sinar laser dan serat optik

75
Sejarah dan Manfaat Sinar Laser Bagi Kehidupan LASER (singkatan dari bahasa Inggris: Light Amplification by Stimulated Emission of Radiation) , Laser memperkuat cahaya. Laser dapat mengambil berkas cahaya yang lemah dan membuatnya menjadi berkas yang kuat. Beberapa laser menghasilkan berkas yang sangat kuat sehingga dapat membakar lubang kecil di dalam selembar besi dalam waktu kurang dari satu detik. Sinar laser dapat mencapai jarak jauh melalui angkasa luar tanpa menyebar dan menjadi lemah. Karena itulah, sinar laser menjadi alat komunikasi penting dalam berkomunikasi dalam jaman angkasa luar. Banyak kegunaan laser sudah ditemukan dalam ilmu kedokteran, ilmu pengetahuan, dan industri. Ilmuwan menganggap cahaya sebagai gelombang yang bergerak. Jarak dari kulit sebuah gelombang ke kulit berikutnya disebut panjang gelombang. Cahaya dari matahari atau dari lampu adalah campuran banyak panjang gelombang. Setiap panjang gelombang yang berbeda menghasilkan warna yang berbeda. Sinar laser terbuat dari cahaya yang semuanya terdiri dari panjang gelombang yang sama. Berkas cahaya dalam cahaya biasa

Upload: dwipayana-sang-pembunuh

Post on 14-Aug-2015

490 views

Category:

Documents


47 download

DESCRIPTION

Materi tentang Sinar laser dan Serat Optik.

TRANSCRIPT

Sejarah dan Manfaat Sinar Laser Bagi Kehidupan

LASER (singkatan dari bahasa Inggris: Light Amplification by Stimulated Emission of Radiation) , Laser memperkuat cahaya. Laser dapat mengambil berkas cahaya yang lemah dan membuatnya menjadi berkas yang kuat. Beberapa laser menghasilkan berkas yang sangat kuat sehingga dapat membakar lubang kecil di dalam selembar besi dalam waktu kurang dari satu detik.

Sinar laser dapat mencapai jarak jauh melalui angkasa luar tanpa menyebar dan menjadi lemah. Karena itulah, sinar laser menjadi alat komunikasi penting dalam berkomunikasi dalam jaman angkasa luar. Banyak kegunaan laser sudah ditemukan dalam ilmu kedokteran, ilmu pengetahuan, dan industri.

Ilmuwan menganggap cahaya sebagai gelombang yang bergerak. Jarak dari kulit sebuah gelombang ke kulit berikutnya disebut panjang gelombang. Cahaya dari matahari atau dari lampu adalah campuran banyak panjang gelombang. Setiap panjang gelombang yang berbeda menghasilkan warna yang berbeda.

Sinar laser terbuat dari cahaya yang semuanya terdiri dari panjang gelombang yang sama. Berkas cahaya dalam cahaya biasa mengalir ke arah yang berbeda. Sinar laser bergerak dalam arah yang sama persis. Sinar laser tidak menyebar dan tidak melemah.

Pada awal perkembangannya, orang tidak menyebut dengan nama laser. Para ahli masa itu menyebutnya sebagai MASER (Microwave Amplification by the Stimulated Emission of Radiation. Dan orang yang disebut-sebut pertama kali mengungkapkan keberadaan maser adalah Albert Einstein antara tahun 1916 - 1917. Ilmuwan yang terkenal eksentrik ini juga yang pertama kali berpendapat bahwa cahaya atau sinar bukan hanya terdiri dari gelombang elektromagnetik, tapi juga bermuatan partikel dan energi. Dan dikenal lah apa yang disebut sebagai radiasi. Tapi maser dari Einsten ini baru sebatas teori. Teknologi pada dekade kedua abad 20 belum mampu mewujudkannya. disamping itu, banyak ilmuwan yang menganggap teori dari Eisntein itu sebagai teori yang kontroversial.

Pada tahun-tahun berikutnya, terlebih pada perang dunia kedua, maser lebih banyak digunakan untuk kepentingan militer, yaitu untuk pengembangan radar. Hingga akhirnya Charles H. Townes, James Gordon, dan Herbert Zeiger, berhasil membuat maser dengan menggunakan gas Amoniak. Dan inilah maser yang pertama kali dibuat orang. Keberhasilan itu dipublikasikan pada tahun 1954. Itu merupakan maser dengan satu tingkat energi. Selanjutnya ide emisi dua tingkat untuk mempertahankan inversi pada maser telah dikembangkan oleh dua orang ilmuwan Sovyet, Nikolai Basov dan Alexander Prokhorov. Karena sumbangannya yang sangat penting ini dalam pengembangan maser, Charles H. Townes, Nikolai Basov, dan Alexander Prokhorov berbagi hadiah Nobel bidang Fisika pada tahun 1964.

Charles H. Townes memang orang yang berperan penting dalam dunia maser. Sebelumnya beliau bersama Arthur Schawlow telah meneliti kemungkinan pembuatan maser optik (yang kemudian berkembang menjadi laser) dan sinar infra merah. Rincian penelitian itu diterbitkan pada bulan Desember 1958. Namun mereka berdua masih menemui kesulitan dan pembuatan laser (maser optik). Hingga akhirnya sebelum memasuki tahun 1960 Theodore Maiman bisa mewujudkan kerja sinar laser. Maiman menggunakan silinder batu Ruby untuk memicu

timbulnya laser hingga laser buatannya dikenal sebagai Ruby Laser. Tapi Ruby Laser hanya mampu bekerja pada energi tingkat ketiga. Setelah memasuki tahun 1960, Peter Sorokin dan Mirek Stevenson mulai mengembangkan laser tingkat keempat yang pertama. Tapi itu pun masih sebatas teori dan tujuan untuk merealisasikannya masih belum tercapai. Namun demikian sejak saat itu lah era laser dimulai.

Sekilas bahwa Theodore Maiman dianggap sebagai orang yang pertama kali berhasil membuat laser (bukan maser). Tapi sebenarnya ada orang lain yang telah mendahuluinya yaitu Gordon Gould. Pada tahun 1958, Gordon Gould kabarnya telah berhasil membuat maser optik (laser) bahkan dia juga yang dianggap sebagai orang yang pertama kali menggunakan istilah Laser (Light Amplification by the Stimulated Emission of Radiation). Tapi Gordon gagal mendaftarkan paten laser-nya pada tahun 1959. Hingga pada tahun 1977 Gordon memenangkan paten tersebut. Butuh waktu 8 tahun untuk mendapatkan pengakuan itu.

Pada masa yang hampir bersamaan juga beberapa ilmuwan lain berhasil membuat laser dengan menggunakan bahan yang berbeda. Misalnya Ali Javan, William Bennet dan Donald Herriot yang membuat laser dengan media gas helium dan neon pada tahun 1960 dan keberhasilannya baru dipublikasikan pada tahun 1961. Kumar N. Patel membuat laser dengan perantaraan karbondioksida, nitrogen, dan helium pada tahun 1964. Dan pada tahun yang sama juga (1964), Earl Bell membuat laser dengan bantuan helium dan merkuri. Para ilmuwan ini dianggap pembuat untuk laser gas karena bahan-bahan yang mereka gunakan untuk membuat laser pada umumnya berupa zat gas.

Perkembangan yang cukup penting terjadi pada tahun 1962 ketika seorang ilmuwan yang bekerja pada perusahaan General Electric, Robert Hall, menemukan laser semikonduktor berukuran mini dengan biaya murah. Biasanya mesin atau peralatan pemroduksi sinar laser berukuran besar. Laser buatan Rober Hall inilah yang hingga kini digunakan pada perangkat vcd dan dvd player, printer laser, pembaca kode bar, drive pada CPU, sistem komunikasi yang menggunakan serat optik, dan sebagainya.

Sebuah penemuan yang revolusioner dibuat pada tahun 1970 ketika Charles Kao dan George Hockham berhasil membuat apa yang sekarang disebut serat optik (fiberglass). Mereka berdua memang tidak membuat laser, tapi penemuannya sangat penting dalam penggunaan aplikasi laser. Dan seperti kita tahu, serat optik banyak digunakan dalam bidang komunikasi. Bidang inilah yang memang dianggap sebagai pengguna terbesar aplikasi laser. Laser dan serat optik memang dua penemuan yang sangat saling mendukung.

Ada berbagai jenis laser. Medium laser bisa padat, gas, cair atau semikonduktor. Laser biasanya ditentukan oleh jenis bahan yang digunakan oleh penguatnya

Solid-state laser material telah dikuatkan terdistribusi dalam matriks padat (seperti ruby atau neodymium: yttrium-aluminium garnet laser yag). Laser neodymium-yag memancarkan cahaya inframerah pada 1.064 nanometer (nm).

laser Gas (helium dan helium-neon, hene, merupakan laser gas yang paling umum) memiliki output utama dari lampu inframerah. CO2 laser memancarkan energi jauh dr inframerah, dan digunakan untuk memotong material keras.

laser Excimer (nama ini berasal dari istilah excited dan dimers) menggunakan gas reaktif, seperti klorin dan fluorin, dicampur dengan gas inert seperti argon, kripton atau xenon. Ketika elektrik dirangsang, molekul pseudo (dimer). Ketika lased, dimer menghasilkan cahaya dalam kisaran ultraviolet.

Dye laser menggunakan pewarna organik kompleks, seperti rhodamine 6g, dalam larutan cair atau suspensi sebagai media penguat.

Semiconductor laser, kadang-kadang disebut dioda laser, laser yg tidak solid-state. Perangkat elektronik yg menggunakan ini umumnya sangat kecil dan menggunakan daya yang rendah. Mereka dapat dibangun menjadi array yang lebih besar, seperti sumber penulisan dalam beberapa printer laser atau CD player.

Dalam kehidupan sehari-hari, laser digunakan pada berbagai bidang. Dalam penggunaannya, energi laser yang terpancar tiap satuan waktu dinyatakan dengan orde dari beberapa mW(Laser yand digunakan dalam system audio laser disk) sampai dengan beberapa MW(Laser yang digunakan untuk senjata). Besarnya energi laser yang dipilih bergantung pada penggunaannya. Pemanfaatan sinar laser misalnya pada bidang kedokteran, pelayanan (jasa), industri, astronomi, fotografi, elektronika, dan komunikasi.

Dalam bidang kedokteran dan kesehatan, sinar laser digunakan antara lain untuk mendiagnosis penyakit, pengobatan penyakit, dan perbaikan suatu cacat serta penbedahan. Pada bidang industri, sinar laser bermanfaat untuk pengelasan, pemotongan lempeng baja, serta untuk pengeboran. Pada bidang astronomi, sinar laser berdaya tinggi dapat digunakan untuk mengukur jarak Bumi Bulan dengan teliti. Dala bidang fotografi, laser mampu menghasilkan bayangan tiga dimensi dari suatu benda, disebut holografi. Dalam bidang elektronika, laser solid state berukuran kecil digunakan dalam system penyimpanan memori optik dalam computer. Dalam bidang komunikasi, laser berfungsi untuk memperkuat cahaya sehingga dapat menyalurkan suara dan sinyal gambar melalui serat optik.

Apa itu Sinar Laser?

Pernahkah kalian menonton film “Star Wars”? Masih ingatkah kalian senjata apa yang mereka gunakan untuk berperang? Yup, senjata laser. Atau ingatkah kalian ketika Timnas Sepak Bola Indonesia diganggu sinar laser saat melawan Malaysia di Piala AFF yang lalu? Tahukah kalian apa sinar laser itu dan terbuat dari apakah sinar laser itu? Yuk, kita cari tahu bersama-sama..

Laser adalah singkatan dari Bahasa Inggris yaitu Light Amplification by Stimulated Emission of Radiation, yang artinya adalah cahaya yang diperkuat oleh pancaran radiasi yang terstimulasi. Jadi sinar laser dihasilkan dari sumber pancaran radiasi. Pada teknologi laser, cahaya yang dihasilkan mempunyai karakteristik tersendiri yaitu: monokromatik (satu panjang gelombang yang spesifik), koheren (pada frekuensi yang sama), dan menuju satu arah yang sama sehingga cahayanya menjadi sangat kuat, terkonsentrasi, dan terkoordinir dengan baik.

Ada bermacam media yang dapat digunakan untuk menghasilkan sinar laser, misalnya solid state laser (menggunakan bahan padat sebagai medianya; contoh: batu ruby), dan gas laser (misalnya gas helium, neon, CO2). Laser bisa juga dihasilkan dari Laser Dioda, yaitu kepingan alat elektronik yang bekerja berdasarkan bereaksinya atom-atom ketika dialiri arus listrik.

Sinar laser ini sangat berguna loh, untuk  membantu hampir semua pekerjaan manusia. Di bidang kedokteran sinar laser diperlukan untuk mendiagnosa dan menyembuhkan suatu penyakit. Di bidang industri sinar laser bermanfaat untuk pengelasan, pemotongan lempeng baja, serta untuk pengeboran. Sinar laser juga dapat membantu kasir di toko untuk menghitung total harga barang-barang yang dibeli konsumen.

Teknologi sinar laser juga sering digunakan untuk pencahayaan (lighting) pada panggung pertunjukan sehingga panggung menjadi kelihatan lebih keren. Oh iya, sinar laser juga berguna untuk membaca kepingan CD-DVD yang sedang kamu tonton. Sinar laser juga digunakan sebagai laser pointer, yaitu alat sorot saat seseorang sedang melakukan presentasi. Dan masih banyak lagi kegunaan dari sinar laser ini seperti untuk bidang astronomi, fotografi, dan sebagainya.

Tapi perlu diingat ya, di samping kegunaannya yang banyak, ada risiko yang tidak disadari karena laser bisa membahayakan diri kita juga loh. Biasanya benda yang dilengkapi laser daya rendah misalnya mainan anak-anak, pointer laser berbentuk pulpen untuk presentasi, dan juga sinar laser yang digunakan untuk lighting

panggung pertunjukkan itu semua kalau langsung kena mata sangat berbahaya karena bisa merusak retina. Karena itu, jangan sekali-sekali memancarkan arah laser ke mata meskipun daya laser itu sangat rendah.  Dan untuk laser berdaya besar ukuran gigawatt, waah.. jangan ditanya lagi, bisa mematikan. Jadi, kalian harus berhati-hati ya, jika sedang menggunakan laser.

