tugas elhing

Upload: harry-galung

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Tugas elhing

    1/20

    For elemen 1

    f1x k1 -k1 d1x

    f3x -k1 k1 d3x

    For elemen 2

    f3x k2 -k2 d3x

    f2x -k2 k2 d2x

    d3x(1) = d3x(2)

    F1x = f1x(1)

    F2x = f2x(2)

    F3x = f3x(1) + f3x(2)

    Therefore the force-displacement equations for this spring system are:

    F1x = k1d1x - -k1d3x

    F2x = -k2d3x + k2d2x

    F3x = -k1d1x + k1d3x + k2d3x -

    In Matrix,

    F1x k1 0 -k1 d1x

    F2x 0 k2 -k2 d2x

    F3x -k1 -k2 k1+k2 d3x

    x

    = x

    = x

    =

  • 8/11/2019 Tugas elhing

    2/20

    k2d2x

  • 8/11/2019 Tugas elhing

    3/20

    k(1)

    = 1000 x 1 -1

    -1 1

    k(2)

    = 2000 x 1 -1

    -1 1

    k(3)

    = 3000 x 1 -1

    -1 1

    K = 1000 0 -1000 0 d1x

    0 3000 0 -3000 d2x

    -1000 0 3000 -2000 d3x

    0 -3000 -2000 5000 d4x

    Force at node 4 (F4x= 5000lb)

    3000 -2000 d3x 0

    -2000 5000 d4x 5000

    d3x 9.09091E-08 5000

    d4x 2000

    solving for d3xand d4xgives

    d3x = 0.909091 in

    d4x = 1.363636 in

    F1x 1000 0 -1000 0

    F2x 0 S 0 -3000

    F3x -1000 0 3000 -2000

    F4x 0 -3000 -2000 5000

    F1x = -909.091 lb

    F2x = #VALUE! lb

    F3x = 0 lb

    F4x = 5000 lb

    For elemen 1

    f1x 1000 -1000 0

    f3x -1000 1000 0.909091

    x

    x =

    = x

    = x

    = x

    1 3

    3 4

    4 2

  • 8/11/2019 Tugas elhing

    4/20

    For elemen 2

    f3x 2000 -2000 0.909091

    f4x -2000 2000 1.363636

    For elemen 3

    f4x 3000 -3000 1.363636

    f2x -3000 3000 0= x

    = x

  • 8/11/2019 Tugas elhing

    5/20

    k1 = 1000 lb/in

    k2 = 2000 lb/in

    k3 = 3000 lb/in

    P = 5000 lb

    F1x

    F2x

    F3x

    F4x

    2000 0

    3000 5000

    0

    0

    0.909090909

    1.363636364

    f1x = -909.091

    f3x = 909.0909

    =

    x

  • 8/11/2019 Tugas elhing

    6/20

    f3x = -909.091

    f4x = 909.0909

    f4x = 4090.909

    f2x = -4090.91

  • 8/11/2019 Tugas elhing

    7/20

    k = 200 KN/m

    = 20 mm = 0.02 m

    k(1)

    = k(2)

    = k(3)

    = k(4)

    = 200

    K = 200 -200 0 0 0

    -200 400 -200 0 0

    0 -200 400 -200 0

    0 0 -200 400 -2000 0 0 -200 200

    200 -200 0 0 0 d1x F1x

    -200 400 -200 0 0 d2x F2x

    0 -200 400 -200 0 d3x F3x

    0 0 -200 400 -200 d4x F4x

    0 0 0 -200 200 d5x F5x

    Applying the boundary condition (d1x=0 and d5x=20mm) and the known force give:

    400 -200 0 0 d2x 0

    -200 400 -200 0 d3x 0

    0 -200 400 -200 d4x 0

    0 0 -200 200 0.02 F5x

    400 -200 0 d2x 0

    -200 400 -200 d3x 0

    0 -200 400 d4x 4

    d2x 3.125E-08 120000

    d3x 80000

    d4x 40000

    d2x = 0.005 m

    d3x = 0.01 m

    d4x = 0.015 m

    F1x = -1 KN

    F5x = 1 KN

    x =

    x =

    =

    x =

    x

  • 8/11/2019 Tugas elhing

    8/20

    For elemen 1

    f1x = 200 -200 0

    f2x = -200 200 0.005

    For elemen 2

    f2x = 200 -200 0.005

    f3x = -200 200 0.01

    For elemen 3

    f3x = 200 -200 0.01

    f4x = -200 200 0.015

    For elemen 4

    f4x = 200 -200 0.015

    f5x = -200 200 0.02x

    x

    x

    x

  • 8/11/2019 Tugas elhing

    9/20

    1 -1 KN/m

    -1 1

    determinan= 32000000

    Adjoint

    80000 40000 0 400 -200 -200

    160000 80000 0 -200 400 -200

    80000 120000 4-200 -200 400

    0 400 0

    -200 400 400

    0 -200 0

    x

    x

  • 8/11/2019 Tugas elhing

    10/20

    f1x = -1 KN

    f2x = 1 KN

    f2x = -1 KN

    f3x = 1 KN

    f3x = -1 KN

    f4x = 1 KN

    f4x = -1 KN

    f5x = 1 KN

  • 8/11/2019 Tugas elhing

    11/20

    0 -200 0 120000 80000

    400 400 -200 80000 160000

    40000 800000 400 0

    400 -200 -200

    -200 400 -200

    -200 -200 400

    =

  • 8/11/2019 Tugas elhing

    12/20

  • 8/11/2019 Tugas elhing

    13/20

    40000

    80000

    120000

  • 8/11/2019 Tugas elhing

    14/20

    d1x = d3x = d4x = 0

    d2x(1)

