasticLaye r

    Model s 0

    M ode l s

    fo r

    D o w e lStresses 1

    Finite

    Difference

    M o d e l 4

    F IN IT E

    E L E M E N T

    R E S P O N S E

    M O D E L S 5

    Genera l

    5

    T w o-Di me n s i on a lFiniteElementModel s

    6

    JJLLI-SLAB

    7

    DenseLiquidSubgrade 3

  • 8/10/2019 Ada 325108

    6/107

    Elastic

    Sol id

    Subgrade 3

    Resi l ient

    Subgrade

    M o d e l

    4

    VlasovT w o-Pa rame t e r

    Foundat ion

    5

    K er r

    Three -Paramete r

    Founda t ion 5

    Zhemochkin -Sin i t syn -Shtae rmanFounda t ion

    6

    J S L A B

    7

    W E S L I Q I D

    and

    K E N S L A B S 7

    F E A C O N S

    III

    9

    W E S L A Y E R

    and

    K E N L A Y E R

    1

    Three -Dimens iona l

    FiniteElemen t

    Model s 2

    G E O S Y S

    M o d e l 2

    A B A Q U S

    Model s 3

    A

    W E S T E R G A A R D - T Y P E

    S O L U T I O N

    F O R

    T H E

    L O A D

    T R A N S F E R

    P R O B L E M

    6

    Genera l

    6

    Genera lSolut ionfo r

    L o a d

    Transfer

    6

    In terpolat ionFormulae

    1

    Free -Edge

    Deflect ion 1

    Free -EdgeBend ingStress 2

    U n loade d

    Side

    Deflect ion

    2

    Unloaded

    SideBending

    Stress

    4

    LoadTransfer

    Efficiency 6

    S u mma ry 9

    S M A L L - S C A L E

    P H Y S I C A LM O D E LS T U D I E S

    9

    Genera l 9

    Single-SlabMode ls

    9

    Tes t

    Descript ion

    9

    Tes t

    Resul ts

    and

    Analys i s 1

    Dow e l e dJointModel s 3

    Tes t

    Descript ion 3

    Tes t

    Resul t s

    5

    Analys is 6

    V I

  • 8/10/2019 Ada 325108

    7/107

    C O N C L U S I O N S

    A N DR E C O M M E N D A T I O N S 0

    Conclusions

    0

    Recommendat ions 1

    Pavemen t

    Perfo rmance

    Model ing

    1

    Materia lModel ing

    1

    Mult iple-Wheel

    L o a d

    Model ing

    2

    JointModel ing 2

    R E F E R E N C E S 3

    Vll

  • 8/10/2019 Ada 325108

    8/107

    LIST

    O F

    I L L U S T R A T I O N S

    Figure

    age

    1ypicalRigidPavement

    System

    2oncep t

    ofLoad

    Transfer

    3

    ffectof

    LoadTransferEfficiency

    on

    Pavement

    Perfo rmance

    4

    o we l

    Installat ions

    atLockbourn e

    and

    Sharonville

    Tes t

    Tracks

    5

    5riberg's(1940)

