prg experim di_t 2013 11 19

Upload: ngyt77

Post on 03-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    1/175

    2012 v1

    DepartmentofCivilEngineeringand

    BuildingServices

    PolitehnicaUniversityofTimisoara

    ROMANIA

    Dr.ing.DEMETER IstvnDr.ing.NAGYGYRGYTams

    RCWall

    Panels

    Strengthened

    with

    FRPComposites

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    2/175

    2

    1. INTRODUCTION

    2. EXPERIMENTALPROGRAMME

    3. EXPERIMENTALELEMENT

    4. TESTSETUP

    5. LOADINGSTRATEGY

    6. INSTRUMENTATION7. DAMAGEASSESSMENTANDSTRENGTHENING

    8. EXPERIMENTALRESULTS

    9. CONCLUSIONS

    CONTENT

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    3/175

    3

    1999Kocaeli,Turkeyearthquake(EERI,EarthquakeSpectra)

    SIGNIFICANTEARTHQUAKESWORLD(last20years)

    Incompletelist

    1994Northridge,USA

    1995Kobe,Japan

    1999Kocaeli,Turkey

    2003Bam,Iran

    2008Wenchuan,China

    2009LAquila,

    Italy

    2010PortauPrince,Haiti

    2010Chile

    2011Christchurch,NZ

    2011Tohoku,Japan

    ROMANIA

    1940,1977,1986,1990

    INTRODUCTION Urbanhabitat

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    4/175

    4

    FLEXURALFAILURE

    Ductile,largehystereticloops,

    significantenergydissipation

    SHEARFAILURE

    Brittle,pinchedhystereticloops,

    reducedenergydissipation

    FAILUREMODECONTROLLED

    BY

    Shearspanratio

    Sheartoflexuralstrengthratio

    CAPACITYDESIGN

    RULE

    VR

    VE

    INTRODUCTION Urbanhabitat

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    5/175

    5

    PRECASTREINFORCEDCONCRETELARGEPANEL(PRCLP)BUILDINGS

    INTRODUCTION Urbanhabitat

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    6/175

    6

    0

    10

    20

    30

    40

    50

    3 4 5 6 7 8 9 10 11 12+

    Numberofbuildings

    Thousands

    Number of storeys

    REINFORCED CONCRETEFLAT BLOCKS

    57

    000+

    buildings

    40000+are5storyPRCLP

    3500+are9storyPRCLP

    4500+are11storyPRCLP

    Datafrom

    National Institute of Statistics

    Romania

    (NIS).

    2002.

    http://www.insse.ro.

    INTRODUCTION Urbanhabitat

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    7/175

    7DatafromNational Institute of StatisticsRomania(NIS).2002.http://www.insse.ro.

    Early

    period

    in

    the

    1960s

    Largescalefrom1970

    EraofP+4PRCLPbetween7090(36000+)

    Declinefrom1990

    INTRODUCTION Urbanhabitat

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    8/175

    8

    Nominal modular wall panel dimensions in the longitudinal

    direction

    0,00

    5,00

    10,00

    15,00

    20,00

    25,00

    30,00

    1,8 2,1 2,4 2,7 3 3,3 3,6 3,9 4,2 4,5

    Dimensions [m]

    Percentage[%]

    Structuralindicators:

    Wallarea(I1):6%

    Mass /wall

    area

    (I2):

    0.9

    MPa

    INTRODUCTION PRCLP building

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    9/175

    9

    INTRODUCTION Typicalplan1615/X1973

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    10/175

    10

    RCLargePanelBuildings Reinforcementarrangement

    INTRODUCTION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    11/175

    11

    RCLargePanelBuildings Reinforcementarrangement

    INTRODUCTION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    12/175

    12

    RCLargePanelBuildings Verticaljoint

    INTRODUCTION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    13/175

    13

    RCLargePanelBuildings Verticaljoint

    INTRODUCTION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    14/175

    14

    RCLargePanelBuildings Verticaljoint

    INTRODUCTION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    15/175

    15

    RCLargePanelBuildings Verticaljoint

    INTRODUCTION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    16/175

    16

    INTRODUCTION PRCLP building,typicalplan77081,1982

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    17/175

    17

    INTRODUCTION PRCLP building,typicalplan77081,1982

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    18/175

    18

    INTRODUCTION PRCLP building,typicalplan77081,1982

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    19/175

    19

    INTRODUCTION PRCLP building,typicalplan77081,1982

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    20/175

    20

    INTRODUCTION PRCLP building,typicalplan77081,1982

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    21/175

    21

    INTRODUCTION Cutoutopenings

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    22/175

    22

    INTRODUCTION Cutoutopenings

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    23/175

    23

    INTRODUCTION Cutoutopenings

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    24/175

    24

    INTRODUCTION Cutoutopenings

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    25/175

    25

    INVESTIGATE THE PROBLEM OF CUTOUT OPENINGS IN PRECAST

    REINFORCED CONCRETE WALL PANELS SUBJECTED TO SEISMIC LOADING

    CONDITIONS

    AND

    PROPOSE STRENGTHENING SOLUTIONS USING FIBER REINFORCED POLYMER

    COMPOSITES.

