2_kuliah stress strain heru sukanto

Upload: egi-agustian-maulana

Post on 13-Apr-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    1/35

    TEGANGAN REGANGANAKIBAT

    BEBAN AKSIAL

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    2/35

    MATERIALS UNDER AXIAL LOADING

    = deformasi (pertambahanpanjang)

    A = luas penampang

    P = beban aksial batang

    Apa yang sama ?

    Resistance offered by

    the material per unit

    cross-sectional area

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    3/35

    Berapa defo

    ?

    Apanya yan

    kedua spesim

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    4/35

    STRESS STRAIN DIAGRAM

    specimenextensometer

    Typical tensil

    specimen

    ga

    len

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    5/35

    Zona Elastic dan Plast

    Awal Under load

    F

    bostr

    F

    elastic + plas

    Bondsstretch &

    plane shea

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    6/35

    ENGINEERING STRESS

    Shearstress, t:

    Area, A

    Ft

    Ft

    Fs

    F

    F

    Fs

    t = Fs

    Ao

    Tensile stress, s:

    original area

    before loading

    Area, A

    Ft

    Ft

    s =Ft

    Ao2

    f

    2m

    Nor

    in

    lb=

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    7/35

    Tensile strain: Lateral strain:

    Shear strain:

    ENGINEERING STRAIN

    q

    90

    90 -qy

    x qg = x/y= tan

    e =

    Lo

    -eL= L

    wo

    /2

    L/2

    Lowo

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    8/35

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    9/35

    Plastic tensile strain at failure:

    DUCTILITY

    Another ductility measure: 100xA

    AARA%

    o

    fo-

    =

    x 100L

    LLEL%

    o

    of-

    =

    Engineering tensile strain, e

    Engineering

    tensile

    stress, s

    smaller %EL

    larger %EL AoAfLo

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    10/35

    Energy to break a unit volume of material

    Approximate by the area under the stress-strain

    curve.

    TOUGHNESS

    Brittle fracture: elastic energy

    Ductile fracture: elastic + plastic energy

    very small toughne(unreinforced poly

    Engineering tensile strain, e

    Engineering

    tensile

    stress, s

    small toughness (ceramics)

    large toughness (metals)

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    11/35

    DEFORMASI (HOOKES LAW)

    Tentukan deformasi (pertambahan panjng)

    seperti gambar samping akibat beban yan

    ditanggungnya (E = 200 GPa) !

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    12/35

    Batang kaku BDE ditopang oleh dua batang AB dan CD

    terbuat dari aluminium (E = 70 Gpa) dg luas penampan

    sedangkan batang CD terbuat dari baja (E = 200 Gpa

    penampang 600 mm2. Untuk beban 30 kN seperti pada

    defleksi (lendutan) di titik B, D dan E !!

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    13/35

    POISSONS RATIO

    Untuk batang tipis yg dikenai beban aksial

    0=== zyx

    xE

    sss

    e

    Perpanjangan dalam arah x selalu disertai

    dengan kontraksi dalam arah lainnya. Deng

    asumsi bahwa material adalah isotropik

    (homogen, memiliki orientasi butir yg sam

    semua arah),

    0= zy ee

    Poissons ratio didefinisikan dg:

    x

    z

    x

    y

    e

    e

    e

    e -=-==

    strainaxial

    strainlateral

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    14/35

    GENERALIZED HOOKES LAW

    Elemen yg dikenai beban multi aksial, rega

    normal komponen yg disebabkan kompone

    tegangan bisa ditentukan dengan prinsip

    superposition. Syaratnya:

    1) strain is linearly related to stress

    2) deformations are small

    EEE

    EEE

    EEE

    zyxz

    zyxy

    zyx

    x

    ssse

    ssse

    sss

    e

    --=

    --=

    --=

    Didapatkan:

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    15/35

    DILATATION: BULK MODULUS

    Relative to the unstressed state, the change in vol

    e)unit volumperin volume(changedilatation

    21

    111111

    =

    -

    =

    =

    -=-=

    zyx

    zyx

    zyxzyx

    E

    e

    sss

    eee

    eeeeee

    For element subjected to uniform hydrostatic pres

    modulusbulk

    213

    213

    =-

    =

    -=-

    -=

    Ek

    k

    p

    Epe

    Subjected to uniform pressure, dilatation must be

    negative, therefore

    210

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    16/35

    SHEARING STRAIN

    Elemen kubus yg mengalami tegangan geser a

    terdeformasi menjadi genjang. Regangan gese

    bersesuaian diukur dalam hal perubahan sudut

    sisi,

    xyxy f gt =

    A plot of shear stress vs. shear strain is similar

    previous plots of normal stress vs. normal stra

    except that the strength values are approximate

    half. For small strains,

    zxzxyzyzxyxy GGG gtgtgt ===

    where G is the modulus of rigidity or shear mo

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    17/35

    EXAMPLE

    Sebuah balok kotak dari bahan dg

    modulus of rigidity G = 90 ksi

    dilekatkan pada dua plat horisontal. Plat

    bawah dipasang permanen sedangkanplat atas dikenai gaya horisontalP yg

    mengakibatkan plat bergeser 0.04 in.

    Tentukan a) tegangan geser bahan, b)

    Gaya P yg mengenai plat atas..

    SOLUTION:

    Determine the average ang

    deformation or shearing st

    the block.

    Use the definition of shear

    find the forceP.

    Apply Hookes law for she

    and strain to find the corre

    shearing stress.

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    18/35

    Determine the average angular deform

    or shearing strain of the block.

    rad020.0in.2

    in.04.0tan == xyxyxy ggg

    Apply Hookes law for shearing stress

    strain to find the corresponding shearin

    stress.

    p1800rad020.0psi1090 3 === xyxy Ggt

    Use the definition of shearing stress to the forceP.

    1036in.5.2in.8psi1800 3=== AP xyt

    kips0.36=P

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    19/35

    RELATION AMONG E, , AND G

    An axially loaded slender bar will

    elongate in the axial direction and

    contract in the transverse directions.

    = 12G

    E

    Components of normal and shear stra

    related,

    If the cubic element is oriented as in

    bottom figure, it will deform into a

    rhombus. Axial load also results in astrain.

    An initially cubic element oriented a

    top figure will deform into a rectangu

    parallelepiped. The axial load produ

    normal strain.

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    20/35

    EXAMPLE

    Sebuah lingkaran berdiameter d= 9 in.

    digoreskan pada plat aluminium dg keteba

    = 3/4 in. Gaya dikenakan pada bidang plasehingga mengakibatkan tegangan normal

    = 12 ksi and sz = 20 ksi.

    Bila E= 10x106psi dan = 1/3, tentukan

    perubahan dari:

    a) Panjang diameterAB,

    b) Panjang diameter CD,

    c) Tebal plat, dan

    d) Volume plat.

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    21/35

    SOLUTION:

    Apply the generalized Hookes Law to

    find the three components of normal

    strain.

    in./in.10600.1

    in./in.10067.1

    in./in.10533.0

    ksi203

    10ksi12

    psi1010

    1

    3

    3

    3

    6

    -

    -

    -

    =

    --=

    -=

    --=

    =

    --

    =

    --=

    EEE

    EEE

    EEE

    zyxz

    zyxy

    zy

    xx

    ssse

    ssse

    ssse

    Evaluate the deformation compo

    9in./in.10533.0 3-== dxAB e

    9in./in.10600.1 3-== dzDC e

    i75.0in./in.10067.1 3--== tyt e

    in108.4 3-=AB

    104.14 3-=DC

    in10800.0 3--=t

    Find the change in volume

    3

    33

    75.0151510067.1

    /inin10067.1

    ==

    ==

    -

    -

    eVV

    e zyx eee

    3in187.0=V

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    22/35

    COMPOSITE MATERIALS

    Fiber-reinforced composite materials are forme

    from lamina of fibers of graphite, glass, or

    polymers embedded in a resin matrix.

    z

    zz

    y

    yy

    x

    xx EEE

    e

    s

    e

    s

    e

    s===

    Normal stresses and strains are related by Hook

    Law but with directionally dependent moduli o

    elasticity,

    x

    zxz

    x

    yxy

    e

    e

    e

    e -=-=

    Transverse contractions are related by direction

    dependent values of Poissons ratio, e.g.,

    Materials with directionally dependent mechan

    properties are anisotropic.