    Analysisof

    D o w e l

    B ar

    Suppor t 3

    6

    our -N ode

    PlateBendingElement

    6

    7

    inite

    Element

    M ode l

    inI L L I -S L A B

    8

    8

    quivalent

    Sect ions

    fo r

    a

    Two -L a ye r

    System 9

    9

    L L I -S L A B

    Joint

    Mo d e l 0

    10

    ointEfficiencyas

    a

    Funct ionof

    Dimensionless

    Joint

    Stiffness

    fo rAggrega te

    Interlock

    Joint

    0

    1 1oint

    Efficiency

    as

    a

    Funct ion

    of

    Dimensionless

    Joint

    Stiffness

    fo r

    D o we l ed

    Joint

    2

    12ound

    Displacement

    U n de r

    a

    L o a d ed

    Plate

    fo r

    Winkle rand

    Elastic

    Solid

    Foundat ions

    4

    1 3

    lasov

    o r

    Plas ternak

    Founda t ion

    5

    14

    err

    Foundat ion

    Mo d e l 6

    15oint

    M ode l

    inWesliq idandWeslaye r

    8

    16

    eomet ryof

    Shear

    Transferat

    a

    Doweled

    Joint

    in

    Wesliq idand

    Weslayer

    9

    17

    inite

    Element

    Model ing

    inFeacons

    III

    1

    18ffectiveJoint

    StiffnessWith

    Relative

    Displacementin

    FeaconsII I2

    19

    ariat ion

    of

    Unloaded

    Side

    Maximum

    Dimensionless

    Deflect ion

    With

    Dimensionless

    Joint

    Stiffnessand

    el

    8

    20

    ariat ion

    ofUnloaded

    Side

    Maximum

    Dimensionless

    BendingStress

    Wi t h

    Dimensionless

    Joint

    Stiffnessand

    el

    9

    21ariat ionof

    Max imum

    Dimensionless

    Deflectiono r

    Free

    E d g e

    Wi t hel

    t

    0

    vm

  • 8/10/2019 Ada 325108

    9/107

    22

    ariation

    of

    Ma x i mu m

    Dimensions

    Bending

    Stress

    fo rFreeE d g eWi t h

    elt

    0

    23ariat ion

    of

    L T E

    S

    With D imensionlessJointStiffnessande/1 7

    2 4

    elat ionshipBetween

    L T E

    8

    and

    L T E

    a

    With

    e/ 7

    25

    ompar i sonof

    Newl yDerived

    Solut ion

    With

    Earlier

    Finite

    ElementResul ts

    8

    2 6

    hotograph

    ofSmall-ScalePhysicalModel sTestSetup 1

    27

    dge

    Load ing

    Deflect ion

    Contours

    FromSmall-Scale

    M o d e lStudy2

    28

    ompar i sonofE d g e

    Load ingDeflection

    Basins

    From

    Exper imentand

    I L L I -S L A B

    63

    2 9

    ypical

    Small-Scale

    D o w e l

    Joint

    Tes t

    SlabShowingApprox imate

    Strain

    Ga g e

    Posi t ions 5

    30

    ackcalculated

    Dimensionless

    Joint

    Stiffness

    From

    Small-Scale

    M o d e l

    Tests

    8

    31

    ackcalculated

    Mo d u l u s

    of

    D o w e lReact ionFromSmall-Scale

    M o d e lTests

    9

    IX

  • 8/10/2019 Ada 325108

    10/107

    LIST

    OF

    TABLES

    Table

    age

    1

    imensionsand

    Spacings

    of

    Steel

    Dowels(FAA,

    1978)

    2

    ummary

    ofCorps

    of

    Engineers

    Load

    TransferMeasurements

    fo r

    Full-Scale

    Test

    SectionsandIn-ServicePavements(Rollings,

    1989)

    3

    3

    verviewofFinite

    Element

    Models

    fo r

    Rigid

    Pavements 5

    4mall-Scale Doweled

    JointModelTest

    Parameters

    4

    5

    ackcalculatedDoweled

    Joint

    ResponseParameters 7

  • 8/10/2019 Ada 325108

    11/107

    E X E C U T I V E

    S U M M A R Y

    Arigidpave me n tsys temcons is t s

    of

    a

    n umbe r

    of

    relat ivelythinPort landcemen tconcre te

    slabs ,

    finite

    n

    ength

    nd

    idth,ver

    ne

    r

    more

    oundat ion

    ayers.

    hen

    lab-on-grades

    subjectedo heeload,

    t

    evelopsendingt resses

    nd

    is tributes

    heoadverhe

    foundat ion.

    owever ,

    he

    esponse

    f

    hese

    inite

    labs

    s

    ontrolled

    y

    oint

    r

    dge

    discontinuities.y

    heir

    ature,

    joints

    re

    t ructurally

    eakening

    omponen t s f

    th eystem.

    Thus ,heesponsendeffect iveness

    f

    joints

    re

    primary

    oncernsn

    rigid

    pavemen tnalysis

    and

    des ign.

    Curren t

    F A Astructuraldes ign

    criteria

    are

    based

    ei ther

    uponth eWeste rgaard

    response

    mo d e l

    or

    th eayeredlastic

    esponseodel .l thoughvailable

    estergaard

    olutions

    aveeen

    extensivelyused,they

    arel imited

    bytw o

    significantshortcomings :

    a)

    only

    a

    singleslab

    pane l

    is

    accommoda t e din

    th eanalysis;therefore,loadt ransfer

    at

    jointsisnotaccounted

    for,and

    (b )

    th e

    layerednatureofth epavemen tfoundat ionis otexplici t lyreflectedinth eWinkle r

    foundat ion

    model .

    ult i layered,

    inear

    elast ic

    models ,

    s

    used

    in

    th e

    new

    F A A

    des ign

    method

    released

    in

    1994,

    ons ide r

    he

    ompleteayeredystem

    n

    he ert ical i rection,herebyddress ing

    he

    second

    imi ta t ion.

    nhe orizonta l

    i rection,

    owever ,

    he

    ayers

    re s sumedto

    be

    infinitely

    longwi th

    no

    discontinuities

    uchs

    edges

    or

    joints.onsequent ly,he

    load

    t ransfer

    l imitation

    remains

    unresolved.