    literature survey

    available design guidelines

    theoretical analysis

    INTRODUCTION Objectives

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    26/175

    26

    1. INTRODUCTION

    2. EXPERIMENTALPROGRAMME

    3. EXPERIMENTALELEMENT

    4. TESTSETUP

    5. LOADINGSTRATEGY

    6. INSTRUMENTATION

    7. DAMAGEASSESSMENTANDSTRENGTHENING

    8. EXPERIMENTALRESULTS

    9. CONCLUSIONS

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    27/175

    27

    EXPERIMENTAL PROGRAMME Experimental method

    BASIC PRINCIPLE OF THE EXPERIMENTAL TESTING METHODS:

    REPRODUCE THEIN SITUCONDITIONS IN THELABORATORY.

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    28/175

    28

    EXPERIMENTAL PROGRAMME Experimental method

    BASIC PRINCIPLE OF THE EXPERIMENTAL TESTING METHODS:

    REPRODUCE, as much as possible, THEIN SITUCONDITIONS IN THE

    LABORATORY.

    CONSIDERING:

    AVAILABLE INFRASTRUCTURE AND TESTING FACILITIES.

    FINANCIAL AND HUMAN RESOURCES.

    DECISION:

    experimental specimens: INDIVIDUAL WALL PANELS.

    loading strategy: IN-PLANE, CYCLIC, QUASI-STATIC.

    test set-up: CAPABLE TO REPRODUCE THE BOUNDARY AND

    LOADING CONDITIONS.

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    29/175

    EXPERIMENTAL PROGRAMME

    10 t

    50 t

    20 t30 t

    40 t

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    30/175

    30

    EXPERIMENTAL PROGRAMME Database on experimental programs

    ADVANTAGES OF DATABASE

    -INCLUDES A LARGE NUMBER OF DATA-LINES

    -IDENTIFIES SIGNIFICANT PARAMETERS

    -FACILITATE COMPARISON-IT CAN BE SEARCHED AND/OR SORTED

    Data sources: ACI Structural Journal, EERI Earthquake Spectra, IAEE Earthquake Engineering & Structural Dynamics,

    EAEE Bulletin of Earthquake Engineering, ASCE Journal of Structural Engineering, World Conference on Earthquake

    Engineering series 1 to 14, PCA Research and Development Bulletin, European Conference on Earthquake Engineeringseries, Engineering Structures

    EXISTING RC WALL DATABASESHirosawa (1975)

    Wood (1990)

    Panagiotakos and Fardis (2001)Biskinis et al. (2004)

    Gulec and Whittaker (2009)

    REFERENCE LISTS AND CATALOGUESAbrams (1991)

    Farrar et al. (1993)

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    31/175

    31

    YEAR, TYPE AND REGION

    EXPERIMENTAL PROGRAMME Database on experimental programs

    Early laboratory tests in USA,

    Japan, Canada, New-Zealand

    Europe: earliest ref. 1984

    Construction: Civil or Nuclear

    Power Plant

    Romania: 7 programs- 4 UPT

    - 1 INCERC-TM

    - 1 UTCB

    - 1 INCERC-CL

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    32/175

    32

    WALL TYPES

    EXPERIMENTAL PROGRAMME Database on experimental programs

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    33/175

    33

    WALL SCALE AND THICKNESS

    EXPERIMENTAL PROGRAMME Database on experimental programs

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    34/175

    34

    ELEMENT CHARACTERISTICS

    EXPERIMENTAL PROGRAMME Database on experimental programs

    Programs that included precast wall panels: 16 (87 specimens)

    Programs that included wall with openings: 14 (122 specimens)

    Programs that included walls strengthened by CFRP: 16 (100 specimens)