Theodore Maiman - Penemu Sinar Laser. Jika kita berbelanja ke swalayan, barang yang kita beli harganya tidak dihitung dengan kalkulator. Namun cukup menghadapkan barcode (kode garis barang) ke cahaya laser. Nanti di layar komputer akan muncul daftar harga barang tersebut.

Ide mengenai laser didasarkan atas Teori Cahaya Albert Einstein. Tahun 1957, Gordon Gould mewujudkan teori tersebut. Pada tahun 1960, Theodore Maiman berhasil membangkitkan cahaya laser dengan cara menyuplai energi pada kristal batu delima dengan cahaya dengan tube denyar.

Laser mengalami perkembangan yang cukup pesat. Banyak ilmuwan yang meneliti sinar ini. Namun, penemu sinar laser dianugrahkan kepada Theodore Maiman, seorang ilmuwan Jerman yang meneliti sinar ini di pabrik pesawat terbang Hughes Aircraft Company.

Pebahasan laser lebih sering berkutat pada kecanggihan teknologi dan berbagai kontroversi daripada sejarah hidup penemunya. Mungkin karena penelitian terhadap laser berlangsung dengan waktu yang hampir bersamaan sehingga masyarakat dipenuhi dengan kecanggihan teknologi laser dari banyak ilmuwan. Theodore Maiman sendiri juga bukan orang pertama yang meneliti laser.

Dua tahun sebelum Maiman dianggap sebagai Penemu Laser, dua ilmuwan Amerika Serikat, Arthur L. Schawlow dan Charkes H. Townes meneliti laser di laboratorium mereka, Bell. Penemuan mereka ini dipublikasikan dalam American Physical Society. Penelitian mereka sudah mulai dilakukan sejak tahun 1949 di Columbia University, tempat mereka kuliah.

Townes meneliti bahwa radiasi microwave makin pendek. Interaksi dengan molekul makin kuat

dan makin bagus untuk peralatan spectrocropis. Namun, ia mendapat masalah, karena belum ada alat untuk menciptakan gelombang radiasi sesuai yang diinginkan. Kemudian ia menggunakan Hukum Kedua Termodinamika, yang menandaskan bahwa molekul tidak bisa menghasilkan lebih dari jumlah energi tertentu.

Tahun 1953, ia mematenkan hasil temuannya itu dengan nama Maser (Microwave Amplification by Stimulated Emission of Radiation). Maser merupakan cikal bakal dari laser. Townes mendapat Hadiah Nobel Fisika pada tahun 1964 bersama A. Prokhorov dan N. Basov dari Rusia. Namun, penghargaan ini bukan karena penelitian di bidang laser. Penghargaan Nobel Fisika karena laser baru diberikan pada tahun 1981.

 Buku yang mengupas laser karya Theodore Maiman

Dewasa ini, laser banyak membantu pekerjaan manusia. Mulai dari bidang industri, kesehatan, sampai teknologi komunikasi. Cahaya laser dapat dihasilkan dengan memberi tenaga ke dalam benda padat, cair, atau gas. Warna cahaya laser tergantung dari unsur yang ada di dalam bahan penghasil tersebut.

Laser sebetulnya singkatan dari Light Amplification by Stimulated Emission of Radiation, yang artinya peningkatan cahaya oleh radiasi emisi terangsang. Perkataan ini begitu panjang dan susah untuk diucapkan. Akan tetatpi sistem kerja laser mudah untuk dipahami. Energi dari pipa denyar atau arus listrik mengeluarkan dalam bahan laser. Beberapa atom memancarkan foton yang bergerak dalam haluan yang sama. Foton melantun ke atas dan ke bawah, antara cermin pada kedua ujung pipa.

Dalam dunia industri, laser bertenaga tinggi digunakan untuk memotong baja tebal dengan mudah. Pemotongan ini membutuhkan waktu yang cepat. Akurasi laser juga teruji jika digunakan untuk mengukur karena alur laser memancar dalam garis lurus.

Sementara dalam dunia kesehatan, laser digunakan untuk membuat potongan halus pada permukaan mata yang rusak. Laser juga digunakan untuk membakar sel asbes sejenis tumor. Pengobatan dengan laser tidak menimbulkan rasa sakit pada pasien.

Laser (singkatan dari bahasa Inggris: Light Amplification by Stimulated Emission of Radiation) merupakan mekanisme suatu alat yang memancarkan radiasi elektromagnetik, biasanya dalam bentuk cahaya yang tidak dapat dilihat maupun dapat lihat dengan mata normal, melalui proses pancaran terstimulasi. Pancaran laser biasanya tunggal, memancarkan foton dalam pancaran koheren. Laser juga dapat dikatakan efek dari mekanika kuantum.

Dalam teknologi laser, cahaya yang koheren menunjukkan suatu sumber cahaya yang memancarkan panjang gelombang yang diidentifikasi dari frekuensi yang sama, beda fase yang konstan[1] dan polarisasinya. Selanjutnya untuk menghasilkan sebuah cahaya yang koheren dari medium lasing adalah dengan mengontrol kemurnian, ukuran, dan bentuknya. Keluaran yang berkelanjutan dari laser dengan amplituda-konstan (dikenal sebagai CW atau gelombang berkelanjutan), atau detak, adalah dengan menggunakan teknik Q-switching, modelocking, atau gain-switching.

Dalam operasi detak, dimana sejumlah daya puncak yang lebih tinggi dapat dicapai. Sebuah medium laser juga dapat berfungsi sebagai penguat optik ketika di-seed dengan cahaya dari sumber lainnya. Sinyal yang diperkuat dapat menjadi sangat mirip dengan sinyal input dalam istilah panjang gelombang, fase, dan polarisasi; Ini tentunya penting dalam telekomunikasi serat optik.

Sumber cahaya umum, seperti bola lampu incandescent, memancarkan foton hampir ke seluruh arah, biasanya melewati spektrum elektromagnetik dari panjang gelombang yang luas. Sifat koheren sulit ditemui pada sumber cahaya atau incoherens; dimana terjadi beda fase yang tidak tetap antara foton yang dipancarkan oleh sumber cahaya. Secara kontras, laser biasanya memancarkan foton dalam cahaya yang sempit, terpolarisasi, sinar koheren mendekati monokromatik, terdiri dari panjang gelombang tunggal atau satu warna.

Beberapa jenis laser, seperti laser dye dan laser vibronik benda-padat (vibronic solid-state lasers) dapat memproduksi cahaya lewat jangka lebar gelombang; properti ini membuat mereka cocok untuk penciptaan detak singkat sangat pendek dari cahaya, dalam jangka femtodetik (10-15 detik). Banyak teori mekanika kuantum dan termodinamika dapat digunakan kepada aksi laser, meskipun nyatanya banyak jenis laser ditemukan dengan cara trial and error.

Sinar laser di atas kabut udara dan di kaca mobil

Aplikasi

Simbol laser untuk peringatan/pemberitahuan

Sejak diperkenalkannya laser pada tahun 1960, sebagai sebuah penyelesaian suatu masalah[2], maka dalam perkembangan berikutnya laser telah digunakan secara meluas, dalam bermacam-macam aplikasi modern, termasuk dalam bidang optik, elektronik, optoelektronik, teknologi informasi, sains, kedokteran, industri, dan militer. Secara umum, laser dianggap suatu pencapaian teknologi yang paling berpengaruh dalam abad ke-20.

Umumnya laser beroperasi dalam spektrum tampak pada frekuensi sekitar 1014 Hertz-15 Hertz atau ratusan ribu kali frekuensi gelombang mikro. Pada awalnya peralatan penghasil sinar laser masih serba besar dan merepotkan. Selain tidak efisien, ia baru dapat berfungsi pada suhu sangat rendah. Sinar laser yang dihasilkan belum terpancar lurus. Pada kondisi cahaya sangat cerah pun, pancarannya gampang meliuk-liuk mengikuti kepadatan atmosfer. Waktu itu, sebuah pancaran laser dalam jarak 1 km, bisa tiba di tujuan akhir pada banyak titik dengan simpangan jarak hingga hitungan meter.

Peragaan peralatan Laser Helium-Neon di Laboratorium Kastler-Brossel dari Universitas Pierre and Marie Curie.

Beberapa kelebihan laser diantaranya adalah kekuatan daya keluarannya yang amat tinggi sangat diminati untuk beberapa applikasinya. Namun demikian laser dengan daya yang rendah sekalipun (beberapa miliwatt) yang digunakan dalam pemancaran, masih dapat membahayakan penglihatan manusia, karena pancaran cahaya laser dapat mengakibatkan mata seseorang yang terkena mengalami kebutaan dalam sesaat atau tetap.

Daftar Kekuatan Laser Dan Kegunaan Laser

Kekuatan Kegunaan / Fungsinya

1-5 mW Laser Penunjuk

5 mW Perangkat CD-ROM

5–10 mW DVD Player Atau Perangkat DVD-ROM

100 mW Kecepatan Tinggi Pembakaran Citra CD-RW

250 mW Pemakai Pembakaran DVD-R 16x

400 mWMembakar Kotak Perhiasan Dengan Diska Didalamnya Selama 4 Detik[3]

Percetakan DVD Piringan Ganda 24x[4]

1 W Laser Hijau Digunakan Didalam Piringan Holographic Versatile Disc (HVD)

1–20 W Tidak Dijual Umum, Tetapi Ada Dan Digunakan Untuk Mesin Kecil

30–100 W Pembedahan CO2

100–3000 W Pembedahan CO2 Dan Laser Ini Digunakan Untuk Pemotongan Di Pabrik

5 kW Daya Pengeluarannya Mencapai 1 Cm/Bar

100 kW Digunakan Dalam Bidang Persenjataan Dan Didistribusikan Oleh Northrop Grumman

Referensi

1. ̂ Conceptual physics, Paul Hewitt, 20022. ̂ Charles H. Townes (2003). "The first laser". di dalam Laura Garwin and Tim Lincoln. A Century of Nature:

Twenty-One Discoveries that Changed Science and the World. University of Chicago Press. hlm. 107–12. ISBN 0-226-28413-1. Diakses pada 2 Februari 2008.

3. ̂ "Green Laser 400 mW burn a box CD in 4 second". youtube.com. Diakses pada 10 Desember 2011.4. ̂ "Laser Diode Power Output Based on DVD-R/RW specs". elabz.com. Diakses pada 10 Desember 2011.

Serat optikDari Wikipedia bahasa Indonesia, ensiklopedia bebas

Serat optik adalah saluran transmisi atau sejenis kabel yang terbuat dari kaca atau plastik yang sangat halus dan lebih kecil dari sehelai rambut, dan dapat digunakan untuk mentransmisikan sinyal cahaya dari suatu tempat ke tempat lain. Sumber cahaya yang digunakan biasanya adalah laser atau LED [1] . Kabel ini berdiameter lebih kurang 120 mikrometer. Cahaya yang ada di dalam serat optik tidak keluar karena indeks bias dari kaca lebih besar daripada indeks bias dari udara, karena laser mempunyai spektrum yang sangat sempit. Kecepatan transmisi serat optik sangat tinggi sehingga sangat bagus digunakan sebagai saluran komunikasi.

Perkembangan teknologi serat optik saat ini, telah dapat menghasilkan pelemahan (attenuation) kurang dari 20 decibels (dB)/km. Dengan lebar jalur (bandwidth) yang besar sehingga kemampuan dalam mentransmisikan data menjadi lebih banyak dan cepat dibandingan dengan penggunaan kabel konvensional. Dengan demikian serat optik sangat cocok digunakan terutama

dalam aplikasi sistem telekomunikasi [2] . Pada prinsipnya serat optik memantulkan dan membiaskan sejumlah cahaya yang merambat didalamnya.

Efisiensi dari serat optik ditentukan oleh kemurnian dari bahan penyusun gelas/kaca. Semakin murni bahan gelas, semakin sedikit cahaya yang diserap oleh serat optik.

Sejarah

Penggunaan cahaya sebagai pembawa informasi sebenarnya sudah banyak digunakan sejak zaman dahulu, baru sekitar tahun 1930-an para ilmuwan Jerman mengawali eksperimen untuk mentransmisikan cahaya melalui bahan yang bernama serat optik. Percobaan ini juga masih tergolong cukup primitif karena hasil yang dicapai tidak bisa langsung dimanfaatkan, namun harus melalui perkembangan dan penyempurnaan lebih lanjut lagi. Perkembangan selanjutnya adalah ketika para ilmuawan Inggris pada tahun 1958 mengusulkan prototipe serat optik yang sampai sekarang dipakai yaitu yang terdiri atas gelas inti yang dibungkus oleh gelas lainnya. Sekitar awal tahun 1960-an perubahan fantastis terjadi di Asia yaitu ketika para ilmuwan Jepang berhasil membuat jenis serat optik yang mampu mentransmisikan gambar.

Di lain pihak para ilmuwan selain mencoba untuk memandu cahaya melewati gelas (serat optik) namun juga mencoba untuk ”menjinakkan” cahaya. Kerja keras itupun berhasil ketika sekitar 1959 laser ditemukan. Laser beroperasi pada daerah frekuensi tampak sekitar 1014 Hertz-15 Hertz atau ratusan ribu kali frekuensi gelombang mikro.

Pada awalnya peralatan penghasil sinar laser masih serba besar dan merepotkan. Selain tidak efisien, ia baru dapat berfungsi pada suhu sangat rendah. Laser juga belum terpancar lurus. Pada kondisi cahaya sangat cerah pun, pancarannya gampang meliuk-liuk mengikuti kepadatan atmosfer. Waktu itu, sebuah pancaran laser dalam jarak 1 km, bisa tiba di tujuan akhir pada banyak titik dengan simpangan jarak hingga hitungan meter.

Sekitar tahun 60-an ditemukan serat optik yang kemurniannya sangat tinggi, kurang dari 1 bagian dalam sejuta. Dalam bahasa sehari-hari artinya serat yang sangat bening dan tidak menghantar listrik ini sedemikian murninya, sehingga konon, seandainya air laut itu semurni serat optik, dengan pencahayaan cukup mata normal akan dapat menonton lalu-lalangnya penghuni dasar Samudera Pasifik.

Seperti halnya laser, serat optik pun harus melalui tahap-tahap pengembangan awal. Sebagaimana medium transmisi cahaya, ia sangat tidak efisien. Hingga tahun 1968 atau berselang dua tahun setelah serat optik pertama kali diramalkan akan menjadi pemandu cahaya, tingkat atenuasi (kehilangan)-nya masih 20 dB/km. Melalui pengembangan dalam teknologi material, serat optik mengalami pemurnian, dehidran dan lain-lain. Secara perlahan tapi pasti atenuasinya mencapai tingkat di bawah 1 dB/km.

