2.1.2 konduksi

8
2.1.2 Konduksi Konduksi adalah perpindahan energi dari partikel yang lebih energik dari suatu zat menuju yang kurang energik yang berdekatan sebagai akibat dari interaksi antara partikel. Konduksi dapat terjadi pada zat padat, cair dan gas. Pada gas dan cair, konduksi ini disebabkan oleh tabrakan dan pembauran dari gerakan molekul selama gerakan acak mereka. Pada benda padat, gerakan ini disebabkan akibat kombinasi getaran dari molekul di dalam kisi dan berpindahnya energi yang disebabkan oleh elektron bebas. Laju konduksi panas melalui media tergantung pada geometri dari medium, ketebalan, dan bahan dari medium, serta beda suhu di medium terdebut. Pada penjelasan berikut, dapat dilihat proses perpindahan panas melalui dinding yang tebalnya Δx=L dan luasnya A, seperti pada gambar berikut :

Upload: teza-nur-firlyansyah

Post on 23-Nov-2015

13 views

Category:

Documents


1 download

TRANSCRIPT

2.1.2 Konduksi

Konduksi adalah perpindahan energi dari partikel yang lebih energik dari suatu zat menuju yang kurang energik yang berdekatan sebagai akibat dari interaksi antara partikel. Konduksi dapat terjadi pada zat padat, cair dan gas. Pada gas dan cair, konduksi ini disebabkan oleh tabrakan dan pembauran dari gerakan molekul selama gerakan acak mereka. Pada benda padat, gerakan ini disebabkan akibat kombinasi getaran dari molekul di dalam kisi dan berpindahnya energi yang disebabkan oleh elektron bebas. Laju konduksi panas melalui media tergantung pada geometri dari medium, ketebalan, dan bahan dari medium, serta beda suhu di medium terdebut. Pada penjelasan berikut, dapat dilihat proses perpindahan panas melalui dinding yang tebalnya x=L dan luasnya A, seperti pada gambar berikut :

Gambar 3.1: Perpindahan Panas Konduksi Melalui Dinding

Sumber: Heat Transfer, Cengel. 2003:21Perbedaan temperatur pada dinding adalah T= T2-T1. Percobaan dapat menghasilkan laju dari perpindahan panas Q melalui dinding dua kali lipat ketika perbedaan suhu di seluruh dinding atau area A normal terhadap arah perpindahan panas dua kali lipat, tapi dibelah dua ketika ketebalan dinding L dua kali lipat. Dengan demikian kita menyimpulkan bahwa laju konduksi panas melalui lapisan dinding sebanding dengan perbedaan suhu di seluruh lapisan dan area perpindahan panas, namun berbanding terbalik dengan ketebalan lapisan, sehingga dapat dirumuskan dengan:

Atau,

Dimana konstanta k adalah konduktivitas termal material, yang merupakan ukuran kemampuan suatu material untuk menghantarkan panas. Jika x = 0, persamaan di atas tereduksi menjadi bentuk diferensial

Tanda negatif di dalam rumus memastikan bahwa perpindahan panas dalam arah x positif adalah jumlah yang positif.

2.1.3 Konveksi

Konveksi adalah proses transport energi dengan kerja gabungan dari konduksi panas, penyimpanan dan gerakan mencampur. Konveksi sangat penting sebagai mekanisme perpindahan energi antara permukaan benda padat dan cairan atau gas.Perpindahan energi dengan cara konveksi dari suatu permukaan yang suhunya di atas suhu fluida sekitarnya berlangsung dalam beberapa tahap. Pertama, panas akan mengalir dengan cara konduksi dari permukaan ke partikel-partikel fluida yang berbatasan. Energi yang berpindah dengan cara demikian akan menaikkan suhu dan energi dalam partikel-partikel fluida ini. Kemudian partikel-partikel fluida tersebut akan bergerak ke daerah yang bersuhu rendah didalam fluida di mana mereka akan bercampur dengan, dan memindahkan sebagian energinya kepada, partikel-partikel fluida lainnya. Dalam hal ini alirannya adalah aliran fluida maupun energi. Energi sebenarnya disimpan di dalam partikel-partikel fluida dan diangkut sebagai akibat gerakan massa partikel-partikel tersebut. Mekanisme ini untuk operasinya tidak tergantung hanya pada beda suhu dan oleh karena itu tidak secara tepat memenuhi definisi perpindahan panas. Tetapi hasil bersihnya adalah angkutan energi, dan karena terjadinya dalam arah gradien suhu, maka juga digolongkan dalam suatu cara perpindahan panas dan ditunjuk dengan sebutan aliran panas dengan cara konveksi.Laju perpindahan panas dengan cara konveksi antara suatu permukaan dan suatu fluida dapat dihitung dengan hubungan