    = d2x(2)

    = d2x(3)

    = d2x

    k(1)

    = 1000 -1000 k(2)

    = 2000

    -1000 1000 -2000

    K = 1000 -1000 0 0

    -1000 6000 -2000 -3000

    0 -2000 2000 0

    0 -3000 0 3000

    Applying the boundary conditions (d1x=d3x=d4x=0) and the known forces (F2x=P) gives:

    P = (k1+k2+k3)d2x

    d2x = 0.833333

    Solving the forces gives:

    F1x = -833.333

    F3x = -1666.67

    F4x = -2500

    1 2 2

  • 8/11/2019 Tugas elhing

    15/20

    P = 5000 lb

    k1 = 1000 lb/in

    k2 = 2000 lb/ink3 = 3000 lb/in

    -2000 k(3)

    = 3000 -3000

    2000 -3000 3000

    3 2 4

  • 8/11/2019 Tugas elhing

    16/20

    The Potental energy :

    p for elemen 1 :

    p(1)

    = 1/2 k1 x (d3x-d1x)2

    - f1xd1x -

    p for elemen 2 :

    p(2)

    = 1/2 k2 x (d4x-d3x)2

    - f3xd3x -

    p for elemen 3 :

    p

    (3)

    = 1/2 k3 x (d2x

    -d4x

    )

    2

    - f2x

    d2x

    -

    Minimizing the total potential energy p :

    p/ d1x = 0 = -k1d3x + k1d1x -

    p/ d2x = 0 = k3d2x - k3d4x -

    p/ d3x = 0 = k1d3x - k1d1x -

    p/ d4x = 0 = k2d4x - k2d3x -

    in Matrix form

    1000 0 1000 0 d1x f1x

    0 3000 0 -3000 d2x f2x-1000 0 3000 -2000 d3x f3x(1) + f3x(2)

    0 -3000 -2000 5000 d4x f4x(1) + f4x(2)

    where, f1x = F1x 1000 0 1000

    f2x = F2x 0 3000 0

    f3x(1) + f3x(2 = F3x -1000 0 3000

    f4x(1) + f4x(2 = F4x 0 -3000 -2000

    x =

  • 8/11/2019 Tugas elhing

    17/20

    k1 = 1000 lb/in

    k2 = 2000 lb/in

    k3 = 3000 lb/in

    P = 5000 lb

    f3xd3x

    f4xd4x

    f4xd4x

    f1x(1)

    f2x(3)

    k2d4x + k2d3x - f3x(1)

    - f3x(2)

    k3d2x + k3d4x - f4x(2)

    - f4x(3)

    0 d1x F1x

    -3000 d2x F2x

    -2000 d3x F3x

    5000 d4x F4x

    x =

  • 8/11/2019 Tugas elhing

    18/20

    For elemen 1 and 2

    k(1)

    = k(2)

    = 1 -1

    -1 1

    For elemen 3

    k

    (3)

    = 1 -1-1 1

    K = 1 -1 0 0

    -1 2 -1 0

    0 -1 2 -1

    0 0 -1 1

    F1x 1 -1 0 0

    F2x -1 2 -1 0

    F3x 0 -1 2 -1

    F4x 0 0 -1 1

    The boundary condition are:

    d1x = d4x = 0

    Applying the boundary condition and knon forces gives :

    3000 2 -1 d2x

    0 -1 2 d3x

    d2x = 0.002 ind3x = 0.001 in

    The global nodal forces are calculated as:

    F1x 1 -1 0 0

    F2x -1 2 -1 0

    F3x 0 -1 2 -1

    F4x 0 0 -1 1

    = 1000000 x

    = 1000000 x

    = 1000000 x

    1000000

    1000000

    x

    x

    1000000 x

    x

    d1x d2x d3x d4x

  • 8/11/2019 Tugas elhing

    19/20

    For elemen 1 and 2

    A = 1 in2

    E = 30000000 psi

    30 in

    F2x = 3000 lb

    For elemen 3

    A = 2 in2

    E = 15000000 psi

    d1x

    d2x

    d3x

    d4x 2000000 -1000000

    -1000000 2000000

    Matrix invers = 3.33333E-13 2000000 1000000

    1000000 2000000

    0 -2000

    0.002 3000

    0.001 0

    0 -1000

    = lbs

    x

    x

  • 8/11/2019 Tugas elhing

    20/20