Kronologi Perkembangan Serat Optik

1917 Albert Einstein memperkenalkan teori pancaran terstimulasi dimana jika ada atom dalam tingkatan energi tinggi

1954 Charles Townes, James Gordon, dan Herbert Zeiger dari Universitas Columbia USA, mengembangkan maser yaitu penguat gelombang mikro dengan pancaran terstimulasi, dimana molekul dari gas amonia memperkuat dan menghasilkan gelombang elektromagnetik. Pekerjaan ini menghabiskan waktu tiga tahun sejak ide Townes pada tahun 1951 untuk mengambil manfaat dari osilasi frekuensi tinggi molekular untuk membangkitkan gelombang dengan panjang gelombang pendek pada gelombang radio.

1958 Charles Townes dan ahli fisika Arthur Schawlow mempublikasikan penelitiannya yang menunjukan bahwa maser dapat dibuat untuk dioperasikan pada daerah infra merah dan spektrum tampak, dan menjelaskan tentang konsep laser.

1960 Laboratorium Riset Bell dan Ali Javan serta koleganya William Bennett, Jr., dan Donald Herriott menemukan sebuah pengoperasian secara berkesinambungan dari laser helium-neon.

1960 Theodore Maiman, seorang fisikawan dan insinyur elektro dari Hughes Research Laboratories, menemukan sumber laser dengan menggunakan sebuah kristal batu rubi sintesis sebagai medium.

1961 Peneliti industri Elias Snitzer dan Will Hicks mendemontrasikan sinar laser yang diarahkan melalui serat gelas yang tipis(serat optik). Inti serat gelas tersebut cukup kecil yang membuat cahaya hanya dapat melewati satu bagian saja tetapi banyak ilmuwan menyatakan bahwa serat tidak cocok untuk komunikasi karena rugi rugi cahaya yang terjadi karena melewati jarak yang sangat jauh.

1961 Penggunaan laser yang dihasilkan dari batu Rubi untuk keperluan medis di Charles Campbell of the Institute of Ophthalmology at Columbia-Presbyterian Medical Center dan Charles Koester of the American Optical Corporation menggunakan prototipe ruby laser photocoagulator untuk menghancurkan tumor pada retina pasien.

1962 Tiga group riset terkenal yaitu General Electric, IBM, dan MIT’s Lincoln Laboratory secara simultan mengembangkan gallium arsenide laser yang mengkonversikan energi listrk secara langsung ke dalam cahaya infra merah dan perkembangan selanjutnya digunakan untuk pengembangan CD dan DVD player serta penggunaan pencetak laser.

1963 Ahli fisika Herbert Kroemer mengajukan ide yaitu heterostructures, kombinasi dari lebih dari satu semikonduktor dalam layer-layer untuk mengurangi kebutuhan energi untuk laser dan membantu untuk dapat bekerja lebih efisien. Heterostructures ini nantinya akan digunakan pada telepon seluler dan peralatan elektronik lainnya.

1966 Charles Kao dan George Hockham yang melakukan penelitian di Standard Telecommunications Laboratories Inggris mempublikasikan penelitiannya tentang kemampuan serat optik dalam mentransmisikan sinar laser yang sangat sedikit rugi-ruginya dengan menggunakan serat kaca yang sangat murni. Dari penemuan ini, kemudian para peneliti lebih fokus pada bagaimana cara memurnikan bahan serat kaca tersebut.

1970 Ilmuwan Corning Glass Works yaitu Donald Keck, Peter Schultz, dan Robert Maurer melaporkan penemuan serat optik yang memenuhi standar yang telah ditentukan oleh Kao dan Hockham. Gelas yang paling murni yang dibuat terdiri atas gabungan silika dalam tahap uap dan mampu mengurangi rugi-rugi cahaya kurang dari 20 decibels per kilometer, yang selanjutnya pada 1972, tim ini menemukan gelas dengan rugi-rugi cahaya hanya 4 decibels per kilometer. Dan juga pada tahun 1970, Morton Panish dan Izuo Hayashi dari Bell Laboratories dengan tim Ioffe Physical Institute dari Leningrad, mendemontrasikan laser semikonduktor yang dapat dioperasikan pada temperatur ruang. Kedua penemuan tersebut merupakan terobosan dalam komersialisasi penggunaan fiber optik.

1973 John MacChesney dan Paul O. Connor pada Bell Laboratories mengembangkan proses pengendapan uap kimia ke bentuk ultratransparent glass yang kemudian menghasilkan serat optik yang mempunyai rugi-rugi sangat kecil dan diproduksi secara masal.

Proses pengendapan uap kimia untuk memodifikasi serat optik

1975 Insinyur pada Laser Diode Labs mengembangkan Laser Semikonduktor, laser komersial pertama yang dapat dioperasikan pada suhu kamar.

1977 Perusahaan telepon memulai penggunaan serat optik yang membawa lalu lintas telepon. GTE membuka jalur antara Long Beach dan Artesia, California, yang menggunakan transmisi LED. Bell Labs mendirikan sambungan yang sama pada sistem telepon di Chicago dengan jarak 1,5 mil di bawah tanah yang menghubungkan 2 switching station.

1980 Industri serat optik benar-benar sudah berkibar, sambungan serat optik telah ada di kota kota besar di Amerika, AT&T mengumumkan akan menginstal jaringan serat optik yang menghubungkan kota kota antara Boston dan Washington D.C., kemudian dua tahun kemudian MCI mengumumkan untuk melakukan hal yang sama. Raksasa-raksasa elektronik macam ITT atau STL mulai memainkan peranan dalam mendalami riset-riset serat optik.

1987 David Payne dari Universitas Southampton memperkenalkan optical amplifiers yang dikotori (dopped) oleh elemen erbium, yang mampu menaikan sinyal cahaya tanpa harus mengkonversikan terlebih dahulu ke dalam energi listrik.

1988 Kabel Translantic yang pertama menggunakan serat kaca yang sangat transparan, dan hanya memerlukan repeater untuk setiap 40 mil.

1991 Emmanuel Desurvire dari Bell Laboratories serta David Payne dan P. J. Mears dari Universitas Southampton mendemontrasikan optical amplifiers yang terintegrasi dengan kabel serat optik tersebut. Dengan keuntungannya adalah dapat membawa informasi 100 kali lebih cepat dari pada kabel dengan penguat elektronik (electronic amplifier).

1996 TPC-5 merupakan jenis kabel serat optik yang pertama menggunakan penguat optik. Kabel ini melewati samudera pasifik mulai dari San Luis Obispo, California, ke Guam, Hawaii, dan Miyazaki, Jepang, dan kembali ke Oregon coast dan mampu untuk menangani 320,000 panggilan telepon.

1997 Serat optik menghubungkan seluruh dunia, Link Around the Globe (FLAG) menjadi jaringan kabel terpanjang di seluruh dunia yang menyediakan infrastruktur untuk generasi internet terbaru.

Sistem Komunikasi Serat Optik (SKSO)

Berdasarkan penggunaannya maka SKSO dibagi atas beberapa generasi yaitu :

Generasi pertama (mulai 1975)

Sistem masih sederhana dan menjadi dasar bagi sistem generasi berikutnya, terdiri dari : alat encoding : mengubah input (misal suara) menjadi sinyal listrik transmitter : mengubah sinyal listrik menjadi sinyal gelombang, berupa LED dengan panjang gelombang 0,87 mm. serat silika : sebagai penghantar sinyal gelombang repeater : sebagai penguat gelombang yang melemah di perjalanan receiver : mengubah sinyal gelombang menjadi sinyal listrik, berupa fotodetektor alat decoding : mengubah sinyal listrik menjadi output (misal suara) Repeater bekerja melalui beberapa tahap, mula-mula ia mengubah sinyal gelombang yang sudah melemah menjadi sinyal listrik, kemudian diperkuat dan diubah kembali menjadi sinyal gelombang. Generasi pertama ini pada tahun 1978 dapat mencapai kapasitas transmisi sebesar 10 Gb.km/s.

Generasi kedua (mulai 1981)

Untuk mengurangi efek dispersi, ukuran teras serat diperkecil agar menjadi tipe mode tunggal. Indeks bias kulit dibuat sedekat-dekatnya dengan indeks bias teras. Dengan sendirinya transmitter juga diganti dengan diode laser, panjang gelombang yang dipancarkannya 1,3 mm. Dengan modifikasi ini generasi kedua mampu mencapai kapasitas transmisi 100 Gb.km/s, 10 kali lipat lebih besar daripada generasi pertama.

Generasi ketiga (mulai 1982)

Terjadi penyempurnaan pembuatan serat silika dan pembuatan chip diode laser berpanjang gelombang 1,55 mm. Kemurnian bahan silika ditingkatkan sehingga transparansinya dapat dibuat untuk panjang gelombang sekitar 1,2 mm sampai 1,6 mm. Penyempurnaan ini meningkatkan kapasitas transmisi menjadi beberapa ratus Gb.km/s.

Generasi keempat (mulai 1984)

Dimulainya riset dan pengembangan sistem koheren, modulasinya yang dipakai bukan modulasi intensitas melainkan modulasi frekuensi, sehingga sinyal yang sudah lemah intensitasnya masih dapat dideteksi. Maka jarak yang dapat ditempuh, juga kapasitas transmisinya, ikut membesar. Pada tahun 1984 kapasitasnya sudah dapat menyamai kapasitas sistem deteksi langsung. Sayang, generasi ini terhambat perkembangannya karena teknologi piranti sumber dan deteksi modulasi frekuensi masih jauh tertinggal. Tetapi tidak dapat disangkal bahwa sistem koheren ini punya potensi untuk maju pesat pada masa-masa yang akan datang.

Generasi kelima (mulai 1989)

Pada generasi ini dikembangkan suatu penguat optik yang menggantikan fungsi repeater pada generasi-generasi sebelumnya. Sebuah penguat optik terdiri dari sebuah diode laser InGaAsP (panjang gelombang 1,48 mm) dan sejumlah serat optik dengan doping erbium (Er) di terasnya. Pada saat serat ini disinari diode lasernya, atom-atom erbium di dalamnya akan tereksitasi dan membuat inversi populasi*, sehingga bila ada sinyal lemah masuk penguat dan lewat di dalam serat, atom-atom itu akan serentak mengadakan deeksitasi yang disebut emisi terangsang (stimulated emission) Einstein. Akibatnya sinyal yang sudah melemah akan diperkuat kembali oleh emisi ini dan diteruskan keluar penguat. Keunggulan penguat optik ini terhadap repeater adalah tidak terjadinya gangguan terhadap perjalanan sinyal gelombang, sinyal gelombang tidak perlu diubah jadi listrik dulu dan seterusnya seperti yang terjadi pada repeater. Dengan adanya penguat optik ini kapasitas transmisi melonjak hebat sekali. Pada awal pengembangannya hanya dicapai 400 Gb.km/s, tetapi setahun kemudian kapasitas transmisi sudah menembus harga 50 ribu Gb.km/s.

Generasi keenam

Pada tahun 1988 Linn F. Mollenauer memelopori sistem komunikasi soliton. Soliton adalah pulsa gelombang yang terdiri dari banyak komponen panjang gelombang. Komponen-komponennya memiliki panjang gelombang yang berbeda hanya sedikit, dan juga bervariasi dalam intensitasnya. Panjang soliton hanya 10-12 detik dan dapat dibagi menjadi beberapa komponen yang saling berdekatan, sehingga sinyal-sinyal yang berupa soliton merupakan informasi yang terdiri dari beberapa saluran sekaligus (wavelength division multiplexing). Eksperimen menunjukkan bahwa soliton minimal dapat membawa 5 saluran yang masing-masing membawa informasi dengan laju 5 Gb/s. Cacah saluran dapat dibuat menjadi dua kali lipat lebih banyak jika digunakan multiplexing polarisasi, karena setiap saluran memiliki dua polarisasi yang berbeda. Kapasitas transmisi yang telah diuji mencapai 35 ribu Gb.km/s.

Cara kerja sistem soliton ini adalah efek Kerr, yaitu sinar-sinar yang panjang gelombangnya sama akan merambat dengan laju yang berbeda di dalam suatu bahan jika intensitasnya melebihi suatu harga batas. Efek ini kemudian digunakan untuk menetralisir efek dispersi, sehingga soliton tidak akan melebar pada waktu sampai di receiver. Hal ini sangat menguntungkan karena tingkat kesalahan yang ditimbulkannya amat kecil bahkan dapat diabaikan. Tampak bahwa penggabungan ciri beberapa generasi teknologi serat optik akan mampu menghasilkan suatu sistem komunikasi yang mendekati ideal, yaitu yang memiliki kapasitas transmisi yang sebesar-besarnya dengan tingkat kesalahan yang sekecil-kecilnya yang jelas, dunia komunikasi abad 21 mendatang tidak dapat dihindari lagi akan dirajai oleh teknologi serat optik.

Kelebihan Serat Optik

Dalam penggunaan serat optik ini, terdapat beberapa keuntungan antara lain[3] :

1. Lebar jalur besar dan kemampuan dalam membawa banyak data, dapat memuat kapasitas informasi yang sangat besar dengan kecepatan transmisi mencapai gigabit-per detik dan menghantarkan informasi jarak jauh tanpa pengulangan

2. Biaya pemasangan dan pengoperasian yang rendah serta tingkat keamanan yang lebih tinggi3. Ukuran kecil dan ringan, sehingga hemat pemakaian ruang4. Imun , kekebalan terhadap gangguan elektromagnetik dan gangguan gelombang radio5. Non-Penghantar, tidak ada tenaga listrik dan percikan api6. Tidak berkarat

Kabel Serat Optik

Secara garis besar kabel serat optik terdiri dari 2 bagian utama, yaitu cladding dan core [4]. Cladding adalah selubung dari inti (core). Cladding mempunyai indek bias lebih rendah dari pada core akan memantulkan kembali cahaya yang mengarah keluar dari core kembali kedalam core lagi.

Bagian-bagian serat optik jenis single mode

Dalam aplikasinya serat optik biasanya diselubungi oleh lapisan resin yang disebut dengan jacket, biasanya berbahan plastik. Lapisan ini dapat menambah kekuatan untuk kabel serat optik, walaupun tidak memberikan peningkatan terhadap sifat gelombang pandu optik pada kabel tersebut. Namun lapisan resin ini dapat menyerap cahaya dan mencegah kemungkinan terjadinya kebocoran cahaya yang keluar dari selubung inti. Serta hal ini dapat juga mengurangi cakap silang (cross talk) yang mungkin terjadi[2].