    O v erth epas t

    tw o

    decades ,

    everal

    two-d imens iona l

    ( 2D)

    finite

    element

    analysisprogramshave

    been eveloped

    hich

    ncorporate

    oad

    ransfer

    t

    oints.

    hese

    rog rams

    se hin-plate

    e lemen tormulat ionorhe

    lab.

    om e rograms llowhe

    ser

    ohoosero m ibrary

    f

    foundat ionmodels .

    ew

    esearchers

    ave

    t tempted

    o

    se

    hree-dimensional3D )finite

    e lemen t

    model s

    or

    igid

    a v emen tnalysis

    ncludingom e

    oadransfer

    mechan i sms

    the

    joint.

    ven

    state-of-the-art

    2 D

    finite

    e lement

    model ing

    involves ,

    at

    leas t

    implici t ly,

    assumptions

    wh i ch

    l imi t

    th e

    precis ion

    ofes t imates

    concerning

    th eloadcarried

    by

    eachdowel .

    h is

    problem

    is

    ven

    urtheromplicated

    y

    he

    nteraction

    f

    oadsrom

    mult iple-wheel

    anding

    ears.

    Adopt ing

    a3D

    finite

    element

    model

    m ay

    clarifysuch

    issuesfurther.

    Closed- formsolutions

    akinto

    those

    byWes tergaa rd

    were

    derivedinthis

    study

    fo rth emaxi mum

    responses

    onth e

    unloaded

    side

    of

    a

    rigidpavementslab

    edge

    capable

    of

    a

    degreeof

    load

    t ransfer.

    W h e n

    sedtogetherwi thWestergaard'sw n

    closed-form

    equat ionsorth eree-edge rob lem,

    th e

    ormulaeerivedn

    his

    tudy

    onsti tute

    omple t e

    olution

    f

    hedge

    oad

    ransfer

    problem,

    ecognized

    verhe ears s cri t ical

    onsiderat ion

    n

    igid

    ave me n t

    esign.

    he

    newlyderived

    solution

    is

    presentedinconvenient

    form

    fo r

    rout ine

    engineeringapplication

    andis

    compared

    to

    earlier

    finite

    e lement

    data.

    he

    improvement

    in

    ease

    of

    appl ica t ion

    and

    precis ion

    is

    cons iderable .

    xi/xii

  • 8/10/2019 Ada 325108

    12/107

    I N T R O D U C T I O N

    B A C K G R O U N D .

    T hecommercia l

    aviation

    indus t ry

    has

    responded

    to

    increased

    demandfo r

    air

    t ravel

    by

    developing

    longer ,

    ider ,

    nd

    eavier

    i rcraft

    it h

    ncreas ing

    umbers

    f

    wheel s

    o

    uppor t

    he

    i rcraft

    whi lein

    ground

    operat ion.n

    order

    tomaximizeusablespacefo r

    passengersand

    cargo,

    as

    well

    as

    to

    reduce

    weigh t ,aircraft

    des igners

    aredevelopinglanding

    gear

    layouts

    that

    are

    qui te

    different

    fromthose

    on

    previous

    commerc i a l

    aircraft.new

    generat ion

    ofsuch

    aircraftdebutedin

    995

    with

    th e

    in t roduct ion

    of

    th e

    Boeing

    B -777 .

    he

    2 ,630 -kN

    (592,000-lb)B - 7 7 7featurestw o

    main

    landing

    gear

    assembl ies ,each

    ina

    triple-tandem

    configurat ion.

    he

    M cDon a ld -Doug l a sM D - 1 2 ,

    wh i ch

    has

    growth

    vers ions

    f

    up

    to

    , 780

    kN

    1 ,300 ,000

    lb) ,

    s

    ls o

    envis ionedin

    n

    effort

    to

    meet

    future irt raveldemands .hesenew enerationaircraftm ay

    precipitate

    he

    requirement

    fo r

    adjustments

    toai rport

    pavemen t

    th ickness

    to

    ensure

    serviceable

    pavement s

    over

    des ign

    l ives

    of

    2 0 ,30,

    or

    even40years.