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    35/175

    35

    EXPERIMENTAL PROGRAMS ON FRP STRENGTHENED WALLS

    EXPERIMENTAL PROGRAMME Database on experimental programs

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    36/175

    36

    EXPERIMENTAL STANDS - LOADING DEGREE

    EXPERIMENTAL PROGRAMME Database on experimental programs

    Number and location of the axial and lateral loads

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    37/175

    37

    BOUNDARY CONDITIONS

    EXPERIMENTAL PROGRAMME Database on experimental programs

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    38/175

    38

    BOUNDARY CONDITIONS FOR WALL ELEMENTS

    EXPERIMENTAL PROGRAMME Database on experimental programs

    - Prevails the number of cantilever tests

    - Increasing number of restrained rotation tests since 1990

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    39/175

    39

    EXPERIMENTAL PROGRAMME Wall panel geometric configuration

    OPENING TYPE:

    DOOR (E), WINDOW (L)

    AND DOOR-WINDOW (EL).

    OPENING SIZE:

    NARROW (1), MODERATE

    (2) AND WIDE (3).

    OPENING NATURE:

    INITIAL, ENLARGED AND

    CUT-OUT.

    WITHOUT OPENING, i.e.

    SOLID WALL (S).

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    40/175

    40

    EXPERIMENTAL PROGRAMME Opening configuration matrix

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    41/175

    41

    EXPERIMENTAL PROGRAMME Experimental elements and variables

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    42/175

    42

    EXPERIMENTAL PROGRAMME Lines of comparison

    Line 1Weakening effect of doorway cut-out

    REFERENCE: solid wall

    VARIABLE: cut-out width

    Lines 2 and 3Strengthening effect of CFRP-EBR

    REFERENCE: bare wall with cut-out

    door

    VARIABLE: strengthening condition

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    43/175

    43

    1. INTRODUCTION

    2. EXPERIMENTAL PROGRAMME

    3. EXPERIMENTAL ELEMENTS4. TEST SET-UP

    5. LOADING STRATEGY

    6. INSTRUMENTATION

    7. DAMAGE ASSESSMENT AND STRENGTHENING

    8. EXPERIMENTAL RESULTS

    9. CONCLUSIONS

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    44/175

    44

    EXPERIMENTAL ELEMENT Experimental specimens

    Concrete outlines- Web thickness: 100 mm

    - Shear keys and threshold

    to prevent sliding

    Opening ratio- E1 27% (P=0.48)

    - E3 64% (P=0.73)

    Opening position

    -Eccentric-Centric

    Reinforcement-Single curtain

    -Web steel ratio:0.42% (h)

    0.24%(v)

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    45/175

    45

    EXPERIMENTAL ELEMENT Characteristics

    Prototype: wall panel I 36-1;

    770-81, 1982

    Type: wall element

    (1-stry)

    Scale: 0.83 (1:1.2)

    Aspect ratio: 0.8

    Cross section type: flanged

    Components: web-panelboundary wings

    Concrete: precast

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    46/175

    46

    EXPERIMENTAL ELEMENT Experimental assembly

    1

    2

    2

    3

    3

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    47/175

    47

    EXPERIMENTAL ELEMENT Construction phases

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    48/175

    48

    EXPERIMENTAL ELEMENT Experimental specimens

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    49/175

    49

    EXPERIMENTAL ELEMENT Experimental specimens

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    50/175

    50

    EXPERIMENTAL ELEMENT Experimental assembly

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    51/175

    51

    1. INTRODUCTION

    2. EXPERIMENTAL PROGRAMME

    3. EXPERIMENTAL ELEMENT4. TEST SET-UP

    5. LOADING STRATEGY

    6. INSTRUMENTATION

    7. DAMAGE ASSESSMENT AND STRENGTHENING

    8. EXPERIMENTAL RESULTS

    9. CONCLUSIONS

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    52/175

    52

    TEST SET-UP

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    53/175

    53

    TEST SET-UP

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    54/175

    54

    TEST SET-UP

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    55/175

    55

    TEST SET-UP

    TEST SET UP E i l d

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    56/175

    56

    TEST SET-UP Experimental stand

    Set-up type: A

    Loading degree: 4 (2N+2V)

    Base and cap beams: heavily

    reinforced steel-concrete

    composite

    Base beam not fixed, only

    supported

    Specimen-to-base beam

    anchorage: lap-welding of 4 re-bars (ratio 0.17%)