Pembagian serat optik dapat dilihat dari 2 macam perbedaan :

1. Berdasarkan mode yang dirambatkan[5] :

Single mode : serat optik dengan inti (core) yang sangat kecil (biasanya sekitar 8,3 mikron), diameter intinya sangat sempit mendekati panjang gelombang sehingga cahaya yang masuk ke dalamnya tidak terpantul-pantul ke dinding selongsong (cladding). Bahagian inti serat optik single-mode terbuat dari bahan kaca silika (SiO2) dengan sejumlah kecil kaca Germania (GeO2) untuk meningkatkan indeks biasnya. Untuk mendapatkan performa yang baik pada kabel ini, biasanya untuk ukuran selongsongnya adalah sekitar 15 kali dari ukuran inti (sekitar 125

mikron). Kabel untuk jenis ini paling mahal, tetapi memiliki pelemahan (kurang dari 0.35dB per kilometer), sehingga memungkinkan kecepatan yang sangat tinggi dari jarak yang sangat jauh. Standar terbaru untuk kabel ini adalah ITU-T G.652D, dan G.657[6].

Multi mode : serat optik dengan diameter core yang agak besar yang membuat laser di dalamnya akan terpantul-pantul di dinding cladding yang dapat menyebabkan berkurangnya bandwidth dari serat optik jenis ini.

2. Berdasarkan indeks bias core[3] :

Step indeks : pada serat optik step indeks, core memiliki indeks bias yang homogen. Graded indeks : indeks bias core semakin mendekat ke arah cladding semakin kecil. Jadi pada

graded indeks, pusat core memiliki nilai indeks bias yang paling besar. Serat graded indeks memungkinkan untuk membawa bandwidth yang lebih besar, karena pelebaran pulsa yang terjadi dapat diminimalkan.

Kabel serat optik

Pelemahan

Pelemahan (Attenuation) cahaya sangat penting diketahui terutama dalam merancang sistem telekomunikasi serat optik itu sendiri. Pelemahan cahaya dalam serat optik adalah adanya penurunan rata-rata daya optik pada kabel serat optik, biasanya diekspresikan dalam decibel (dB) tanpa tanda negatif. Berikut ini beberapa hal yang menyumbang kepada pelemahan cahaya pada serat optik[7]:

1. Penyerapan (Absorption)Kehilangan cahaya yang disebabkan adanya kotoran dalam serat optik.

2. Penyebaran (Scattering)3. Kehilangan radiasi (radiative losses)

Reliabilitas dari serat optik dapat ditentukan dengan satuan BER (Bit error rate). Salah satu ujung serat optik diberi masukan data tertentu dan ujung yang lain mengolah data itu. Dengan intensitas laser yang rendah dan dengan panjang serat mencapai beberapa km, maka akan menghasilkan kesalahan. Jumlah kesalahan persatuan waktu tersebut dinamakan BER. Dengan diketahuinya BER maka, Jumlah kesalahan pada serat optik yang sama dengan panjang yang berbeda dapat diperkirakan besarnya.

Kode warna pada kabel serat optik

Selubung luar

Dalam standarisasinya kode warna dari selubung luar (jacket) kabel serat optik jenis Patch Cord adalah sebagai berikut:

Warna selubung luar/jacket Artinya

Kuning serat optik single-mode

Oren serat optik multi-mode

Aqua Optimal laser 10 giga 50/125 mikrometer serat optik multi-mode

Abu-Abu Kode warna serat optik multi-mode, yang tidak digunakan lagi

Biru Kadang masih digunakan dalam model perancangan

Konektor

Pada kabel serat optik, sambungan ujung terminal atau disebut juga konektor, biasanya memiliki tipe standar seperti berikut:

1. FC (Fiber Connector): digunakan untuk kabel single mode dengan akurasi yang sangat tinggi dalam menghubungkan kabel dengan transmitter maupun receiver. Konektor ini menggunakan sistem drat ulir dengan posisi yang dapat diatur, sehingga ketika dipasangkan ke perangkat lain, akurasinya tidak akan mudah berubah.

2. SC (Subsciber Connector): digunakan untuk kabel single mode, dengan sistem dicabut-pasang. Konektor ini tidak terlalu mahal, simpel, dan dapat diatur secara manual serta akurasinya baik bila dipasangkan ke perangkat lain.

3. ST (Straight Tip): bentuknya seperti bayonet berkunci hampir mirip dengan konektor BNC. Sangat umum digunakan baik untuk kabel multi mode maupun single mode. Sangat mudah digunakan baik dipasang maupun dicabut.

4. Biconic: Salah satu konektor yang kali pertama muncul dalam komunikasi fiber optik. Saat ini sangat jarang digunakan.

5. D4: konektor ini hampir mirip dengan FC hanya berbeda ukurannya saja. Perbedaannya sekitar 2 mm pada bagian ferrule-nya.

6. SMA: konektor ini merupakan pendahulu dari konektor ST yang sama-sama menggunakan penutup dan pelindung. Namun seiring dengan berkembangnya ST konektor, maka konektor ini sudah tidak berkembang lagi penggunaannya.

7. E200

Selanjutnya jenis-jenis konektor tipe kecil:

1. LC2. SMU3. SC-DC

Selain itu pada konektor tersebut biasanya menggunakan warna tertentu dengan maksud sebagai berikut:

Warna Konektor Arti Keterangan

Biru Physical Contact (PC), 0° yang paling umum digunkan untuk serat optik single-mode.

Hijau Angle Polished (APC), 8° sudah tidak digunakan lagi untuk serat optik multi-mode

Hitam Physical Contact (PC), 0°

Abu-abu, Krem Physical Contact (PC), 0° serat optik multi-mode

Putih Physical Contact (PC), 0°

Merah Penggunaan khusus

Referensi

1. ̂ Agrawal, G.P., 2002, Fiber-optic communication systems, Ed. 3, New-York: John Wiley & Sons, Inc.

2. ^ a b Hecht, Jeff, 1999, The Story of Fiber Optics, Ed. 4, Oxford University Press.3. ^ a b Keiser, Gerard, (2000), Optical Fiber Communication, 3rd ed., McGraw-Hill, Singapore, ISBN

0-07-116468-5.4. ̂ Marcatili, E.A.J., Objectives of early fibers: Evolution of fiber types, in S.E. Miller and A.G.

Chynoweth, eds., Optical Fiber Telecommunication, Academic, New York, 1979.5. ̂ Corning6. ̂ Oliviero, Andrew, and Woodward, Bill, (2009), Cabling: the complete guide to copper and fiber-

optic networking, Indianapolis:Wiley Publishing, Inc., ISBN 978-0-470-47707-6.7. ̂ Snyder, A.W., & Love, J.D., 1983, Optical waveguide Theory, New York: Chapman & Hall.

Optical fiberFrom Wikipedia, the free encyclopedia

A bundle of optical fibers

A TOSLINK fiber optic audio cable being illuminated at one end

An optical fiber junction box. The yellow cables are single mode fibers; the orange and blue cables are multi-mode fibers: 50/125 µm OM2 and 50/125 µm OM3 fibers respectively.

An optical fiber (or optical fibre) is a flexible, transparent fiber made of glass (silica) or plastic, slightly thicker than a human hair. It functions as a waveguide, or “light pipe”,[1] to transmit light between the two ends of the fiber.[2] The field of applied science and engineering concerned with the design and application of optical fibers is known as fiber optics. Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher bandwidths (data rates) than other forms of communication. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. Fibers are also used for illumination, and are wrapped in bundles so that they may be used to carry images, thus allowing viewing in confined spaces. Specially designed fibers are used for a variety of other applications, including sensors and fiber lasers.

Optical fibers typically include a transparent core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by total internal reflection. This causes the fiber to act as a waveguide. Fibers that support many propagation paths or transverse modes are called multi-mode fibers (MMF), while those that only support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a wider core diameter, and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 1,050 meters (3,440 ft).

Joining lengths of optical fiber is more complex than joining electrical wire or cable. The ends of the fibers must be carefully cleaved, and then spliced together, either mechanically or by fusing them with heat. Special optical fiber connectors for removable connections are also available.

History

Daniel Colladon first described this “light fountain” or “light pipe” in an 1842 article titled On the reflections of a ray of light inside a parabolic liquid stream. This particular illustration comes from a later article by Colladon, in 1884.

Fiber optics, though used extensively in the modern world, is a fairly simple, and relatively old, technology. Guiding of light by refraction, the principle that makes fiber optics possible, was first demonstrated by Daniel Colladon and Jacques Babinet in Paris in the early 1840s. John Tyndall included a demonstration of it in his public lectures in London, 12 years later.[3] Tyndall also wrote about the property of total internal reflection in an introductory book about the nature of light in 1870: "When the light passes from air into water, the refracted ray is bent towards the perpendicular... When the ray passes from water to air it is bent from the perpendicular... If the angle which the ray in water encloses with the perpendicular to the surface be greater than 48 degrees, the ray will not quit the water at all: it will be totally reflected at the surface.... The angle which marks the limit where total reflection begins is called the limiting angle of the medium. For water this angle is 48°27', for flint glass it is 38°41', while for diamond it is 23°42'."[4][5] Unpigmented human hairs have also been shown to act as an optical fiber.[6]

Practical applications, such as close internal illumination during dentistry, appeared early in the twentieth century. Image transmission through tubes was demonstrated independently by the radio experimenter Clarence Hansell and the television pioneer John Logie Baird in the 1920s. The principle was first used for internal medical examinations by Heinrich Lamm in the following decade. Modern optical fibers, where the glass fiber is coated with a transparent cladding to offer a more suitable refractive index, appeared later in the decade.[3] Development

then focused on fiber bundles for image transmission. Harold Hopkins and Narinder Singh Kapany at Imperial College in London achieved low-loss light transmission through a 75 cm long bundle which combined several thousand fibers. Their article titled "A flexible fibrescope, using static scanning" was published in the journal Nature in 1954.[7][8] The first fiber optic semi-flexible gastroscope was patented by Basil Hirschowitz, C. Wilbur Peters, and Lawrence E. Curtiss, researchers at the University of Michigan, in 1956. In the process of developing the gastroscope, Curtiss produced the first glass-clad fibers; previous optical fibers had relied on air or impractical oils and waxes as the low-index cladding material.

A variety of other image transmission applications soon followed.

In 1880 Alexander Graham Bell and Sumner Tainter invented the 'Photophone' at the Volta Laboratory in Washington, D.C., to transmit voice signals over an optical beam.[9] It was an advanced form of telecommunications, but subject to atmospheric interferences and impractical until the secure transport of light that would be offered by fiber-optical systems. In the late 19th and early 20th centuries, light was guided through bent glass rods to illuminate body cavities.[10] Jun-ichi Nishizawa, a Japanese scientist at Tohoku University, also proposed the use of optical fibers for communications in 1963, as stated in his book published in 2004 in India.[11] Nishizawa invented other technologies that contributed to the development of optical fiber communications, such as the graded-index optical fiber as a channel for transmitting light from semiconductor lasers.[12][13] The first working fiber-optical data transmission system was demonstrated by German physicist Manfred Börner at Telefunken Research Labs in Ulm in 1965, which was followed by the first patent application for this technology in 1966.[14][15] Charles K. Kao and George A. Hockham of the British company Standard Telephones and Cables (STC) were the first to promote the idea that the attenuation in optical fibers could be reduced below 20 decibels per kilometer (dB/km), making fibers a practical communication medium.[16] They proposed that the attenuation in fibers available at the time was caused by impurities that could be removed, rather than by fundamental physical effects such as scattering. They correctly and systematically theorized the light-loss properties for optical fiber, and pointed out the right material to use for such fibers — silica glass with high purity. This discovery earned Kao the Nobel Prize in Physics in 2009.[17]

NASA used fiber optics in the television cameras that were sent to the moon. At the time, the use in the cameras was classified confidential, and only those with the right security clearance or those accompanied by someone with the right security clearance were permitted to handle the cameras.[18]

The crucial attenuation limit of 20 dB/km was first achieved in 1970, by researchers Robert D. Maurer, Donald Keck, Peter C. Schultz, and Frank Zimar working for American glass maker Corning Glass Works, now Corning Incorporated. They demonstrated a fiber with 17 dB/km attenuation by doping silica glass with titanium. A few years later they produced a fiber with only 4 dB/km attenuation using germanium dioxide as the core dopant. Such low attenuation ushered in optical fiber telecommunication. In 1981, General Electric produced fused quartz ingots that could be drawn into fiber optic strands 25 miles (40 km) long.[19]

Attenuation in modern optical cables is far less than in electrical copper cables, leading to long-haul fiber connections with repeater distances of 70–150 kilometers (43–93 mi). The erbium-doped fiber amplifier, which reduced the cost of long-distance fiber systems by reducing or eliminating optical-electrical-optical repeaters, was co-developed by teams led by David N. Payne of the University of Southampton and Emmanuel Desurvire at Bell Labs in 1986. Robust modern optical fiber uses glass for both core and sheath, and is therefore less prone to aging. It was invented by Gerhard Bernsee of Schott Glass in Germany in 1973.[20]

The emerging field of photonic crystals led to the development in 1991 of photonic-crystal fiber,[21] which guides light by diffraction from a periodic structure, rather than by total internal reflection. The first photonic crystal fibers became commercially available in 2000.[22] Photonic crystal fibers can carry higher power than conventional fibers and their wavelength-dependent properties can be manipulated to improve performance.