    M a n y

    es ign

    riteria

    sed

    y

    he

    ederal

    viation

    dministration

    F A A )

    or

    igid

    i rport

    pave me n tthickness es ign avetheirorigininresearchconducted

    b y

    th e .S .A rmy orps

    f

    Engineersbe tween

    1941

    and

    1955 .

    urrent

    methodsof

    selecting

    pavemen tthicknesses

    arebased

    uponheore t icaltudies,

    mall-scaleodel

    tudies,

    ull-scale

    cceleratedraffic

    ests ,nd

    variousther

    ieldtudies ,ncludingoni toring

    f

    erformance

    f

    n-serviceigidi rport

    pavemen t s

    (Hutch inson , 966) .

    owever ,

    since

    955

    aircraft

    landing

    geargeometry

    has

    beco me

    more

    complex

    as

    loadshavecont inuedtoincrease.

    n

    th e 970 ' s ,aseries

    of

    accelera tedtraffic

    tests

    ereonductedo

    erifyxtrapolations

    eyondheriginal

    xperimentalatabase

    or

    specific

    loadsand

    condi t ions

    (Ahlvin,

    971 ) .

    ecent

    deve lopment

    of

    new-generat ion

    aircraft

    has

    caused

    someconcernsregardingth eadequacyandapplicabil i ty

    of

    current

    methods

    of

    structural

    des ign

    fo rai rportpavement s .

    T he

    esponse

    odel

    hich

    ormshe

    asis

    or

    he

    A A

    igidavemen ttructural

    es ign

    procedure

    s

    heestergaarddealization.

    n

    926,

    estergaardeveloped ethod

    or

    comput ingth e

    response

    of rigidpavemen t

    s labs-on-grade

    subjected

    towh ee lloadsby

    model ing

    th epave me n t

    as

    thin,infiniteorsemi-infiniteplaterest ingonab ed

    of

    springsWes tergaa rd ,

    1926) .l t houghavailableWeste rgaardsolutions

    havebeen

    extens ivelyused,they

    are

    l imited

    by

    tw o ignificanthortcomings :a) nly inglela b anels

    ccommodated

    nhenalysis;

    therefore,loadtransfer

    at

    joints

    is

    no t

    accounted

    for,

    and

    (b )

    th elayered

    nature

    ofth e

    pavemen t

    foundat ion

    s

    ot

    xplici t lyeflectednheWinkle roundat ionmodel .

    ulti layered,

    inear

    elast icmodel s ,

    as

    usedin

    th enewF A Adesignmethodreleasedin 994,

    consider

    th e

    complete

    layeredsys tem

    inth evert ica ldirection,

    hereby

    ddress ingth esecondl imitationParkeret

    al.,

    1979 ) .

    n

    th ehorizontal

    direction,

    however ,

    th e

    layersareas sumed

    to

    be

    infinitely

    longwi th

    no

    discontinuitiesuch

    s

    dges

    r

    oints.

    onsequent ly,heoadransfer

    imitationemains

    unresolved.

    Advances

    n

    lectronic

    omput ingaveevolutionized

    odern

    ociety,

    ndheracticef

    engineering

    hasbenefi tedfrommu ch

    of

    thisrevolution.hefinitee lemen t

    model ing

    technique

    has

    matured

    as

    a

    powerfu l

    and

    efficient

    analysis

    tool

    for

    boundary

    value

    prob lems

    in

    engineering .

    F or

    ver

    wenty

    ears ,

    avemen tngineers aveealized

    he otential f

    hree-dimensional

    (3D)

    finite

    e lemen t

    analyses

    of

    jointed

    concretepavements .he

    s lab-join t -foundat ion

    sys tem

    fo r

  • 8/10/2019 Ada 325108

    13/107

    a

    rigidpave me n t

    is

    D

    in

    nature;hus ,

    omprehens iverepresentation

    of

    this

    ys tem

    requires

    3D

    analytical

    approach .

    O B J E C T I V E .

