uji kulaitatif untuk identifikasi karbohidrat i dan ii

Upload: nenktse-el-syah

Post on 11-Jul-2015

318 views

Category:

Documents


0 download

TRANSCRIPT

UJI KULAITATIF UNTUK IDENTIFIKASI KARBOHIDRAT I DAN II Karbohidrat adalah polihidroksildehida dan keton polihidroksil atau turunannya. selian itu, ia juga disusn oleh dua sampai delapan monosakarida yang dirujuk sebagai oligosakarida. Karbohidrat mempunyai rumus umum Cn(H2O)n. Rumus itu membuat para ahli kimia zaman dahulu menganggap karbohidrat adalah hidrat dari karbon. I. TINJAUAN PUSTAKA Teori yang mendasari percobaan ini adalah penmabahan asam organik pekat, misalanya H2SO4 menyebabakan karbohidrat terhidrolisis menjadi monosakarida. Selanjutnya monosakarida jenis pentosa akan mengalami dehidrasi dengan asam tersebut menjadi furfural, semantara golongan heksisosa menjadi hidroksi-multifurfural. Pereaksi molisch yang terdiri dari a-naftol dalam alkohol akan bereaksi dengan furfural tersebut membentuk senyawa kompleks berwarna ungu. Uji ini bukan uji spesifik untuk karbohidrat, walalupun hasil reaksi yang negatif menunjukkan bahwa larutan yang diperiksa tidak mengandung karbohidrat. Warna ungu kemrah-merahan menyatakan reaksi positif, sedangka warna hijau adalah negatif. Untuk kegaitan praktikum kedua, yang mendasari perconaan uji iodium adalah penmabahan iodium pada suatu polisakarida akan menyababkan terbentuknya kompleks adsorpsi berwarna spesifik. Amilum atau pati dengan iodium mengahailkan warna biru, dekstrin menghasilkan warna merah anggur, glikogen dan sebagian pati yang terhidrolisis bereaksi dengn iodium membantuk warna erah coklat. Pada uji benedict, teori yang mendarsarinya adalah gula yang mengandung gugus aldehida atau keton bebas akan mereduksi ion Cu2+ dalam suasana alkalis, menjadi Cu+, yang mengendap sebagai Cu2O (kupro oksida) berwarna merah bata. Ion Cu2+ dari pereaksi Barfoed dalam suasana asam akan direduksi lebih cepat oleh gula reduksi monosakarida dari pada disakarida dan menghasilkan Cu2O (kupro oksida) berwarna merah bata. Hal inilah yang mndasari uji Barfoed. Pada uji bial, dasar dari percobaannya adalah dehidrasi pentosa oleh HCl pekat menghasilkan furfural dengan penambahan orsinol (3.5dihidroksi toluena) akan berkondesasi membentuk senyawa kompleks berwarna biru. Sedangkan dehidrasi fruktosa oleh HCL pekat menghasilkan hidroksimetilfurfural dengan penambahan resorsinol akan megalami kondensasi membentuk senyawa kompleks berwarna merah jingga menjadi dasar dari uji Seliwanoff. Pada uji Osazon, yang mendasarinya adalah pemanasan karbohidrat yang memiliki gugus aldehida atao keton bersama fenilhidrazin berlebihan akan membentuk hidrazon atao osazon. Osazon yang terbentuk mempunyai bentuk kristal dan titik lebur yang spesifik. Osazon dari disakarida larut dalam air mendidih dan terbentuk kembali bila didinginkan, namun sukrosa tidak membentuk osazon karena gugus aldehida dan keton yang terikat pada monomernya sudah tidak bebas., sebaliknya osazon monosakarida tidak larut dalam air mendidih. Sedangkan teori yang mendasari hidrolisis pati dan sukrosa adalah, pati (starch) tau amilum merupakan polisakarida yang terdapat pada sebagian besar tanaman, terbagi menjadi dua fraksi yaitu amilosa dan amilopektin. Amilosa (+- 20 %) memilki strusktur linier dan dengan iodium memberikan warna biru serta larut dalam air. Fraksi yang tidak larut disebut amilopektin (+- 80 %) dengan struktur bercabang. Dengan penambahan iodium fraksi memberikan warna ungu sampai merah. Patai dalam suasana asam bila dipanaskan akan terhidrolisis menjdi senyawa-senyawa yang lebih sedrhana. Hasil hidrolisis dapat dengan iodium dan menghaislkan warna biru samapi tidak berwarna. Hasil akhir hidrolisis dapat ditegaskan dengan uji Benedict. Sukrosa oleh HCl dalam keadaan panas akan terhirolisis, lalu menghasilkan glukosan dan fruktosa. Hal ini menyebabkan uji Benedict dan uji Seliwanoff yang sebelum hidrolisis memberikan hasil negatif menjadi positif. Uji Barfoed menjadi positif pula dan menunjukkan bahwa hidrolisis sukrosa menghasilakn monosakarida. +HCl Sukrosa ----------- Glukosa + Fruktosa II. Alat 1. 2. 3. 4. 5. 6. 7. 8. 9. Bahan 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. Amilum, glokogen, dekstrin, sukrosa, laktosa, maltosa, galaktosa, fruktosa, glukosa dan arabinosa masing-masing dalam larutan 1 %. Pereaksi Molisch H2SO4 pekat Larutan Iodium Pereaksi Benedict Pereaksi Barfoed Perekasi Bial HCl pekat (37 %) Perekasi Seliwanoff Fenilhidrazin-hidroklorida Natrium asetat HNO3 pekat HCl 2 N NaOH % Kertas lakmus Tabung reaksi Pyrex Rak tabung reaksi Pipet tetes Lempeng tetes poselin Penjepit tabung reaksi Penangas air Alat pemanas Pipet ukur Mikroskop METODOLOGI Metodologi yang digunakan pada percobaan ini adalah dengan menggunakan alat-alat, bahan-bahan dan prosedur sebagai berikut :