Applications

Optical fiber communication

Main article: Fiber-optic communication

Optical fiber can be used as a medium for telecommunication and computer networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters. Additionally, the per-channel light signals propagating in the fiber have been modulated at rates as high as 111 gigabits per second by NTT,[23][24] although 10 or 40 Gbit/s is typical in deployed systems.[25][26] Each fiber can carry many independent channels, each using a different wavelength of light (wavelength-division multiplexing (WDM)). The net data rate (data rate without overhead bytes) per fiber is the per-channel data rate reduced by the FEC overhead, multiplied by the number of channels (usually up to eighty in commercial dense WDM systems as of 2008). The current laboratory fiber optic data rate record, held by Alcatel-Lucent in Villarceaux, France, is multiplexing 155 channels, each carrying 100 Gbit/s over a 7000 km fiber.[27] Nippon Telegraph and Telephone Corporation has also managed 69.1 Tbit/s over a single 240 km fiber (multiplexing 432 channels, equating to 171 Gbit/s per channel).[28] Bell Labs also broke a 100 Petabit per second kilometer barrier (15.5 Tbit/s over a single 7000 km fiber).[29]

For short distance applications, such as a network in an office building, fiber-optic cabling can save space in cable ducts. This is because a single fiber can carry much more data than electrical cables such as standard category 5 Ethernet cabling, which typically runs at 100 Mbit/s or 1 Gbit/s speeds. Fiber is also immune to electrical interference; there is no cross-talk between signals in different cables, and no pickup of environmental noise. Non-armored fiber cables do not conduct electricity, which makes fiber a good solution for protecting communications equipment in high voltage environments, such as power generation facilities, or metal communication structures prone to lightning strikes. They can also be used in environments where explosive fumes are present, without danger of ignition. Wiretapping (in this case, fiber

tapping) is more difficult compared to electrical connections, and there are concentric dual core fibers that are said to be tap-proof.[30]

Fiber optic sensors

Main article: Fiber optic sensor

Fibers have many uses in remote sensing. In some applications, the sensor is itself an optical fiber. In other cases, fiber is used to connect a non-fiberoptic sensor to a measurement system. Depending on the application, fiber may be used because of its small size, or the fact that no electrical power is needed at the remote location, or because many sensors can be multiplexed along the length of a fiber by using different wavelengths of light for each sensor, or by sensing the time delay as light passes along the fiber through each sensor. Time delay can be determined using a device such as an optical time-domain reflectometer.

Optical fibers can be used as sensors to measure strain, temperature, pressure and other quantities by modifying a fiber so that the property to measure modulates the intensity, phase, polarization, wavelength, or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest, since only a simple source and detector are required. A particularly useful feature of such fiber optic sensors is that they can, if required, provide distributed sensing over distances of up to one meter.

Extrinsic fiber optic sensors use an optical fiber cable, normally a multi-mode one, to transmit modulated light from either a non-fiber optical sensor—or an electronic sensor connected to an optical transmitter. A major benefit of extrinsic sensors is their ability to reach otherwise inaccessible places. An example is the measurement of temperature inside aircraft jet engines by using a fiber to transmit radiation into a radiation pyrometer outside the engine. Extrinsic sensors can be used in the same way to measure the internal temperature of electrical transformers, where the extreme electromagnetic fields present make other measurement techniques impossible. Extrinsic sensors measure vibration, rotation, displacement, velocity, acceleration, torque, and twisting. A solid state version of the gyroscope, using the interference of light, has been developed. The fiber optic gyroscope (FOG) has no moving parts, and exploits the Sagnac effect to detect mechanical rotation.

Common uses for fiber optic sensors includes advanced intrusion detection security systems. The light is transmitted along a fiber optic sensor cable placed on a fence, pipeline, or communication cabling, and the returned signal is monitored and analysed for disturbances. This return signal is digitally processed to detect disturbances and trip an alarm if an intrusion has occurred.

Other uses of optical fibers

A frisbee illuminated by fiber optics

Light reflected from optical fiber illuminates exhibited model

Fibers are widely used in illumination applications. They are used as light guides in medical and other applications where bright light needs to be shone on a target without a clear line-of-sight path. In some buildings, optical fibers route sunlight from the roof to other parts of the building (see nonimaging optics). Optical fiber illumination is also used for decorative applications, including signs, art, toys and artificial Christmas trees. Swarovski boutiques use optical fibers to illuminate their crystal showcases from many different angles while only employing one light source. Optical fiber is an intrinsic part of the light-transmitting concrete building product, LiTraCon.

Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, sometimes along with lenses, for a long, thin imaging device called an endoscope, which is used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures. Industrial endoscopes (see fiberscope or borescope) are used for inspecting anything hard to reach, such as jet engine interiors. Many microscopes use fiber-optic light sources to provide intense illumination of samples being studied.

In spectroscopy, optical fiber bundles transmit light from a spectrometer to a substance that cannot be placed inside the spectrometer itself, in order to analyze its composition. A

spectrometer analyzes substances by bouncing light off of and through them. By using fibers, a spectrometer can be used to study objects remotely.[31][32][33]

An optical fiber doped with certain rare earth elements such as erbium can be used as the gain medium of a laser or optical amplifier. Rare-earth doped optical fibers can be used to provide signal amplification by splicing a short section of doped fiber into a regular (undoped) optical fiber line. The doped fiber is optically pumped with a second laser wavelength that is coupled into the line in addition to the signal wave. Both wavelengths of light are transmitted through the doped fiber, which transfers energy from the second pump wavelength to the signal wave. The process that causes the amplification is stimulated emission.

Optical fibers doped with a wavelength shifter collect scintillation light in physics experiments.

Optical fiber can be used to supply a low level of power (around one watt)[citation needed] to electronics situated in a difficult electrical environment. Examples of this are electronics in high-powered antenna elements and measurement devices used in high voltage transmission equipment.

The iron sights for handguns, rifles, and shotguns may use short pieces of optical fiber for contrast enhancement.

Principle of operation

An overview of the operating principles of the optical fiber

An optical fiber is a cylindrical dielectric waveguide (nonconducting waveguide) that transmits light along its axis, by the process of total internal reflection. The fiber consists of a core surrounded by a cladding layer, both of which are made of dielectric materials. To confine the optical signal in the core, the refractive index of the core must be greater than that of the cladding. The boundary between the core and cladding may either be abrupt, in step-index fiber, or gradual, in graded-index fiber.

Index of refraction

Main article: Refractive index

The index of refraction is a way of measuring the speed of light in a material. Light travels fastest in a vacuum, such as outer space. The speed of light in a vacuum is about 300,000 kilometers (186,000 miles) per second. Index of refraction is calculated by dividing the speed of

light in a vacuum by the speed of light in some other medium. The index of refraction of a vacuum is therefore 1, by definition. The typical value for the cladding of an optical fiber is 1.52.[34] The core value is typically 1.62.[34] The larger the index of refraction, the slower light travels in that medium. From this information, a good rule of thumb is that signal using optical fiber for communication will travel at around 200,000 kilometers per second. Or to put it another way, to travel 1000 kilometers in fiber, the signal will take 5 milliseconds to propagate. Thus a phone call carried by fiber between Sydney and New York, a 12,000-kilometer distance, means that there is an absolute minimum delay of 60 milliseconds (or around 1/16 of a second) between when one caller speaks to when the other hears. (Of course the fiber in this case will probably travel a longer route, and there will be additional delays due to communication equipment switching and the process of encoding and decoding the voice onto the fiber).

Total internal reflection

Main article: Total internal reflection

When light traveling in an optically dense medium hits a boundary at a steep angle (larger than the critical angle for the boundary), the light is completely reflected. This is called total internal reflection. This effect is used in optical fibers to confine light in the core. Light travels through the fiber core, bouncing back and forth off the boundary between the core and cladding. Because the light must strike the boundary with an angle greater than the critical angle, only light that enters the fiber within a certain range of angles can travel down the fiber without leaking out. This range of angles is called the acceptance cone of the fiber. The size of this acceptance cone is a function of the refractive index difference between the fiber's core and cladding.

In simpler terms, there is a maximum angle from the fiber axis at which light may enter the fiber so that it will propagate, or travel, in the core of the fiber. The sine of this maximum angle is the numerical aperture (NA) of the fiber. Fiber with a larger NA requires less precision to splice and work with than fiber with a smaller NA. Single-mode fiber has a small NA.

Multi-mode fiber

The propagation of light through a multi-mode optical fiber.

A laser bouncing down an acrylic rod, illustrating the total internal reflection of light in a multi-mode optical fiber.

Main article: Multi-mode optical fiber

Fiber with large core diameter (greater than 10 micrometers) may be analyzed by geometrical optics. Such fiber is called multi-mode fiber, from the electromagnetic analysis (see below). In a step-index multi-mode fiber, rays of light are guided along the fiber core by total internal reflection. Rays that meet the core-cladding boundary at a high angle (measured relative to a line normal to the boundary), greater than the critical angle for this boundary, are completely reflected. The critical angle (minimum angle for total internal reflection) is determined by the difference in index of refraction between the core and cladding materials. Rays that meet the boundary at a low angle are refracted from the core into the cladding, and do not convey light and hence information along the fiber. The critical angle determines the acceptance angle of the fiber, often reported as a numerical aperture. A high numerical aperture allows light to propagate down the fiber in rays both close to the axis and at various angles, allowing efficient coupling of light into the fiber. However, this high numerical aperture increases the amount of dispersion as rays at different angles have different path lengths and therefore take different times to traverse the fiber.

Optical fiber types.

In graded-index fiber, the index of refraction in the core decreases continuously between the axis and the cladding. This causes light rays to bend smoothly as they approach the cladding, rather than reflecting abruptly from the core-cladding boundary. The resulting curved paths reduce

multi-path dispersion because high angle rays pass more through the lower-index periphery of the core, rather than the high-index center. The index profile is chosen to minimize the difference in axial propagation speeds of the various rays in the fiber. This ideal index profile is very close to a parabolic relationship between the index and the distance from the axis.

Single-mode fiber

The structure of a typical single-mode fiber.1. Core: 8 µm diameter2. Cladding: 125 µm dia.3. Buffer: 250 µm dia.4. Jacket: 400 µm dia.

Main article: Single-mode optical fiber

Fiber with a core diameter less than about ten times the wavelength of the propagating light cannot be modeled using geometric optics. Instead, it must be analyzed as an electromagnetic structure, by solution of Maxwell's equations as reduced to the electromagnetic wave equation. The electromagnetic analysis may also be required to understand behaviors such as speckle that occur when coherent light propagates in multi-mode fiber. As an optical waveguide, the fiber supports one or more confined transverse modes by which light can propagate along the fiber. Fiber supporting only one mode is called single-mode or mono-mode fiber. The behavior of larger-core multi-mode fiber can also be modeled using the wave equation, which shows that such fiber supports more than one mode of propagation (hence the name). The results of such modeling of multi-mode fiber approximately agree with the predictions of geometric optics, if the fiber core is large enough to support more than a few modes.

The waveguide analysis shows that the light energy in the fiber is not completely confined in the core. Instead, especially in single-mode fibers, a significant fraction of the energy in the bound mode travels in the cladding as an evanescent wave.

The most common type of single-mode fiber has a core diameter of 8–10 micrometers and is designed for use in the near infrared. The mode structure depends on the wavelength of the light used, so that this fiber actually supports a small number of additional modes at visible wavelengths. Multi-mode fiber, by comparison, is manufactured with core diameters as small as 50 micrometers and as large as hundreds of micrometers. The normalized frequency V for this fiber should be less than the first zero of the Bessel function J0 (approximately 2.405).

Special-purpose fiber

Some special-purpose optical fiber is constructed with a non-cylindrical core and/or cladding layer, usually with an elliptical or rectangular cross-section. These include polarization-maintaining fiber and fiber designed to suppress whispering gallery mode propagation. Polarization-maintaining fibers are unique type of fibers that is commonly used in fiber optic sensors due to its ability to maintain the polarization of the light inserted in it.

Photonic-crystal fiber is made with a regular pattern of index variation (often in the form of cylindrical holes that run along the length of the fiber). Such fiber uses diffraction effects instead of or in addition to total internal reflection, to confine light to the fiber's core. The properties of the fiber can be tailored to a wide variety of applications.

Mechanisms of attenuation

Light attenuation by ZBLAN and silica fibers

Main article: Transparent materials

Attenuation in fiber optics, also known as transmission loss, is the reduction in intensity of the light beam (or signal) as it travels through the transmission medium. Attenuation coefficients in fiber optics usually use units of dB/km through the medium due to the relatively high quality of transparency of modern optical transmission media. The medium is usually a fiber of silica glass that confines the incident light beam to the inside. Attenuation is an important factor limiting the transmission of a digital signal across large distances. Thus, much research has gone into both limiting the attenuation and maximizing the amplification of the optical signal. Empirical research has shown that attenuation in optical fiber is caused primarily by both scattering and absorption.

Light scattering

Specular reflection

Diffuse reflection

The propagation of light through the core of an optical fiber is based on total internal reflection of the lightwave. Rough and irregular surfaces, even at the molecular level, can cause light rays to be reflected in random directions. This is called diffuse reflection or scattering, and it is typically characterized by wide variety of reflection angles.

Light scattering depends on the wavelength of the light being scattered. Thus, limits to spatial scales of visibility arise, depending on the frequency of the incident light-wave and the physical dimension (or spatial scale) of the scattering center, which is typically in the form of some specific micro-structural feature. Since visible light has a wavelength of the order of one micrometer (one millionth of a meter) scattering centers will have dimensions on a similar spatial scale.

Thus, attenuation results from the incoherent scattering of light at internal surfaces and interfaces. In (poly)crystalline materials such as metals and ceramics, in addition to pores, most of the internal surfaces or interfaces are in the form of grain boundaries that separate tiny regions of crystalline order. It has recently been shown that when the size of the scattering center (or grain boundary) is reduced below the size of the wavelength of the light being scattered, the scattering no longer occurs to any significant extent. This phenomenon has given rise to the production of transparent ceramic materials.

Similarly, the scattering of light in optical quality glass fiber is caused by molecular level irregularities (compositional fluctuations) in the glass structure. Indeed, one emerging school of thought is that a glass is simply the limiting case of a polycrystalline solid. Within this framework, "domains" exhibiting various degrees of short-range order become the building blocks of both metals and alloys, as well as glasses and ceramics. Distributed both between and within these domains are micro-structural defects that provide the most ideal locations for light scattering. This same phenomenon is seen as one of the limiting factors in the transparency of IR missile domes.[35]

At high optical powers, scattering can also be caused by nonlinear optical processes in the fiber.[36][37]

UV-Vis-IR absorption

In addition to light scattering, attenuation or signal loss can also occur due to selective absorption of specific wavelengths, in a manner similar to that responsible for the appearance of color. Primary material considerations include both electrons and molecules as follows:

1) At the electronic level, it depends on whether the electron orbitals are spaced (or "quantized") such that they can absorb a quantum of light (or photon) of a specific wavelength or frequency in the ultraviolet (UV) or visible ranges. This is what gives rise to color.

2) At the atomic or molecular level, it depends on the frequencies of atomic or molecular vibrations or chemical bonds, how close-packed its atoms or molecules are, and whether or not the atoms or molecules exhibit long-range order. These factors will determine the capacity of the material transmitting longer wavelengths in the infrared (IR), far IR, radio and microwave ranges.