Di mana : q = laju perpindahan panas dengan cara konveksi, (Watt)As = luas perpindahan panas, (m2)Ts = Temperarur permukaan benda padat, (0K)T = Temperatur fluida mengalir, (0K)h = koefisien perpindahan panas konveksi, (W/m2 0K)Perpindahan panas konveksi diklasifikasikan dalam konveksi bebas (free convection) dan konveksi paksa (forced convection) menurut cara menggerakkan alirannya. Konveksi alami adalah perpindahan panas yang disebabkan oleh beda suhu dan beda rapat saja dan tidak ada tenaga dari luar yang mendorongnya. Konveksi alamiah dapat terjadi karena ada arus yang mengalir akibat gaya apung, sedangkan gaya apung terjadi karena ada perbedaan densitas fluida tanpa dipengaruhi gaya dari luar sistem. Perbedaan densitas fluida terjadi karena adanya gradien suhu pada fluida. Konveksi paksa adalah perpindahan panas aliran gas atau cairan yang disebabkan adanya tenaga dari luar. Konveksi paksa dapat pula terjadi karena arus fluida yang terjadi digerakkan oleh suatu peralatan mekanik (contoh : pompa dan pengaduk), jadi arus fluida tidak hanya tergantung pada perbedaan densitas. Contoh perpindahan panas secara konveksi paksa adalah pelat panas dihembus udara dengan kipas/blower.

Secara umum aliran fluida dapat diklasifikasikan sebagai aliran eksternal dan aliran internal. Aliran eksternal terjadi saat fluida mengenai suatu permukaan benda. Contohnya adalah aliran fluida melintasi plat atau melintang pipa. Aliran internal adalah aliran fluida yang dibatasi oleh permukaan zat padat, misalnya aliran dalam pipa/saluran. Perbedaan antara aliran eksternal dan aliran internal pada suatu pipa/saluran ditunjukkan pada Gambar 3.2.Secara umum aliran fluida dapat diklasifikasikan sebagai aliran eksternal dan aliran internal. Aliran eksternal terjadi saat fluida mengenai suatu permukaan benda. Contohnya adalah aliran fluida melintasi plat atau melintang pipa. Aliran internal adalah aliran fluida yang dibatasi oleh permukaan zat padat, misalnya aliran dalam pipa/saluran. Perbedaan antara aliran eksternal dan aliran internal pada suatu pipa/saluran ditunjukkan pada Gambar 3.2.

Gambar 3.2 Aliran eksternal udara dan aliran internal air pada suatu pipa/saluran

Sumber: Heat Transfer, Cengel. 2003:212.1.4 Radiasi

Radiasi adalah energi yang dipancarkan oleh materi dalam bentuk gelombang elektromagnetik sebagai akibat dari perubahan konfigurasi elektronik dari atom atau molekul. Tingkat maksimum radiasi yang dapat dipancarkan permukaan pada suhu Ts mutlak diberikan oleh hukum stefaan-Boltzmann yaitu

Dimana = 5,67 x 10-8 W/m2 K4 merupakan konstanta Stefen-Boltzmann. Permukaan ideal yang memancarkan radiasi pada tingkat maksimum ini disebut benda hitam, dan radiasi yang dipancarkan oleh benda hitam disebut Radiasi benda hitam. Radiasi yang dipancarkan oleh semua permukaan nyata lebih kecil dari radiasi yang dipancarkan oleh benda hitam pada suhu yang sama, dan dinyatakan sebagai

Dimana adalah emisivitas permukaan yang besarnya adalah diantara 0 1. As adalah luas permukaan dan Ts adalah temperature absolute.2.1.5 Konduktivitas TermalKonduktivitas termal adalah kemampuan suatu material untuk menghantarkan panas. Persamaan untuk laju perpindahan panas konduksi dalam kondisi stabil juga dapat dilihat sebagai persamaan penentu bagi konduktivitas termal. Sehingga konduktivitas termal dari material dapat didefinisikan sebagai laju perpindahan panas melalui ketebalan unit bahan per satuan luas per perbedaan suhu. Konduktivitas termal material adalah ukuran kemampuan bahan untuk menghantarkan panas. Harga tertinggi untuk konduktivitas termal menunjukkan bahwa material adalah konduktor panas yang baik, dan harga terendah untuk konduktivitas termal menunjukan bahwa material adalah bukan pengahantar panas yang baik atau disebut isolator. Konduktivitas termal beberapa bahan umum pada suhu kamar diberikan dalam tabel di bawah ini.

Suhu adalah ukuran energi kinetik dari partikel seperti molekul atau atom dari suatu zat. Pada cairan dan gas, energi kinetik dari partikel terjadi karena gerak translasi acak mereka serta gerakan getaran dan rotasi mereka. Ketika dua molekul yang memiliki energi kinetik yang berbeda berbenturan, bagian dari energi kinetik dari molekul lebih bertenaga ditransfer ke molekul kurang bertenaga, sama seperti ketika dua bola elastis dari massa yang sama dengan kecepatan yang berbeda berbenturan, bagian dari energi kinetik dengan bola kecepatan tinggi ditransfer ke bola yang kecepatanya lebih lambat. Makin tinggi suhu, semakin cepat molekul bergerak, semakin tinggi jumlah molekul tabrakan, dan semakin baik perpindahan panasnya.