Pada uji Molisch, semua zat uji adalah termasuk karbohidrat. hal tersebut dapat dilihat pada terbentuknya cincin berwarna ungu.

1

Reaksi yang berlangsung adalah sebagai berikut : H CH2OHHCOHHCOHHCOHC=O + H2SO4 Pentosa H CH2OHHCOHHCOHHCOHHCOHC=O + H2SO4 Heksosa O H2C CH + OH OH 5-hidroksimetil furfural -naftol Rumus dari cincin ungu yang terbentuk adalah sebagai berikut: O C __SO3H OH O CH + OH -naftol

Furfural

H2C

Cincin ungu senyawa kompleks Pada uji Iodium, pada masing-masing zat uji memiliki indikasi yang berbeda-beda. dari sepuluh zat uji, Amilum, Glikogen, dan Dekstrin positif polisakarida. Untuk uji Iodium, didapat hasil sebagaimana tertera di tabel 2. Pada uji Benedict, indikator terkandungnya Gula Reduksi adalah dengan terbentuknya endapan berwarna merah bata. hal teresebut dikarenakan terbentuknya hasil reaksi berupa Cu2O. Hasil uji pada uji Benedict adalah sebagaimana tertera di tabel. 3 Berikut reaksi yang berlangsung: O O RCH + Cu2+ 2OH- RCOH + Cu2O Gula Pereduksi Endapan Merah Bata Pada uji Barfoed, yang terdeteksi monosakarida membentuk endapan merah bata karena terbentuk hasil Cu2O. berukut reaksinya : O O Cu2+ asetat RCH + RCOH + Cu2O+ CH3COOH n-glukosa E.merah monosakarida bata Hasil uji pada uji Barfoed adalah sebagaimana tertera di tabel. 4 Pada uji Bial, terkandungnya pentosa dideteksi dengan indikasi terbentuknya warna biru pada zat uji, dan hal itu terbukti pada zat uji Arabinosa 1 %. Hasil uji pada uji Bial adalah sebagaimana tertera di tabel. 5 Berikut, reaksinya : H CH2OHHCOHHCOHHCOHC=O + HCl Pentosa O CH3 OH OH Furfural orsinol (kompleks berwarna biru) Pada uji Seliwanof, ketosa terdeteksi pada zat uji Fruktosa dengan terbentuknya warna jingga; yaitu karena terbentuknya resorsinol. Hasil uji pada uji Seliwanoff adalah sebagaimana tertera di tabel. 6 CH2OH OH O OH OH +HCl