The design of any optically transparent device requires the selection of materials based upon knowledge of its properties and limitations. The Lattice absorption characteristics observed at the lower frequency regions (mid IR to far-infrared wavelength range) define the long-wavelength transparency limit of the material. They are the result of the interactive coupling between the motions of thermally induced vibrations of the constituent atoms and molecules of the solid lattice and the incident light wave radiation. Hence, all materials are bounded by limiting regions of absorption caused by atomic and molecular vibrations (bond-stretching)in the far-infrared (>10 µm).

Thus, multi-phonon absorption occurs when two or more phonons simultaneously interact to produce electric dipole moments with which the incident radiation may couple. These dipoles can absorb energy from the incident radiation, reaching a maximum coupling with the radiation when the frequency is equal to the fundamental vibrational mode of the molecular dipole (e.g. Si-O bond) in the far-infrared, or one of its harmonics.

The selective absorption of infrared (IR) light by a particular material occurs because the selected frequency of the light wave matches the frequency (or an integer multiple of the frequency) at which the particles of that material vibrate. Since different atoms and molecules have different natural frequencies of vibration, they will selectively absorb different frequencies (or portions of the spectrum) of infrared (IR) light.

Reflection and transmission of light waves occur because the frequencies of the light waves do not match the natural resonant frequencies of vibration of the objects. When IR light of these frequencies strikes an object, the energy is either reflected or transmitted.

Manufacturing

Materials

Glass optical fibers are almost always made from silica, but some other materials, such as fluorozirconate, fluoroaluminate, and chalcogenide glasses as well as crystalline materials like sapphire, are used for longer-wavelength infrared or other specialized applications. Silica and fluoride glasses usually have refractive indices of about 1.5, but some materials such as the chalcogenides can have indices as high as 3. Typically the index difference between core and cladding is less than one percent.

Plastic optical fibers (POF) are commonly step-index multi-mode fibers with a core diameter of 0.5 millimeters or larger. POF typically have higher attenuation coefficients than glass fibers, 1 dB/m or higher, and this high attenuation limits the range of POF-based systems.

Silica

Silica exhibits fairly good optical transmission over a wide range of wavelengths. In the near-infrared (near IR) portion of the spectrum, particularly around 1.5 μm, silica can have extremely low absorption and scattering losses of the order of 0.2 dB/km. Such remarkably low losses are possible only because ultra-pure silicon is available, it being essential for manufacturing integrated circuits and discrete transistors. A high transparency in the 1.4-μm region is achieved by maintaining a low concentration of hydroxyl groups (OH). Alternatively, a high OH concentration is better for transmission in the ultraviolet (UV) region.

Silica can be drawn into fibers at reasonably high temperatures, and has a fairly broad glass transformation range. One other advantage is that fusion splicing and cleaving of silica fibers is relatively effective. Silica fiber also has high mechanical strength against both pulling and even bending, provided that the fiber is not too thick and that the surfaces have been well prepared during processing. Even simple cleaving (breaking) of the ends of the fiber can provide nicely

flat surfaces with acceptable optical quality. Silica is also relatively chemically inert. In particular, it is not hygroscopic (does not absorb water).

Silica glass can be doped with various materials. One purpose of doping is to raise the refractive index (e.g. with Germanium dioxide (GeO2) or Aluminium oxide (Al2O3)) or to lower it (e.g. with fluorine or Boron trioxide (B2O3)). Doping is also possible with laser-active ions (for example, rare earth-doped fibers) in order to obtain active fibers to be used, for example, in fiber amplifiers or laser applications. Both the fiber core and cladding are typically doped, so that the entire assembly (core and cladding) is effectively the same compound (e.g. an aluminosilicate, germanosilicate, phosphosilicate or borosilicate glass).

Particularly for active fibers, pure silica is usually not a very suitable host glass, because it exhibits a low solubility for rare earth ions. This can lead to quenching effects due to clustering of dopant ions. Aluminosilicates are much more effective in this respect.

Silica fiber also exhibits a high threshold for optical damage. This property ensures a low tendency for laser-induced breakdown. This is important for fiber amplifiers when utilized for the amplification of short pulses.

Because of these properties silica fibers are the material of choice in many optical applications, such as communications (except for very short distances with plastic optical fiber), fiber lasers, fiber amplifiers, and fiber-optic sensors. Large efforts put forth in the development of various types of silica fibers have further increased the performance of such fibers over other materials.[38][39][40][41][42][43][44][45]

Fluorides

Fluoride glass is a class of non-oxide optical quality glasses composed of fluorides of various metals. Because of their low viscosity, it is very difficult to completely avoid crystallization while processing it through the glass transition (or drawing the fiber from the melt). Thus, although heavy metal fluoride glasses (HMFG) exhibit very low optical attenuation, they are not only difficult to manufacture, but are quite fragile, and have poor resistance to moisture and other environmental attacks. Their best attribute is that they lack the absorption band associated with the hydroxyl (OH) group (3200–3600 cm−1), which is present in nearly all oxide-based glasses.

An example of a heavy metal fluoride glass is the ZBLAN glass group, composed of zirconium, barium, lanthanum, aluminium, and sodium fluorides. Their main technological application is as optical waveguides in both planar and fiber form. They are advantageous especially in the mid-infrared (2000–5000 nm) range.

HMFGs were initially slated for optical fiber applications, because the intrinsic losses of a mid-IR fiber could in principle be lower than those of silica fibers, which are transparent only up to about 2 μm. However, such low losses were never realized in practice, and the fragility and high cost of fluoride fibers made them less than ideal as primary candidates. Later, the utility of fluoride fibers for various other applications was discovered. These include mid-IR

spectroscopy, fiber optic sensors, thermometry, and imaging. Also, fluoride fibers can be used for guided lightwave transmission in media such as YAG (yttria-alumina garnet) lasers at 2.9 μm, as required for medical applications (e.g. ophthalmology and dentistry).[46][47]

Phosphates

The P4O10 cagelike structure—the basic building block for phosphate glass.

Phosphate glass constitutes a class of optical glasses composed of metaphosphates of various metals. Instead of the SiO4 tetrahedra observed in silicate glasses, the building block for this glass former is Phosphorus pentoxide (P2O5), which crystallizes in at least four different forms. The most familiar polymorph (see figure) comprises molecules of P4O10.

Phosphate glasses can be advantageous over silica glasses for optical fibers with a high concentration of doping rare earth ions. A mix of fluoride glass and phosphate glass is fluorophosphate glass.[48][49]

Chalcogenides

The chalcogens—the elements in group 16 of the periodic table—particularly sulfur (S), selenium (Se) and tellurium (Te)—react with more electropositive elements, such as silver, to form chalcogenides. These are extremely versatile compounds, in that they can be crystalline or amorphous, metallic or semiconducting, and conductors of ions or electrons. Chalcogenides fibers are useful for far infrared transmission but are hard to produce.

Process

Illustration of the modified chemical vapor deposition (inside) process

Standard optical fibers are made by first constructing a large-diameter "preform", with a carefully controlled refractive index profile, and then "pulling" the preform to form the long, thin optical fiber. The preform is commonly made by three chemical vapor deposition methods: inside vapor deposition, outside vapor deposition, and vapor axial deposition.[50]

With inside vapor deposition, the preform starts as a hollow glass tube approximately 40 centimeters (16 in) long, which is placed horizontally and rotated slowly on a lathe. Gases such as silicon tetrachloride (SiCl4) or germanium tetrachloride (GeCl4) are injected with oxygen in the end of the tube. The gases are then heated by means of an external hydrogen burner, bringing the temperature of the gas up to 1900 K (1600 °C, 3000 °F), where the tetrachlorides react with oxygen to produce silica or germania (germanium dioxide) particles. When the reaction conditions are chosen to allow this reaction to occur in the gas phase throughout the tube volume, in contrast to earlier techniques where the reaction occurred only on the glass surface, this technique is called modified chemical vapor deposition (MCVD).

The oxide particles then agglomerate to form large particle chains, which subsequently deposit on the walls of the tube as soot. The deposition is due to the large difference in temperature between the gas core and the wall causing the gas to push the particles outwards (this is known as thermophoresis). The torch is then traversed up and down the length of the tube to deposit the material evenly. After the torch has reached the end of the tube, it is then brought back to the beginning of the tube and the deposited particles are then melted to form a solid layer. This process is repeated until a sufficient amount of material has been deposited. For each layer the

composition can be modified by varying the gas composition, resulting in precise control of the finished fiber's optical properties.

In outside vapor deposition or vapor axial deposition, the glass is formed by flame hydrolysis, a reaction in which silicon tetrachloride and germanium tetrachloride are oxidized by reaction with water (H2O) in an oxyhydrogen flame. In outside vapor deposition the glass is deposited onto a solid rod, which is removed before further processing. In vapor axial deposition, a short seed rod is used, and a porous preform, whose length is not limited by the size of the source rod, is built up on its end. The porous preform is consolidated into a transparent, solid preform by heating to about 1800 K (1500 °C, 2800 °F).

The preform, however constructed, is then placed in a device known as a drawing tower, where the preform tip is heated and the optical fiber is pulled out as a string. By measuring the resultant fiber width, the tension on the fiber can be controlled to maintain the fiber thickness.

Coatings

The light is "guided" down the core of the fiber by an optical "cladding" with a lower refractive index that traps light in the core through "total internal reflection."

The cladding is coated by a "buffer" that protects it from moisture and physical damage. The buffer is what gets stripped off the fiber for termination or splicing. These coatings are UV-cured urethane acrylate composite materials applied to the outside of the fiber during the drawing process. The coatings protect the very delicate strands of glass fiber—about the size of a human hair—and allow it to survive the rigors of manufacturing, proof testing, cabling and installation.

Today’s glass optical fiber draw processes employ a dual-layer coating approach. An inner primary coating is designed to act as a shock absorber to minimize attenuation caused by microbending. An outer secondary coating protects the primary coating against mechanical damage and acts as a barrier to lateral forces. Sometimes a metallic armor layer is added to provide extra protection.

These fiber optic coating layers are applied during the fiber draw, at speeds approaching 100 kilometers per hour (60 mph). Fiber optic coatings are applied using one of two methods: wet-on-dry and wet-on-wet. In wet-on-dry, the fiber passes through a primary coating application, which is then UV cured—then through the secondary coating application, which is subsequently cured. In wet-on-wet, the fiber passes through both the primary and secondary coating applications, then goes to UV curing.

Fiber optic coatings are applied in concentric layers to prevent damage to the fiber during the drawing application and to maximize fiber strength and microbend resistance. Unevenly coated fiber will experience non-uniform forces when the coating expands or contracts, and is susceptible to greater signal attenuation. Under proper drawing and coating processes, the coatings are concentric around the fiber, continuous over the length of the application and have constant thickness.

Fiber optic coatings protect the glass fibers from scratches that could lead to strength degradation. The combination of moisture and scratches accelerates the aging and deterioration of fiber strength. When fiber is subjected to low stresses over a long period, fiber fatigue can occur. Over time or in extreme conditions, these factors combine to cause microscopic flaws in the glass fiber to propagate, which can ultimately result in fiber failure.

Three key characteristics of fiber optic waveguides can be affected by environmental conditions: strength, attenuation and resistance to losses caused by microbending. External fiber optic coatings protect glass optical fiber from environmental conditions that can affect the fiber’s performance and long-term durability. On the inside, coatings ensure the reliability of the signal being carried and help minimize attenuation due to microbending.

Practical issues

Optical fiber cables

An optical fiber cable

Main article: Optical fiber cable

In practical fibers, the cladding is usually coated with a tough resin buffer layer, which may be further surrounded by a jacket layer, usually glass. These layers add strength to the fiber but do not contribute to its optical wave guide properties. Rigid fiber assemblies sometimes put light-absorbing ("dark") glass between the fibers, to prevent light that leaks out of one fiber from entering another. This reduces cross-talk between the fibers, or reduces flare in fiber bundle imaging applications.[51][52]

Modern cables come in a wide variety of sheathings and armor, designed for applications such as direct burial in trenches, high voltage isolation, dual use as power lines,[53][not in citation given] installation in conduit, lashing to aerial telephone poles, submarine installation, and insertion in paved streets. The cost of small fiber-count pole-mounted cables has greatly decreased due to the high demand for fiber to the home (FTTH) installations in Japan and South Korea.

Fiber cable can be very flexible, but traditional fiber's loss increases greatly if the fiber is bent with a radius smaller than around 30 mm. This creates a problem when the cable is bent around corners or wound around a spool, making FTTX installations more complicated. "Bendable fibers", targeted towards easier installation in home environments, have been standardized as ITU-T G.657. This type of fiber can be bent with a radius as low as 7.5 mm without adverse

impact. Even more bendable fibers have been developed.[54] Bendable fiber may also be resistant to fiber hacking, in which the signal in a fiber is surreptitiously monitored by bending the fiber and detecting the leakage.[55]

Another important feature of cable is cable's ability to withstand horizontally applied force. It is technically called max tensile strength defining how much force can applied to the cable during the installation period.

Some fiber optic cable versions are reinforced with aramid yarns or glass yarns as intermediary strength member. In commercial terms, usage of the glass yarns are more cost effective while no loss in mechanical durability of the cable. Glass yarns also protect the cable core against rodents and termites.

Termination and splicing

ST connectors on multi-mode fiber.

Optical fibers are connected to terminal equipment by optical fiber connectors. These connectors are usually of a standard type such as FC, SC, ST, LC, MTRJ, or SMA, which is designated for higher power transmission.

Optical fibers may be connected to each other by connectors or by splicing, that is, joining two fibers together to form a continuous optical waveguide. The generally accepted splicing method is arc fusion splicing, which melts the fiber ends together with an electric arc. For quicker fastening jobs, a “mechanical splice” is used.

Fusion splicing is done with a specialized instrument that typically operates as follows: The two cable ends are fastened inside a splice enclosure that will protect the splices, and the fiber ends are stripped of their protective polymer coating (as well as the more sturdy outer jacket, if

present). The ends are cleaved (cut) with a precision cleaver to make them perpendicular, and are placed into special holders in the splicer. The splice is usually inspected via a magnified viewing screen to check the cleaves before and after the splice. The splicer uses small motors to align the end faces together, and emits a small spark between electrodes at the gap to burn off dust and moisture. Then the splicer generates a larger spark that raises the temperature above the melting point of the glass, fusing the ends together permanently. The location and energy of the spark is carefully controlled so that the molten core and cladding do not mix, and this minimizes optical loss. A splice loss estimate is measured by the splicer, by directing light through the cladding on one side and measuring the light leaking from the cladding on the other side. A splice loss under 0.1 dB is typical. The complexity of this process makes fiber splicing much more difficult than splicing copper wire.