    TEST SET UP

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    57/175

    57

    TEST SET-UP

    TEST SET UP

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    58/175

    58

    TEST SET-UP

    TEST SET UP Static scheme

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    59/175

    59

    TEST SET-UP Static scheme

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    60/175

    60

    1. INTRODUCTION

    2. EXPERIMENTAL PROGRAMME

    3. EXPERIMENTAL ELEMENT4. TEST SET-UP

    5. LOADING STRATEGY

    6. INSTRUMENTATION

    7. DAMAGE ASSESSMENT AND STRENGTHENING

    8. EXPERIMENTAL RESULTS

    9. CONCLUSIONS

    LOADING STRATEGY

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    61/175

    61

    LOADING STRATEGY

    QUASI-STATIC PSEUDO-DYNAMIC DYNAMIC

    LOADING AXIAL LATERAL

    DIRECTIONIN-PLANE

    VERTICAL

    IN-PLANE

    HORIZONTAL

    CHARACTERISTICS PSEUDO-CONSTANT REVERSED CYCLIC

    The experimental elements will be subjected to in-plane reversed cyclic

    lateral (horizontal) and pseudo-constant axial (vertical) forces, simulating

    the seismic loading conditions at a quasi-static rate.

    LOADING STRATEGY Lateral loading

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    62/175

    62

    LOADING STRATEGY Lateral loading

    Principal characteristics:

    - quasi-static

    - in-plane

    - reversed cyclic

    Control: drift ratio

    Drift ratio increment:

    constant, 0.1%

    Number of cycles on a level: 2

    Failure criterion:

    20% load carrying

    capacity loss

    LOADING STRATEGY Axial loading

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    63/175

    63

    O NG S G xial loading

    0

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 10 20 30 40 50 60 70 80 90 100

    Appliedcompr

    essive

    stress

    0[N/mm

    2]

    Compressive strength of concrete fck [N/mm2]

    Axial load level

    Oesterle et al. (1984)

    Lefas et al. (1990)

    Salonikios et al. (1999)

    Iso et al. (2000)

    Palermo and Vecchio (2002)

    Kitano et al . (2004)

    Nagy-Gyrgy et al. (2005)Belmouden and Lestuzzi (2006)

    Demeter et al. (2008)

    1

    0.1

    0.05

    LOADING STRATEGY Axial loading

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    64/175

    64

    Principal characteristics: two-

    component featuring a constant

    level and an alternating part

    Constant axial load level

    Normalised axial load: 6%

    Reference strength:fck,cyl of theweb

    Reference cross section: solid

    wall

    g

    LOADING STRATEGY Axial loading

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    65/175

    65

    g

    Axial loading

    Alternating component

    Control: displacement (uplift)of the cap beams loaded end

    Rate: 100 kN/mm (based

    primarily on test-setup

    limitations)

    Note that the base beam is not

    fixed to the laboratory floor

    LOADING STRATEGY Boundary conditions

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    66/175

    66

    Outrigger canoesource http://www.ballinaoutriggers.com.au

    Outrigger effect

    Restrained rotation by

    additional eccentric axial

    loading

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    67/175

    67

    1. INTRODUCTION

    2. EXPERIMENTAL PROGRAMME

    3. EXPERIMENTAL ELEMENT4. TEST SET-UP

    5. LOADING STRATEGY

    6. INSTRUMENTATION

    7. DAMAGE ASSESSMENT AND STRENGTHENING

    8. EXPERIMENTAL RESULTS

    9. CONCLUSIONS

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    68/175

    68

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    69/175

    69

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    70/175

    70

    Displacement

    10+ transducers

    Arrangement:

    horizontal, vertical,diagonal

    Support: external,

    internal

    Strain gauges

    16 gaugesSteel bars and CFRP

    Load

    3 pressure transducers

    on the hydraulic lines

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    71/175

    71

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    72/175

    72

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    73/175

    73

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    74/175

    74

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    75/175

    75

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    76/175

    76

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    77/175

    77

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    78/175

    78

    INSTRUMENTATION

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    79/175

    79

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    80/175

    80

    1. INTRODUCTION

    2. EXPERIMENTAL PROGRAMME

    3. EXPERIMENTAL ELEMENT

    4. TEST SET-UP

    5. LOADING STRATEGY

    6. INSTRUMENTATION

    7. DAMAGE ASSESSMENT AND STRENGTHENING

    8. EXPERIMENTAL RESULTS

    9. CONCLUSIONS

    DAMAGE ASSESSMENT Crack pattern

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    81/175

    81

    DAMAGE ASSESSMENT Crack pattern

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    82/175

    82

    DAMAGE ASSESSMENT Crack pattern

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    83/175

    83

    DAMAGE ASSESSMENT Crack pattern

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    84/175

    84

    DAMAGE ASSESSMENT Crack pattern

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    85/175

    85

    DAMAGE ASSESSMENT Crack pattern

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    86/175

    86

    DAMAGE ASSESSMENT

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    87/175

    87

    DAMAGE ASSESSMENT

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    88/175

    88

    DAMAGE ASSESSMENT

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    89/175

    89

    REPAIR

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    90/175

    90

    REPAIR

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    91/175

    91

    STRENGTHENING

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    92/175

    92

    STRENGTHENING

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    93/175

    93

    STRENGTHENING

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    94/175

    94

    CFRP-EBR

    CF-strips of 50/100 mm width

    Average CFRP usage (4RT):