-3 H2O CH +

H OH H

CH2OH

H2C

CH + OH 5-hidroksimetil furfural

kompleks berwarna merah jingga resorsinol

Pada uji Osazon, diperoleh hasil yang berbeda-beda. Masing-masing zat uji mempunyai bentuk yang khas. Hal tersebut dapat digunakan untuk membedakan antara setu karbohidrat dengan karbohidrat yang lain. Pada uji hidrolisis pati, hidrolisis sempurna apabila menjadi senyawa yang lebih sederhana yang terdeteksi pada perubahan warna. Hal ini terlihat padas perubahan warna setiap tiga menit disertai perbedaan hasil hidrolisis pula. Larutan hasil hidrolisis sebelum dilakukan uji Benedict untuk menentukan hasil akhir harus dinetralkan terlebih dahulu, karena semula masih dalam suasana asam. Berikut hasil uji Hidrolisis Pati adalah sebagimana tertera di Tabel. 8 Pada uji Hidrolisis Pati ini dilakukan uji Benedict, Seliwanoff, dan Barfoed supaya dapat mengidentifikasi monosakaridamonosakarida yang terbentuk (glukosa dan fruktosa. Sementara itu, yang dimaksud dengan gula inverse adalah gula yang dapat memutar bidang polarisasi, karena memiliki gugus aldehida dan keton bebas. Berikut hasil uji Hidrolisis Pati adalah sebagimana tertera di Tabel. 9 DAFTAR PUSTAKA Feseenden dan Fessenden. 1997. Dasar-Dasar Kimia Organik. Binarupa Aksara. Jakarta Jalip, IS. 2008. Praktikum Kimia Organik, Edisi kesatu. Laboratorium Kimia Universitas Nasional. JakartaKarbohidrat merupakan senyawa karbon, hydrogen dan oksigen yang terdapat dalam alam. Banyak karbohidrat mempunyai rumus empiris CH2O. Karbohidrat sebenarnya adalah polisakarida aldehida dan keton atau turunan mereka. Salah satu perbedaan utama antara pelbagai tipe tipe karbohidrat ialah ukurannya. Monosakarida adalah satuan karbohidrat yang tersederhana, mereka tidak dapat dihidrolisis enjadi molekul karbohidrat yang lebih kecil. Monosakarida dapat diikat bersama-sama membentuk dimer, trimer dan sebagainya dan akhirnya polimer. Dimer-dimer disebut disakarida. Sedangkan monosakarida yang mengandung gugus aldehid disebut aldosa.Glukosa, galaktosa, ribose, dan deoksiribosa semuanya adalah aldosa. Monosakarida seperti fruktosa dengan gugus keton disebut ketosa. Karbohidrat tersusun dari dua atau delapan satuan monosakarida dirujuk sebagai oligosakarida. Jika diperoleh dari hidrolisis maka karbohidrat iti disebut polisakarida (Fessenden, 1990). Karbohidrat adalah polihidroksildehida dan keton polihidroksil atau turunannya. Selain itu, ia juga disusun oleh dua sampai delapan monosakarida yang dirujuk sebagai oligosakarida. Karbohidrat mempunyai rumus umum Cn(H2O)n. Rumus itu membuat para ahli kimia zaman dahulu menganggap karbohidrat adalah hidrat dari karbon.Penting bagi kita untuk lebih banyak mengetahui tentang karbohidrat beserta reaksi-reaksinya, karena ia sangat penting bagi kehidupan manusia dan mahluk hidup lainnya (Anonim1,2010). Karbohidrat yang tidak bisa dihrolisis ke susunan yang lebih simpel dinamakan monosakarida, karbohidrat yang dapat dihidrolisis menjadi dua molekul monosakarida dinamakan disakarida. Sedangkan karbohidrat yang dapat dihidrolisis menjadi banyak molekul monosakarida