Mechanical fiber splices are designed to be quicker and easier to install, but there is still the need for stripping, careful cleaning and precision cleaving. The fiber ends are aligned and held together by a precision-made sleeve, often using a clear index-matching gel that enhances the transmission of light across the joint. Such joints typically have higher optical loss and are less robust than fusion splices, especially if the gel is used. All splicing techniques involve installing an enclosure that protects the splice.

Fibers are terminated in connectors that hold the fiber end precisely and securely. A fiber-optic connector is basically a rigid cylindrical barrel surrounded by a sleeve that holds the barrel in its mating socket. The mating mechanism can be push and click, turn and latch (bayonet), or screw-in (threaded). A typical connector is installed by preparing the fiber end and inserting it into the rear of the connector body. Quick-set adhesive is usually used to hold the fiber securely, and a strain relief is secured to the rear. Once the adhesive sets, the fiber's end is polished to a mirror finish. Various polish profiles are used, depending on the type of fiber and the application. For single-mode fiber, fiber ends are typically polished with a slight curvature that makes the mated connectors touch only at their cores. This is called a physical contact (PC) polish. The curved surface may be polished at an angle, to make an angled physical contact (APC) connection. Such connections have higher loss than PC connections, but greatly reduced back reflection, because light that reflects from the angled surface leaks out of the fiber core. The resulting signal strength loss is called gap loss. APC fiber ends have low back reflection even when disconnected.

In the 1990s, terminating fiber optic cables was labor intensive. The number of parts per connector, polishing of the fibers, and the need to oven-bake the epoxy in each connector made terminating fiber optic cables difficult. Today, many connectors types are on the market that offer easier, less labor intensive ways of terminating cables. Some of the most popular connectors are pre-polished at the factory, and include a gel inside the connector. Those two steps help save money on labor, especially on large projects. A cleave is made at a required length, to get as close to the polished piece already inside the connector. The gel surrounds the point where the two pieces meet inside the connector for very little light loss.[citation needed]

Free-space coupling

It is often necessary to align an optical fiber with another optical fiber, or with an optoelectronic device such as a light-emitting diode, a laser diode, or a modulator. This can involve either

carefully aligning the fiber and placing it in contact with the device, or can use a lens to allow coupling over an air gap. In some cases the end of the fiber is polished into a curved form that makes it act as a lens. Some companies can even shape the fiber into lenses by cutting them with lasers.[56]

In a laboratory environment, a bare fiber end is coupled using a fiber launch system, which uses a microscope objective lens to focus the light down to a fine point. A precision translation stage (micro-positioning table) is used to move the lens, fiber, or device to allow the coupling efficiency to be optimized. Fibers with a connector on the end make this process much simpler: the connector is simply plugged into a pre-aligned fiberoptic collimator, which contains a lens that is either accurately positioned with respect to the fiber, or is adjustable. To achieve the best injection efficiency into single-mode fiber, the direction, position, size and divergence of the beam must all be optimized. With good beams, 70 to 90% coupling efficiency can be achieved.

With properly polished single-mode fibers, the emitted beam has an almost perfect Gaussian shape—even in the far field—if a good lens is used. The lens needs to be large enough to support the full numerical aperture of the fiber, and must not introduce aberrations in the beam. Aspheric lenses are typically used.

Fiber fuse

At high optical intensities, above 2 megawatts per square centimeter, when a fiber is subjected to a shock or is otherwise suddenly damaged, a fiber fuse can occur. The reflection from the damage vaporizes the fiber immediately before the break, and this new defect remains reflective so that the damage propagates back toward the transmitter at 1–3 meters per second (4–11 km/h, 2–8 mph).[57][58] The open fiber control system, which ensures laser eye safety in the event of a broken fiber, can also effectively halt propagation of the fiber fuse.[59] In situations, such as undersea cables, where high power levels might be used without the need for open fiber control, a "fiber fuse" protection device at the transmitter can break the circuit to keep damage to a minimum.

Example

Fiber connections can be used for various types of connections. For example, most high definition televisions offer a digital audio optical connection. This allows the streaming of audio over light, using the TOSLink protocol.

Power transmission

Optical fiber can be used to transmit power using a photovoltaic cell to convert the light into electricity.[60] While this method of power transmission is not as efficient as conventional ones, it is especially useful in situations where it is desirable not to have a metallic conductor as in the case of use near MRI machines, which produce strong magnetic fields.[61]

Preform

Cross-section of a fiber drawn from a D-shaped preform

A preform is a piece of glass used to draw an optical fiber. The preform may consist of several pieces of a glass with different refractive indices, to provide the core and cladding of the fiber. The shape of the preform may be circular, although for some applications such as double-clad fibers another form is preferred.[62] In fiber lasers based on double-clad fiber, an asymmetric shape improves the filling factor for laser pumping.

Because of the surface tension, the shape is smoothed during the drawing process, and the shape of the resulting fiber does not reproduce the sharp edges of the preform. Nevertheless, the careful polishing of the preform is important, any defects of the preform surface affect the optical and mechanical properties of the resulting fiber. In particular, the preform for the test-fiber shown in the figure was not polished well, and the cracks are seen with confocal optical microscope.

Apa itu Fiber Optik dan Bagaimana Cara Kerjanya?

Posted by Phen Efendi on 8:00 AM

Saat ini terutama di negara maju, infrastruktur komunikasi yang dibangun sebagian besar sudah menggunakan media fiber optik. Infrastruktur komunikasi sangatlah penting, maka dari itu fiber optik yang memang benar-benar andal banyak sekali digunakan. Meskipun tidak semurah kabel tembaga, namun media ini jauh lebih powerful daripada media kabel tembaga.

Sebenarnya Apa Fiber Optik Itu?Fiber optik secara harafiah memiliki arti serat optik atau bisa juga disebut serat kaca. Fiber optik memang berupa sebuah serat yang terbuat dari kaca, namun jangan Anda samakan dengan kaca yang biasa Anda lihat. Serat kaca ini merupakan serat yang dibuat secara khusus dengan proses yang cukup rumit yang kemudian dapat digunakan untuk melewati data yang ingin Anda kirim atau terima.

Jadi media fiber optik itu sendiri merupakan sebuah serat seukuran rambut manusia yang terbuat dari bahan kaca murni, yang kemudian dibuat bergulung-gulung panjangnya sehingga menjadi sebentuk gulungan kabel. Setelah terjadi bentuk seperti ini, maka jadilah media fiber optik yang biasa Anda gunakan sehari-hari.

Pada 1983Corning memperkenalkan Optical Fiber atau serat optik yaitu helai kaca yang dapat mengirimkan sinyal telekomunikasi dengan sempurna pada kecepatan cahaya. Saat ini, Corning merupakan satu-satunya produsen serat optik di Amerika Serikat.

Bagaimana Fiber Optik Ini Dapat Melewati Data Anda?Mungkin Anda sudah menangkap maksud dari fiber optik secara garis besar, yaitu media komunikasi data yang terbuat dari kaca. Pertanyaan selanjutnya adalah bagaimana sepotong kaca dapat memiliki kemampuan melewatkan data Anda? Apakah sepotong kaca dapat melewati pulsa-pulsa listrik? Atau dalam bentuk apa data Anda dibawa melalui sepotong kaca ini?

Jika berhubungan dengan alat-alat optik, maka alat-alat tersebut akan erat sekali hubungannya dengan cahaya dan sistem pencahayaan. Jika serat optik yang digunakan sebagai media, maka yang akan lalu-lalang di dalamnya tidak lain dan tidak bukan adalah cahaya.

Seberkas cahaya akan digunakan sebagai pembawa informasi yang ingin Anda kirimkan. Cahaya informasi tersebut kemudian ditembakkan ke dalam media fiber optik dari tempat asalnya. Kemudian cahaya akan merambat sepanjang media kaca tersebut hingga akhirnya cahaya tadi tiba di lokasi tujuannya. Ketika cahaya tiba di lokasi tujuan, maka pengiriman informasi dan data secara teori telah berhasil dikirimkan dengan baik. Dengan demikian, maka terjadilah proses komunikasi di mana kedua ujung media dapat mengirim dan menerima informasi yang ingin disampaikan.

Apa Saja Komponen Sistem Komunikasi Fiber Optik?Sebuah sistem komunikasi tentu tidak hanya didukung oleh satu dua komponen atau perangkat saja. Di dalamnya pasti terdapat banyak sekali paduan komponen yang saling bekerja sama satu dengan yang lainnya. Perpaduan dan kerja sama tersebut akan menghasilkan banyak sekali manfaat bagi berlangsungnya transfer informasi. Dengan demikian, jadilah sebuah sistem komunikasi.

Sistem komunikasi biasanya terdiri dari lima komponen utama, transmitter, receiver, medianya itu sendiri, bentuk informasi yang dibawa melalui media, dan penguat sinyal. Baik di media kabel, media wireless, media optik semuanya menerapkan sistem yang sama. Misalnya di media wireless, yang menangani pekerjaan transmitter dan receiver adalah perangkat Access Point atau perangkat wireless client biasa. Yang menjadi medianya adalah udara bebas yang dapat membawa informasi sinyal-sinyal frekuensi radio.

Di dalamnya terdapat proses modulasi agar sinyal-sinyal informasi yang sebenarnya dapat dimungkinkan dibawa melalui udara. Dan setibanya di lokasi tujuan, proses demodulasi akan terjadi untuk membuka informasi aslinya kembali. Jika berjalan dalam jarak yang jauh maka penguat sinyal pasti dibutuhkan.

Cahaya pembawa informasiInilah sumber asal-muasal terjadinya sistem komunikasi fiber optik. Cahaya, komponen alam yang memiliki banyak kelebihan ini dimanfaatkan dengan begitu pintarnya untuk membawa data dengan kecepatan dan bandwidth yang sangat tinggi. Semua kelebihan dari cahaya seakanakan dimanfaatkan di sini. Cahaya yang berkecepatan tinggi, cahaya yang kebal terhadap gangguan-angguan, cahaya yang mampu berjalan jauh, semuanya akan Anda rasakan dengan menggunakan media fiber optik ini.

-Optical TransmitterOptical transmitter merupakan sebuah komponen yang bertugas untuk mengirimkan sinyal-sinyal cahaya ke dalam media pembawanya. Di dalam komponen ini terjadi proses mengubah sinyal-sinyal elektronik analog maupun digital menjadi sebuah bentuk sinyal-sinyal cahaya. Sinyal inilah yang kemudian bertugas sebagai sinyal korespondensi untuk data Anda. Optical transmitter secara fisik sangat dekat dengan media fiber optic pada penggunaannya. Dan bahkan optical transmitter dilengkapi dengan sebuah lensa yang akan memfokuskan cahaya ke dalam

media fiber optik tersebut. Sumber cahaya dari komponen ini bisa bermacam-macam.

Sumber cahaya yang biasanya digunakan adalah Light Emitting Dioda (LED) atau solid state laser dioda. Sumber cahaya yang menggunakan LED lebih sedikit mengonsumsi daya daripada laser. Namun sebagai konsekuensinya, sinar yang dipancarkan oleh LED tidak dapat menempuh jarak sejauh laser.

- Fiber optic cableKomponen inilah yang merupakan pemeran utama dalam sistem ini. Kabel fiber optik biasanya terdiri dari satu atau lebih serat fiber yang akan bertugas untuk memandu cahaya-cahaya tadi dari lokasi asalnya hingga sampai ke tujuan. Kabel fiber optic secara konstruksi hampir menyerupai kabel listrik, hanya saja ada sedikit tambahan proteksi untuk melindungi transmisi cahaya. Biasanya kabel fiber optic juga bisa disambung, namun dengan proses yang sangat rumit. Proses penyambungan kabel ini sering disebutdengan istilah splicing.

- Optical receiverOptical receiver memiliki tugas untuk menangkap semua cahaya yang dikirimkan oleh optical transmitter. Setelah cahaya ditangkap dari media fiber optic, maka sinyal ini akan didecode menjadi sinyal-sinyal digital yang tidak lain adalah informasi yang dikirimkan. Setelah di-decode, sinyal listrik digital tadi dikirimkan ke sistem pemrosesnya seperti misalnya ke televisi, ke perangkat komputer, ke telepon, dan banyak lagi perangkat digital lainnya. Biasanya optical receiver ini adalah berupa sensor cahaya seperti photocell atau photodiode yang sangat peka dan sensitif terhadap perubahan cahaya.

- Optical regeneratorOptical regenerator atau dalam bahasa Indonesianya penguat sinyal cahaya, sebenarnya merupakan komponen yang tidak perlu ada ketika Anda menggunakan media fiber optikdalam jarak dekat saja. Sinyal cahaya yang Anda kirimkan baru akan mengalami degradasi dalam jarak kurang lebih 1 km. Maka dari itu, jika Anda memang bermain dalam jarak jauh, komponen ini menjadi komponen utama juga. Biasanya optical generator disambungkan di tengah-tengah media fiber optik untuk lebih menguatkan sinyal-sinyal yang lemah.

Optical generator terdiri dari serat optic yang dilapisi dengan bahan khusus yang dapat menguatkan cahaya laser. Ketika sinyal yang lemah datang menghampiri bagian yang dilapisi khusus tersebut, energi dari laser lemah tersebut akan membuat molekul dari bahan tadi berubah menjadi sinar-sinar juga. Molekul tambahan tadi kemudian akan memancarkan sinar-sinar yang baru, yang lebih kuat dengan karakteristik yang hampir sama dengan sinar lemah yang sebelumnya datang. Secara garis besar, regenerator ini merupakan penguat dari sinyal yang diumpankan ke dalamnya.