    T heobject iveofthisresearch

    is

    todevelop

    an

    analytical

    mo d e l

    fo rconcre te

    pave me n tjointsthat

    can

    be

    readily

    implemen ted

    into

    advanced

    pavemen t

    des ign

    model s

    currentlyunder

    deve lopmen t

    by

    th e

    F A A .hebas iccriteriato

    be

    used

    fo rthismo d e ldeve lopmen t

    wil l

    be

    (a)

    soundness

    of

    th e

    theory

    and

    (b )

    precis ionofth e

    mo d e l

    consis tentwithth erequirements

    of

    th eF A Apavemen t

    des ignmodel .hemo d e l evelopedhouldbecapable

    f

    model inghe lab-join t -foundat ion

    sys temanderves

    n

    nalyticalteppings tonetoincreasedunders tandingof

    th ebehaviorof

    rigid

    ave me n t

    ys tems.

    yjudiciously

    pplying

    his

    ncreased nders tanding

    f

    ehavior,

    improved

    des ign

    criteriacan

    be

    developedresulting

    in

    enhancedrigid

    pave me n t

    performance

    in

    th efield.

    T he

    object ives

    listedabovewil lbe

    accomplished

    by

    complet ingth e

    fol lowing

    tasks:

    1 .

    ask1 :eviewand

    Evaluat ion

    of

    Exis t ing

    Joint

    Model s .

    2.

    ask

    2:

    erform

    a

    Response

    and

    Sensit ivi ty

    Analys isof

    Rigid

    Pave me n tSys t ems .

    3.

    ask

    3:

    evelop

    a

    Genera l3DAnalyt ica l

    Model .

    4.

    ask

    4:

    erformLabora tory -Sca le

    Test ing.

    5.

    ask

    5:

    ode l

    Appl icat ion.

    6.ask

    6:

    odel

    Simpli f icat ion

    fo r

    Implementat ion

    into

    F A ADes ignProcedures .

    S C O P E .

    Thi s

    epor t

    escribes

    he

    ask

    fforttoeview

    nd

    evaluate

    xisting

    rigid

    pave me n t

    model s

    with

    art icular

    mphas i s

    n

    hei r

    oint

    nd

    oundat ion

    odel ing

    apabil i t ies .

    lso,

    et

    unpubl i shedmall-scaleodela ta eveloped

    y

    heorpsf ngineersnhe950 ' ss

    documen tedandanalyzedusing

    moderntechniques .

    closed-formsolution

    fo r

    rigidpavemen t

    response

    basedupon

    th e

    Weste rgaardas sumpt ionscoupled

    with

    an

    elast icconnect ionat

    th e

    joint

    is

    presented

    and

    discussed .

    P R O B L E M

    S T A T E M E N T

    T H ER IG IDP A V E M E N T

    S Y S T E M .

    A

    rigid

    pave me n t

    sys tem

    consists

    of

    a

    n umbe r

    ofrelat ively

    thinPort land

    ce me n t

    concre te

    slabs ,

    finite

    in

    length

    and

    wid th ,

    over

    one

    or

    more

    foundat ion

    layers.igure h o w sa

    representat ion

    of

    ypical

    igid

    ave me n t

    ys tem

    ubjected

    o

    tatic

    oading.

    hen

    lab-on-grade

    s

    subjected

    o

    heeload,

    t

    evelops

    endingt resses

    ndistributes

    heoadverhe

    foundat ion.

    owever ,he

    esponse

    f

    hese

    inite

    labs

    s

    ontrolled

    y

    oint

    r

    dge

    discontinuities.

    y

    heir ature,joints re

    t ructurally eakening

    omponen t s

    fth e

    ys tem.

    Thus ,he

    response

    nd

    effectiveness

    f

    joints

    reprimary

    concerns

    nrigidpave me n tanalys is

    anddes ign.

  • 8/10/2019 Ada 325108

    14/107

    1 .

    ire

    Pressure

    2.

    earing

    Stresses

    Caused

    by

    Tire

    3.

    lexural

    Stresses

    (Compression)

    4.

    lexural

    Stresses

    (Tension)

    5 .

    tresses

    atthe

    Slab-BaseInterface

    6.

    ertical

    andHorizontal

    Stresses

    (Base)

    7.

    ertical

    and

    Horizontal

    Stresses(Subbase)

    8 .

    ertical

    andHorizontal

    Stresses

    (Subgrade)

    9.

    tresses

    atConcrete-Dowel

    Interface

    F I G U R E

    1 .