    SAINT VENANTS PRINCIPLE

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    23/35

    SAINT-VENANTS PRINCIPLE

    Loads transmitted through rigid

    plates result in uniform distribut

    of stress and strain.

    Saint-Venants Principle:

    Stress distribution may be assu

    independent of the mode of loa

    application except in the imme

    vicinity of load application poi

    Stress and strain distributions

    become uniform at a relatively l

    distance from the load applicatio

    points.

    Concentrated loads result in larg

    stresses in the vicinity of the loa

    application point.

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    24/35

    STRESS CONCENTRATION: HOLE

    Discontinuities of cross section may result in high

    localized or concentrated stresses. ave

    max

    s

    s=K

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    25/35

    STRESS CONCENTRATION: FILLET

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    26/35

    EXAMPLE 2.12

    Determine the largest axial load P

    that can be safely supported by a

    flat steel bar consisting of two

    portions, both 10 mm thick, and

    respectively 40 and 60 mm wide,

    connected by fillets of radius r = 8mm. Assume an allowable normal

    stress of 165 MPa.

    SOLUTION:

    Determine the geometric ratios a

    find the stress concentration factofrom Fig. 2.64b.

    Apply the definition of normal stfind the allowable load.

    Find the allowable average norm

    stress using the material allowab

    normal stress and the stress

    concentration factor.

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    27/35

    Determine the geometric ratio

    find the stress concentration f

    from Fig. 2.64b.

    82.1

    mm40

    mm850.1

    mm40

    mm60

    =

    ===

    K

    d

    r

    d

    D

    Find the allowable average no

    stress using the material allow

    normal stress and the stress

    concentration factor.

    M7.90

    82.1

    MPa165maxave ===

    K

    ss

    Apply the definition of norm

    to find the allowable load.

    N103.36

    .90mm10mm40

    3=

    == aveAP s

    36=P

    ELASTOPLASTIC MATERIALS

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    28/35

    ELASTOPLASTIC MATERIALS

    Previous analyses based on assumpt

    linear stress-strain relationship, i.e.,

    stresses below the yield stress

    Assumption is good for brittle materwhich rupture without yielding

    If the yield stress of ductile materials

    exceeded, then plastic deformations

    Analysis of plastic deformations is

    simplified by assuming an idealized

    elastoplastic material

    Deformations of an elastoplastic mat

    are divided into elastic and plastic ra

    Permanent deformations result from

    loading beyond the yield stress

    PLASTIC DEFORMATIONS

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    29/35

    PLASTIC DEFORMATIONS

    Elastic deformation while max

    stress is less than yield stressK

    AAP ave

    maxss ==

    Maximum stress is equal to the

    stress at the maximum elastic

    loadingK

    AP YY

    s=

    At loadings above the maximu

    elastic load, a region of plastic

    deformations develop near the

    As the loading increases, the p

    region expands until the sectio

    a uniform stress equal to the yi

    stressY

    YU

    PK

    AP

    =

    =s

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    30/35

    RESIDUAL STRESSES

    When a single structural element is loaded uniformly

    beyond its yield stress and then unloaded, it is permanently

    deformed but all stresses disappear. This is not the general

    result.