dinamakan polisakarida. Monosakarida bisa diklasifikasikan lebih jauh, jika mengandung grup aldehid maka disebut aldosa, jika mengandung grup keton maka disebut ketosa. Glukosa punya struktur molekul C6H12O6, tersusun atas enam karbon, rantai lurus, dan pentahidroksil aldehid maka glukosa adalah aldosa. Contoh ketosa yang penting adalah fruktosa, yang banyak ditemui pada buah dan berkombinasi dengan glukosa pada sukrosa disakarida (Morrison,1983). Banyak tes digunakan untuk mengetahui karakteristik karbohidrat. Uji Molisch adalah pengujian paling umum untuk semua karbohidrat, ini berdasar kemampuan karbohidrat untuk mengalami dehidrasi asam katalis untuk menghasilkan fulfural atau 5 hydroxymethylfurfural. Uji Selliwanoff digunakan untuk membedakan ketosa (enam karbon gula yang mengandung keton pada ujung sisi) dan aldosa (enam karbon gula yang mengandung aldehid pada ujung). Keton mengdehidrasi dengan cepat menghasilkan 5 hydroxymethylfurfural, sedangkan aldosa lebih lambat. Sekali 5 hydroxymethylfurfural dihasilkan, akan bereaksi dengan resosinol menghasilkan warna merah. Uji Benedict digunakan untuk menentukan monosakari dan disakarida yang mengandung grup aldehid yang dapat dioksidasi asam karboksil. Gula akan mereduksi ion kupri pada larutan Benedict. Uji Barfoed untuk memisahkan antara monosakarida dengan disakarida yang dapat mereduksi ion kupri. Reagen barfoed bereaksi dengan monosakarida untuk menghasilkan kupri oksida lebih cepat dibanding disakarida (Eaton,1980). Karbohidrat merupakan polihidroksil aldehida atau keton atau senyawa yang menghasilkan senyawa-senyawa ini bila hidroksil. Nama karbohidrat berasal dari kenyataan bahwa kebanyakan senyawa dari golongan ini mempunyai rumus empiris yang menunjukkan bahwa senyawa tersebut adalah karbon hidrat, dan yang memiliki nisbah karbon terhadap hidrogen dan terhadap oksigen sebagai 1:2:1. Sebagai contoh rumus empiris D-glukosa adalah C6H12O6 atau dapat ditulis sebagai C6(H2O)6. Walaupun karbohidrat yang umum sesuai dengan rumus empiris tersebut namun yang lain tidak memperlihatkan nisbah ini dan beberapa yang lain lagi juga mengandung nitrogen, fosfor, atau sulfur. Terdapat tiga golongan utama dari karbohidrat yaitu monosakarida, oligosakarida, dan polisakarida. Monosakarida atau gula sederhana terdiri hanya dari satu unit polihidroksi aldehida atau keton. Oligosakarida merupaka polimer dengan derajat polimerasasi 2 sampai 10 dan biasanya bersifat larut dalam air. Oligosakarida yang terdiri dari dua molekul disebut disakarida, bila tiga molekul disebut triosa, bila sukrosa terdiri dari molekul glukosa dan fruktosa, laktosa terdiri dari molekul glukosa dan galaktosa. Polisakarida merupakan polimer yang tersusun lebih dari 10 monomer yang dapat berantai lurus atau bercabang dan dapat dihidrolisis dengan enzim-enzim tertentu. Jenis karbohidrat yang digunakan dalam percobaan ini antara lain adalah glukosa, maltosa, sukrosa dan fruktosa. Glukosa merupakan jenis monosakarida yang tidak dapat dihidrolisis. Sedangkan maltosa dan sukrosa merupakan disakarida, dimana maltosa