Apa Keuntungan Fiber Optik Dibanding Media Lain?Media fiber optik memang telah lama ada dalam dunia komunikasi. Aplikasinya pun sudah cukup banyak meskipun belum seberkembang dan seluas kabel UTP atau kabel tembaga. Mengapa demikian? Karena media ini cukup mahal untuk dimiliki. Tidak semua orang mampu menggunakan media ini karena harganya yang tidak murah. Namun di balik semua itu,

sebenarnya media fiber optik memiliki segudang kelebihan dibanding media lain. Kelebihan tersebut bahkan bisa membuat tonggak sejarah baru dalam kehidupan manusia. Media ini tidaklah menjadi mahal jika Anda bisa memanfaatkan semua kelebihannya. Berikut ini adalah kelebihan-kelebihan media fiber optik dibandingkan dengan media lain:

- Lebih ekonomis untuk komunikasi jarak jauhUntuk keperluan media komunikasi dengan jarak yang sangat jauh, dengan kecepatan yang sangat tinggi dan dengan bandwidth yang cukup lebar, maka fiber optik dapat dikategorikan sebagai media yang murah dibandingkan dengan media kabel tembaga atau bahkan wireless. Memang biaya kepemilikannya jauh lebih mahal pada saat kali pertama, namun semua itu akan terbayar dengan kenyamanan menggunakannya, reliabilitasnya, kecepatannya, kapasitasnya, jarak tempuhnya, dan banyak lagi kelebihan lain yang bisa Anda rasakan.

Media kabel tembaga memiliki keterbatasan jarak yang cukup signifikan dibandingkan dengan media fiber optic. Maka dari itu, jika Anda bermaksud membangun jaringan komunikasi yang berskala metropolitan dan bahkan berskala internasional, media fiber optik menjadi sebuah opsi yang sangat murah, dibandingkan dengan media tembaga.

- Lebih kecil ukurannyaDari namanya saja, fiber optik atau serat optik, mungkin Anda sudah bisa menduga kalau media fiber optik ini adalah media yang sangat kecil. Hanya berupa serat yang terbuat dari bahan optik atau kaca. Ternyata memang benar dugaan Anda. Dalam wujud aslinya media yang mampu membawa informasi dengan kapasitas “tak terhingga” secara teori ini tidak jauh lebih besar dari sehelai rambut. Jika Anda pernah memancing, mungkin Anda tahu ciri dari benang pancing, yaitu bening dan tipis. Seperti itulah wujud serat optik yang hebat itu.

Banyak sekali keuntungan yang bisa didapat dari wujudnya yang kecil ini. Dengan penampangnya yang kecil, maka ukuran fisik dari media ini secara keseluruhan juga tidak terlalu besar. Jika dibundel, maka dalam ukuran bundel yang tidak begitu besar, Anda bisa mendapatkan cukup banyak helaian serat optik di dalamnya. Tentu keuntungan ini akan sangat berguna bagi Anda karena tidak perlu repot-repot menyediakan jalur bentangan kabel yang besar, Anda juga tidak perlu menarik berkali-kali utasan-utasan kabel untuk berbagai keperluan karena didalam satu kabel saja sudah tersedia banyak sekali media pembawa data. Berbagai keperluan transmisi seperti misalnya sinyal-sinyal TV dan teleponya dapat sekaligus dibawa juga.

Selain itu, dengan ukuran yang kecil Anda bisa membuat pembungkusnya menjadi lebih tebal, sehingga lebih tahan terhadap gangguan dari luar. Dengan ukurannya yang kecil pula Anda tidak akan kesulitan untuk mengaturnya ketika digunakan. Semua itu mungkin tidak bisa Anda dapatkan di media manapun kecuali menggunakan media fiber optic.

- Penurunan kualitas sinyal lebih sedikitJika menggunakan media kabel tembaga, maka Anda akan mengenal lebih banyak apa yang disebut dengan degradasi sinyal transmisi. Menurunnya kualitas sinyal-sinyal yang ditransmisikan akan mengganggu kelancaran proses komunikasi data. Hal ini akan sering ditemui jika Anda menggunakan media kabel tembaga untuk keperluan transmisi data baik jarak jauh maupun jarak dekat. Sinyal-sinyal yang dibawa melalui jalur ini tentu tidak pernah dapat

dipastikan keutuhannya. Pengirim tidak akan pernah tahu apa yang terjadi di tengah perjalanannya. Yang pasti banyak sekali faktor pengganggu yang dapat menyebabkan kualitas sinyal menurun.

Apakah jalur komunikasi melewati jalur listrik tegangan tinggi, atau melalui kabel yang kurang baik instalasinya, atau melalui terminasi-terminasi yang lembap, atau melalui perangkat-perangkat penguat yang tidak baik kelistrikannya, semua itu bisa menjadi penyebab terganggunya sinyal data Anda.

Di dalam sistem komunikasi menggunakan fiber optik, sinyal informasi yang lalu-lalang di dalamnya adalah berwujud cahaya. Mengapa cahaya? Karena media ini relatif lebih kebal terhadap gangguan dari luar. Tidak banyak faktor yang dapat menimbuklan interferensi terhadap sinyal cahaya tersebut. Cahaya tidak akan terganggu oleh listrik bertegangan tinggi, tidak akan terganggu oleh suhu udara baik panas maupun dingin, danjuga tidak terganggu oleh frekuensi radio di sekitarnya.

Dengan kondisi seperti ini, penurunan kualitas sinyal cahaya relatif lebih kecil dan sedikit dibandingkan dengan media komunikasi lainnya. Keuntungan yang didapat dari kelebihan ini adalah data yang dilewatkan di dalamnya lebih terjamin keutuhannya, suara yang dibawa di dalamnya untuk komunikasi telepon lebih bersih, sinyal-sinyal TV yang dilewatkan di dalamnya akan lebih jernih sampai di penerimanya.

- Daya listrik kecilUntuk membawa informasi dalam bentuk sinyal cahaya, daya listrik yang dibutuhkan relatif tidak terlalu besar. Sinyal cahaya yang relatif lebih kebal terhadap gangguan dari luar tidak perlu ditransmisikan dengan daya listrik yang tinggi seperti yang terjadi pada media komunikasi kabel tembaga. Hanya butuh daya yang rendah saja, maka sinyal informasi bisa tiba di tujuan dengan selamat. Bahkan daya listrik tersebut sebenarnya tidak pernah melewati media serat optik tersebut, karena yang membawa informasi tersebut tidak membutuhkan bantuan pulsa-pulsa listrik. Dengan demikian, media ini akan menghemat banyak sekali daya listrik yang harus Anda bayar.

- Sinyal digitalKarena tidak ada sinyal listrik yang digunakan untuk membawa data, media fiber optik sangat cocok digunakan dalam sistem digital seperti misalnya komputer. Mengapa demikian? Karena komputerisasi beserta perangkat-perangkatnya banyak mengandalkan logika-logika digital. Media cahaya yang membawa informasipun bukanlah sebuah sinyalanalog yang harus melewati proses perubahan sinyal digital menjadi analog dan sebaliknya (ADC/DAC), melainkan adalah sinyal-sinyal digital yang terdiri dari informasi logika 0 dan 1.

Dengan demikian, informasi yang dibawanya tidak perlu melewati proses ADC/DAC lagi. Keuntungan dari fitur ini adalah data yang dikirimkan tidak akan banyak mengalami penurunan kualitas dan tidak banyak kesalahan yang terjadi akibat konversi ini.

- Tidak mudah termakan usiaMedia fiber optik tidak digunakan untuk melewatkan sinyal-sinyal listrik. Bisa dipastikan

didalam jalur komunikasi ini Anda tidak akan tersengat listrik sekecil apapun. Dengan demikian, media ini tidak akan mengalami kepanasan dan penipisan akibat tegangan listrik yang lewat di dalamnya. Ini menandakan media fiber optik akan jauh lebih berumur panjang dibandingkan dengan kabel tembaga biasa.

Seperti dijelaskan di atas, fiber optik terbuat dari serat kaca murni. Perlu Anda ketahui, bahan seperti kaca tidak akan mudah mengalami korosi seperti halnya tembaga. Jika bahan seperti tembaga bisa mengalami korosi jika ditempatkan pada daerah yang bersifat korosif, tidak demikian dengan fiber optik. Anda bebas meletakkannya di mana saja tanpa takut menjadi cepat rusak. Media fiber optik bisa ditanam di tanah jenis apapun atau digantung di daerah manapun dibutuhkan tanpa harus cemas. Dengan demikian, dapat disimpulkan media fiber optik jauh lebih lama usianya dibandingkan dengan media tembaga, jika tidak terjadi hal-hal di luar prediksi.

- Ringan dan fleksibelUkurannya yang sangat kecil, hampir seperti seutas rambut, membuat media komunikasi ini merupakan media fisik yang paling ringan, dibandingkan dengan kabel tembaga dan media lainnya. Dengan kelebihan seperti ini, aplikasi media fiber optik akan jauh lebih banyak dan lebih terbuka bebas dibandingkan dengan media kabel tembaga. Media ini dapat dibentang di tempat-tempat yang lebih tersembunyi, di tempat-tempat yang sulit dijangkau, dan banyak lagi.

Selain itu, media ini juga sangat fleksibel. Jika Anda pernah tahu bentuk dan karakteristik dari seutas benang pancing yang bening, seperti itulah fiber optik. Anda bebas melekuk-lekukkannya, melilit-lilitkannya tanpa takut patah, asalkan tekukan tidak terlalu tajam sudutnya. Dengan bentuk yang fleksibel dan ringan seperti ini, media fiber optik akan menciptakan aplikasi-aplikasi baru yang sebelumnya tidak pernah terpikirkan oleh manusia.

Contoh aplikasi fiber optik yang paling umum saat ini adalah fiber optik digunakan sebagai kamera digital sederhana untuk menangkap gambar dari dalam tubuh manusia. Aplikasi di bidang medis ini menjadi tonggak sejarah baru bagi dunia pengobatan dan kesehatan karena sebelumnya semua pekerjaan “melihat-lihat” tersebut sangat sulit dilakukan tanpa operasi. Aplikasi fiber optik yang lain misalnya melakukan pemantauan dalam system mekanis roket, pesawat terbang, kereta api supercepat, dan banyak lagi. Kerusakan yang terjadi di dalam perangkat-perangkat tersebut tidak akan mudah ditemukan jika tidak ada alat bantu seperti fiber optik. Dengan keuntungan ini, fiber optik menjadi sangat populer hingga sekarang.

- Komunikasi lebih amanMedia fiber optik merupakan media yang sangat ideal jika Anda menginginkan media yang sangat aman. Mengapa demikian? Hal ini dikarenakan informasi yang lewat di dalam media fiber optik tidak mudah untuk disadap atau dikacaukan dari luar. Sinyal informasi yang berupa cahaya tidak akan mudah untuk ditransfer ke jalur lain untuk disadap. Sinyal cahaya pun tidak akan mudah dikacaukan dengan menggunakan frekuensi pengacau atau medan elektromagnetik. Maka dari itu, media ini cukup aman untuk Anda gunakan. Meskipun cukup aman, media ini tidak sulit untuk dimonitor. Jadi sangat ideal, bukan?

Jalan Tol untuk Data AndaInformasi dibawa dengan seberkas cahaya. Mendengarnya saja rasanya sudah cukup canggih

untuk kita. Tapi sebenarnya, teknologi ini memang sangat hebat dan juga bermanfaat sekali. Data Anda tidak lagi dibawa dengan menggunakan pulsa-pulsa listrik atau frekuensi radio, tetapi dengan media yang terbilang cukup reliabel yaitu cahaya. Cahaya relatif cukup kuat terhadap segala gangguan, baik gangguan medan elektromagnetik, gangguan cuaca, gangguan frekuensi radio, gangguan suhu, gangguan pulsa-pulsa listrik, dan banyak lagi. Selama medianya tidak terganggu secara fisik, makacahaya akan terus berjalan sampai ke tujuannya. Kecepatannya pun tidak perlu diragukan lagi karena secara teori, kecepatan media ini adalah TANPA BATAS.

Namun, yang masih menjadi kendala dalam penggunaan media fiber optik adalah tidak lain masalah biaya. Berapa budget yang harus Anda sediakan untuk membeli, instalasi, menggunakan, dan merawat media ini bukanlah persoalan sepele. Karena media ini cukup mahal baik kepemilikannya maupun perawatannya. Maka itu, media jenis ini hanya dipakai untuk tujuan dan kalangan tertentu saja yang memang benar-benar membutuhkan media komunikasi berskala besar.

Spesifikasi Sinar Laser Posted by Mahfud on 09:19 PM, 03-Jan-13  •  Comments (9)

Light Amplification by Stimulated Emission of Radiation atau biasa disingkat LASER adalah suatu

alat yang memancarkan gelombang elektromagnetik dalam bentuk cahaya yang dapat dilihat

ataupun tidak terlihat oleh mata. Biasanya pancaran sinar lase adalah tunggal.

Sumber cahaya umum, seperti bola lampu incandescent, memancarkan foton hampir ke seluruh

arah, biasanya melewati spektrum elektromagnetik dari panjang gelombang yang luas. Sifat koheren

sulit ditemui pada sumber cahaya atau incoherens; dimana terjadi beda fase yang tidak tetap antara

foton yang dipancarkan oleh sumber cahaya. Secara kontras, laser biasanya memancarkan foton

dalam cahaya yang sempit, ter polarisasi, sinar koheren mendekati monokromatik, terdiri dari

panjang gelombang tunggal atau satu warna. Beberapa jenis laser, seperti laser dye dan laser

vibronik benda-padat (vibronic solid-state lasers) dapat memproduksi cahaya lewat jangka lebar

gelombang; properti ini membuat mereka cocok untuk penciptaan detak singkat sangat pendek dari

cahaya, dalam jangka femtodetik (10 pangkat -15 detik). Banyak teori mekanika kuantum dan

termodinamika dapat digunakan kepada aksi laser.

Sekarang teknologi laser sudah sering kita jumpai dalam kehidupan seharihari, baik dalam dinia

industri, tata lampu panggung pertunjukan, maupun hingga mainan anak-anak.

Disisi lain, sinar laser juga dapat membahayakan kesehatan manusia terutama mata. Sinar yang dihasilkan laser memiliki radiasi tertentu yang dapat merusak retina mata dan dapat menyebabkan kebutaan sesaat atau permanen, sesuai dengan jangka waktu terpapar sinar laser tersebut serta intensitas daya yang dihasilkan laser tersebut. Hanya bebera mili watt saja sudah berbahaya bagi

mata. Berikut ini adalah beberapa spesifikasi sinar laser serta fungsinya:

1-5 mW: Laser Penunjuk5 mW: Perangkat CD-ROM5–10 mW: DVD Player Atau Perangkat DVD- ROM100 mW: Kecepatan Tinggi Pembakaran Citra CD-RW250 mW: Pemakai Pembakaran DVD-R 16x400 mW: Percetakan DVD Piringan Ganda 24x

Bagian-bagian sinar laser.

Contoh aplikasi sinar laser.