    YP I CA L

    RIGIDP A V E M E N T

    S YS TE M

    ( A F T E RL A R R A L D E

    A N D

    C H E N ,

    985)

    Figure

    2

    presentsaconceptualview

    of

    the

    mechani sm

    ofload

    t ransfer

    at

    a

    joint .

    he

    concept

    of

    loadt ransferisverysimple:

    tressesanddeflectionsinaloadedslab

    are

    reducedif

    aport ionof

    th e

    load

    istransferred

    to

    an

    adjacentslab.oadt ransfer

    isveryimpor t an tandfundamenta lto

    th e

    F A A

    rigidpavemen t

    des ign

    procedure.oad

    t ransfer

    is

    a

    complexmechan i smtha t

    can

    vary

    with

    concre te

    avemen tempera tu re ,ge,oistureontent ,onstruct ionuali ty,

    agni tudend

    repetit ion

    ofload,and

    type

    of

    joint

    (Ha mmo ns ,Pi t tman,

    and

    Ma t h ews ,

    995).

  • 8/10/2019 Ada 325108

    15/107

    Loaded

    Edge

    Deflection

    Wheel

    Load

    Unloaded

    Edge

    Deflection

    PC C

    Slab

    .

    oaded

    0

    oa

    Base

    Course

    Unloaded

    Edge

    Stress

    C T

    Subgrade

    o

    /V/XsW

    F I G U R E

    2 .

    O N C E P TO F L O A D

    T R A N S F E R

    W h e n

    a

    joint

    is

    capable

    of

    t ransferring

    load,stat icsdictatethat

    th etotalload

    (P )

    m u s tbeequa lto

    th e

    su m

    of

    thatport ion

    of th eload

    supportedbyth eloadedslab

    (P

    L

    )and

    th e

    port ion

    of th e

    load

    suppor t ed

    by

    th e

    unloaded

    slab

    (Py),

    i.e.,

    PiP u =

    (1 )

    Load

    m ay

    e

    ransferred

    cross joint

    y

    hear

    rbend ing

    moment s .owever ,t

    as

    een

    common ly

    rguedhat

    oad

    ransfer

    s

    rimarily

    aused

    y ert icalhear.

    n

    i ther

    ase

    he

    fol lowingrelationship

    applies:

    G

    L

    5 u

    =.

    (2)

    wherea

    L

    is

    th emaxi mum

    bend ing

    stress

    inth e

    loadedslab,

    u

    is

    th e

    m a x i m u mbendingstress

    in

    th e

    djacent

    nloaded

    lab,

    nd

    f

    ishe

    maxi mum

    endingt ress

    or

    he

    ree-edge

    oading

    condi t ion.

    Becausemaxi mum

    slab

    deflect ions

    are

    also

    directly

    proport ional

    to

    applied

    load

    under

    th e

    stated

    condi t ions ,

    it

    fo l lows

    fromequat ion tha t

    W

    L

    Wu

    =

    W

    f

    (3 )

    wherew

    L

    is

    th emaxi mumedge

    deflection

    of

    th e

    loadedslab,

    w u

    is

    th emaxi mumedge

    deflection

    ofth eadjacentunloaded

    slab ,

    and

    W f

    is

    th e

    ma x i mu m

    edge

    deflection

    wi th

    no

    joint.

    L O A D

    T R A N S F E R

    D E F I N I T I O N S .

    Deflect ionload

    transfer

    efficiency(LTE)is

    definedasth erat io

    of

    th e

    deflection

    of

    th eun loaded

    slab

    ( w u )

    to

    th e

    deflection

    ofth e

    loaded

    slab

    (w

    L

    )

    as

    fol lows:

    LTE*

    =

    Wu

    WL

    (4 )

  • 8/10/2019 Ada 325108

    16/107

    Similar ly,

    t ress

    load

    transfer

    efficiency

    LT E

    a

    )

    is efinedasherat ioof

    th e

    edge

    t ress

    nth e

    un loaded

    slab

    to

    edge

    stress

    in

    th e

    loaded

    slab

    as

    fol lows:

    LTE

    C

    =

    o .

    (5 )

    L o a d

    t ransfer

    LT )

    nhe A Arigidpavement

    esign

    procedures

    efined

    s

    hat ortion

    he

    edge

    stress

    thatis

    carried

    b y

    th e

    adjacentunloaded

    slab:

    LT

    =

    o

    V/

    a