    Residual stresses also result from the uneven heating or

    cooling of structures or structural elements

    Residual stresses will remain in a structure after

    loading and unloading if

    - only part of the structure undergoes plastic

    deformation

    - different parts of the structure undergo different

    plastic deformations

    EXAMPLE

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    31/35

    EXAMPLE

    Sebuah batang silinder ditempatkan

    didalam tabung dengan panjang yang

    sama. Pada ujung batang dan tabung

    dipasang plat penopang yang kokoh

    dan ujung satunya dijepit. Beban tarikdikenakan pada plat penopang secara

    perlahan hingga mencapai 5,7 kips dan

    kemudian dihilangkan.

    a) Gambarkan diagram beban-

    defleksi dari gabungan batang-

    tabungb) Tentukan elongasi maksimum

    c) Tentukan bagian yg mengalami

    deformasi permanen

    d) Hitung tegangan sisa pada batang

    dan tabung

    ksi36

    psi1030

    in.075.0

    ,

    6

    2

    =

    =

    =

    rY

    r

    r

    E

    A

    ksi45

    1015

    in100.0

    ,

    6

    =

    =

    =

    tY

    t

    t

    E

    A

    E ample

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    32/35

    a) draw a load-deflection diagram for the rod

    tube assembly

    136in.30psi1030

    psi1036

    kips7.2in075.0ksi36

    6

    3

    ,

    ,,

    2,,

    =

    ===

    ===

    LE

    L

    AP

    rY

    rYrYY,r

    rrYrY

    se

    s

    1009in.30

    psi1015

    psi1045

    kips5.4in100.0ksi45

    6

    3

    ,

    ,,

    2,,

    =

    ===

    ===

    LE

    L

    AP

    tY

    tYtYY,t

    ttYtY

    se

    s

    tr

    tr PPP

    ==

    =

    Example

    b c) determine the maximum elongation and permane

    Example

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    33/35

    b,c) determine the maximum elongation and permane

    at a load ofP= 5.7 kips, the rod has reached the

    plastic range while the tube is still in the elastic r

    in.30psi1015

    psi1030

    ksi30in0.1

    kips0.3kips0.3kips7.27.5

    kips7.2

    6

    3

    t

    2t

    ,

    ===

    ===

    =-=-=

    ==

    LE

    L

    A

    P

    PPP

    PP

    t

    tt

    t

    t

    rt

    rYr

    se

    s

    160max == t

    the rod-tube assembly unloads along a line parall

    to 0Yr

    in.106.4560

    in.106.45in.kips125

    kips7.5

    slopein.kips125in.1036

    kips5.4

    3maxp

    3max

    3-

    -

    -

    -==

    -=-=-=

    ==

    =

    m

    P

    m

    4.14 =p

    Example

    Example

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    34/35

    calculate the residual stresses in the rod and t

    calculate the reverse stresses in the rod and tub

    caused by unloading and add them to the max

    stresses.

    ksi2.7ksi8.2230

    ksi69ksi6.4536

    ksi8.22psi10151052.1

    ksi6.45psi10301052.1

    in.in.1052.1in.30

    in.106.45

    ,

    ,

    63

    63

    33

    =-==

    -=-==

    -=-==

    -=-==

    -=-

    =

    =

    -

    -

    --

    tttresidual

    rrrresidual

    tt

    rr

    .

    E

    E

    L

    sss

    sss

    es

    es

    e

    Example

    Batang kaku BDE ditopang oleh dua batang AB dan CD. Ba

  • 7/26/2019 2_kuliah Stress Strain Heru Sukanto

    35/35

    g p g g

    terbuat dari aluminium (E = 70 Gpa) dg luas penampang 5

    sedangkan batang CD terbuat dari baja (E = 200 Gpa) de

    penampang 600 mm2. Untuk beban 30 kN seperti pada ga

    defleksi (lendutan) di titik B, D dan E !!

    A circle of diameter d= 9 in. is scribed on an unstressed aluminum plate of th

    Forces acting in the plane of the plate later cause normal stresses sx = 12 ksi

    ForE= 10x106psi and = 1/3, determine the change in:

    a) the length of diameterAB,

    b) the length of diameter CD,

    c) the thickness of the plate, and

    d) the volume of the plate.