3

merupakan hasil hidrolisis dari hasil hidrolisis pati, yang apabila 1 mol maltosa dihidrolisis lebih lanjut akan dihasilkan 1 mol -D-glukosa dan 1 mol -D-glukosa sedangkan sukrosa apabila dihidrolisis akan menghasilkan 50% -D-glukosa dan 50% -D-fruktosa. Fruktosa merupakan molekul yang mengandung gugus hidroksil dan gugus karbonil keton pada C-2 dari rantai enam karbon. Dalam percobaan ini digunakan test benedict dan test fehling untuk mendeteksi keberadaan gugus aldehid ataupun keton dalam suatu senyawa karbohidrat. Pada test benedict, larutan benedict masing-masing dicampurkan dengan larutan glukosa, fruktosa, sukrosa dan maltosa. Dari hasil pengamatan tersebut didapatkan bahwa didalam larutan glukosa dan maltosa terdapat endapan merah bata yang disebabkan oleh larutan benedict yang terdiri dari tembaga sulfat (CuSO4) dan glukosa memiliki gugus aldehid yang terikat pada ujungnya dan maltosa, dimana 1 molekul maltosa sama dengan 2 molekul glukosa sehingga mampu mereduksi karena mempunyai gugus aldehid bebas. Maka glukosa maupun maltosa mengalami oksidasi dan mampu mereduksi senyawa yaitu melepaskan O2 sehingga terbentuk tembaga oksida (Cu2O), yang kita lihat sebagai endapan merah bata. Didalam larutan fruktosa dan sukrosa pun didapatkan endapan merah bata, padahal kedua senyawa ini tidak mengandung gugus aldehid tetapi gugus keton, dimana gugus keton tidak mampu mengoksidasi senyawa hanya mampu meruduksi. Hal ini mungkin disebabkan oleh peralatan yang kurang bersih sehingga larutan yang mengandung gugus aldehid tercampur didalamnya. Pada test fehling, larutan fehling dicampurkan kedalam larutan glukosa, fruktosa, sukrosa dan maltosa, dan hasil yang didaptkan sama dengan hasil yang didapatkan pada test benedict. Pada test iodida digunakan untuk mendeteksi adanya pati (suatu polisakarida). Larutan pati + 1 tetes larutan I2 masing-masing dicampurkan ke dalam 2 tetes air, 2 tetes larutan HCl 6 N, dan 2 tetes larutan NaOH 6 N. Pada percobaan larutan pati + 1 tetes larutan I2 + 2 tetes air dan larutan pati + 1 tetes larutan I2 + 2 tetes larutan HCl 6 N , sebelum dipanaskan larutan berwarna biru. Hal ini disebabkan karena pati yang berikatan dengan Iodin. Hal ini disebabkan karena struktur molekul pati yang berbentuk spiral mampu mengikat iodin dan terbentuklah warna biru. Bila pati dipanaskan, akan menyebabkan spiral merenggang sehingga molekul-molekul iodin akan menguap dalam bentuk gas, sehingga I22+ I- dan warna larutan berubah menjadi bening. Pada percobaan larutan pati + 1 tetes larutan I2 + 2 tetes larutan NaOH 6 N, larutan tetap berwarna bening, sebelum maupun sesudah dipanaskan. Hal ini terjadi karna NaOH tidak mampu meionisasi I22+ I-. Pada percobaan kedua, dilakukan uji protein dengan test millon untuk mendeteksi adanya raksa dan asam amino untuk mendeteksi adanya gugus fenil. Protein adalah bahan organik kompleks yang terdiri daripada satu atau lebih rangkaian subunit asid amino. Sesetengah molekul protein mempunyai beribu-ribu asid amino. Sel-sel hidupan memerlukan protein untuk menjalankan berbagai fungsi. Fungsi protein yang paling penting ialah sebagai enzim, molekul struktur, hormon dan molekul pengangkut oksigen. Selain daripada irtu ia juga adalah bahan utama untuk sintesis antibodi dan protein plasma darah. Protein adalah polimer asid amino. Ia mempunyai unsur C, H, O dan N. Semua asid amino mempunyai struktur asas yang sama, iaitu karbon utama yang mempunyai ikatan kepada 4 jenis kumpulan berfungsi. Kumpulan-kumpulan tersebut ialah (i) kumpulan amino (-NH2), (ii) kumpulan karboksil (- COOH), (iii) satu hidrogen dan (iv) satu kumpulan variable, diwakili dengan R. Struktur dan fungsi protein adalah ditentukan oleh kelainan pada kumpulan R ini. Adapun ciri-ciri dari molekul protein adalah berat molekulnya besar, ribuan sampai jutaan, sehingga merupakan suatu makromolekul. Umumnya terdiri dari 20 macam asam amino. Terdapat ikatan kimia lain, yang menyebabkan terbentuknya lengkungan-lengkungan rantai polipeptida menjadi struktur tiga dimensi protein. Strukturnya tidak stabil terhadap beberapa faktor : PH, radiasi, temperatur, medium pelarut orgenik dan detergen. Dan umumnya reaktif dan sangat spesifik. Pada percobaan pertama kita melakukan test pada peraksi millon dan protein yang melibatkan penambahan senyawa Hg (mercuri) ke dalam protein sehingga pada penambahan logam ini akan menghasilkan endapan putih dari senyawa merkuri. Untuk protein yang mengandung triosin atau triptofan, penambahan perekasi millon akan memberikan warna merah. Pada percobaan kedua yaitu tets ninhidrin dilakukan test ninhidrin, test ini akan berwarna biru atau ungu apabila didalamnya terdapat senyawa protein , khususnya gugus fenil. Dalam percobaan pertama kita kakan menggunakan albumin sebagai senyawa protein. Albumin merupakan senyawa protein yang terdapat di dalam putih telur. Dari hasil pengamatan di dapatkan bahwa sebelum pemanasan larutan berwarna putih keruh dan sesudah pemanasan berwarna ungu muda. Hal ini menandakan bahwa di dalam larutan tersebut terdapat gugus fenil. Pada percobaan kedua digunakan asam amino dimana asam amino merupakan senyawaan dengan molekul yang mengandung baik gugus fungsional amino (-NH2) maupun karboksil (-CO2H). Meskipun ratusan sintesis ini telah disintesis, hanya 20 yang telah diperoleh dengan hidrolisis protein. Dari hasil percobaan ini juga setelah dipanaskan larutan berwarna ungu tua. Hal ini juga menandakan adanya gugus fenil. Asam amino adalah senyawa dengan molekul yang mengandung baik gugus fungsional karboksil (-COOH) dan amina (-NH2). Gugus karboksil memberikan sifat asam dan gugus amina memberikan sifat basa (Keenan 1980). Dalam bentuk larutan, asam amino bersifat amfipatik yaitu cenderung menjadi asam pada larutan basa dan menjadi basa pada larutan asam. Perilaku ini terjadi karena asam amino mampu menjadi zwitterion (Staley 1992). Terdapat dua jenis asam amino berdasarkan kemampuan tubuh dalam sintesisnya, yaitu asam amino esensial dan asam amino non esensial. Asam amino esensial adalah asam amino yang tidak dapat disintesis di dalam tubuh, tetapi diperoleh dari luar misalnya melalui makanan ( lisin, leusin, isoleusin, treonin, metionin, valin, fenilalanin, histidin, dan arginin). Asam amino non esensial adalah asam amino yang dapat disintesis di dalam tubuh melalui perombakan senyawa lain (Almatsier 2001). Protein adalah polimer dari asam amino yang dihubungkan dengan ikatan peptida (Montgomery 1993). Terdapat dua puluh macam asam amino yang dibagi berdasarkan gugus R-nya,yaitu asam amino non-polar dengan gugus R yang hidrofobik, antara lain Alanin, Leusin, Fenilalanin, Triptofan dan Metionin. Golongan kedua yaitu asam amino polar tanpa muatan pada gugus R yang beranggotakan Lisin, Serin, Treonin, Sistein, Glutamin. Golongan ketiga yaitu asam amino yang bermuatan positif pada gugus R dan golongan keempat yaitu asam amino yang bermuatan negatif pada gugus R ( Wirahadikusumah 2008). Albumin, gelatin, kasein pepton, fenol merupakan contoh dari protein. Protein albumin salah satunya terdapat dalam putih telur. Gelatin meleleh bila dipanaskan, namun akan segera menjadi padat lagi apabila didinginkan. Protein penyusun gelatin adalah berjenis asam amino non esensial (Glisin dan Prolin) salah satunya terdapat di kulit. Protein yang terbesar kandungannya dalam susu adalah kasein yang mengandung Tirosin dan Triptofan, protein ini relatif tidak bisa larut dan cenderung membentuk struktur yang disebut misel yang dapat meningkatkan kelarutannya di air. Protein juga merupakan makromolekul yang paling berlimpah di dalam sel dan menyusun lebih dari setengah berat kering pada hampir semua organisme. Protein merupakan instrumen yang mengekspresikan informasi genetik. Protein mempunyai fungsi unik bagi tubuh, antara lain menyediakan bahan-bahan yang penting peranannya untuk pertumbuhan dan memelihara jaringan tubuh, mengatur kelangsungan

proses di dalam tubuh, dan memberi tenaga jika keperluannya tidak dapat dipenuhi oleh karbohidrat dan lemak. Protein ada yang reaktif karena asam amino penyusunnya mengandung gugus fungsi yang reaktif, seperti SH, -OH, NH2, dan COOH. Contoh protein aktif adalah enzim, hormon, antibodi, dan protein transport. (Fessenden : 1986)

5