    CF 0.85

    Resin 1.2 kg/sqm

    Arrangement: FL, SH, CNF

    Note inclined diagonal strips atthe upper corners

    Improvements: end anchorage of

    SH-strips

    STRENGTHENING Details

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    95/175

    95

    Pier-beam connection

    Substrate preparation

    Flexural strips

    Through-wall anchorages

    (CFRP tows)

    Shear strips

    Confinement strips

    STRENGTHENING Details

    B h

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    96/175

    96

    Base anchorage

    Solution 1

    Bolted steel angles

    Solution 2

    CFRP tows

    STRENGTHENING Details

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    97/175

    97

    STRENGTHENING Details

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    98/175

    98

    STRENGTHENING Details

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    99/175

    99

    STRENGTHENING Material properties

    Concrete samples

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    100/175

    100

    Concrete samples

    Three 150 mm cubes from

    each concrete batch (cylinder

    and prism samples only fromone batch)

    Reference strength

    Web: 17.5 MPa

    Wing: 39 MPa

    STRENGTHENING Material properties

    Steel reinforcement

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    101/175

    101

    OB PC STPB

    Steel reinforcement

    OB-type reinforcement

    Measured yield strength:

    410 MPa

    PC-type reinforcement

    Measured yield strength:

    450 MPa

    STPB-type wires

    Measured yield strength:

    600 MPa

    STRENGTHENING Material properties

    CFRP-EBR

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    102/175

    102

    S1 S2

    CFRP-EBR

    reinforcement

    S1-type CF sheet

    Unidirectional

    Thickness: 0.122 mm

    S2-type CF sheet

    Unidirectional

    Thickness: 0.337 mm

    Impregnation resin

    Tensile strength:

    3045 MPa

    Carbon Fibre (CF) S1 CF-sheet S2 CF-sheet

    Tensile strength

    (MPa)4100 3900

    Tensile elongation atbreak (%) 1.5 1.5

    STRENGTHENING Material properties

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    103/175

    103

    CFRP-EBR reinforcement

    Qualitative analysis

    DAMAGE ASSESSMENT

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    104/175

    DAMAGE ASSESSMENT

    Quantitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    105/175

    Crack correlation with the loads

    DAMAGE ASSESSMENT

    Quantitative analysis

    Crack correlation ith the strains in

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    106/175

    Crack correlation with the strains in

    reinforcements

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    107/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    108/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    109/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    110/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    111/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    112/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    113/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    114/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    115/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    116/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    117/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    118/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    119/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    120/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    121/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    122/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    123/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    124/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    125/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    126/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    127/175

    DAMAGE ASSESSMENT

    Qualitative analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    128/175

    1. INTRODUCTION

    2 EXPERIMENTAL PROGRAMME

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    129/175

    129

    2. EXPERIMENTAL PROGRAMME

    3. EXPERIMENTAL ELEMENT

    4. TEST SET-UP

    5. LOADING STRATEGY

    6. INSTRUMENTATION

    7. DAMAGE ASSESSMENT AND STRENGTHENING

    8. EXPERIMENTAL RESULTS

    9. CONCLUSIONS

    EXPERIMENTAL RESULTS Data processing

    DATA FILES

    ERROR/MISTAKE ANALYSIS

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    130/175

    130

    PRIMARY DIAGRAMS

    ENVELOPE CURVES INTEGRATED/DERIVED DIAGRAMS

    EXPERIMENTAL RESULTS Data files

    INPUT CHANALS: 1829 (D = 10, V/N = 3, =16)

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    131/175

    131

    CALCULATION CHANALS : (1829)+

    DATA LINES: 600030000 (0.21 LINES/SEC, ~8 HOURS/TEST)TOTAL DATA/TEST: 18000 (LINES) X 47 (COLUMS) = 846000

    TOTAL DATA: 7 (TESTS) X 846000 6000000

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    132/175

    EXPERIMENTAL RESULTS Primary diagrams

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    133/175

    133

    EXPERIMENTAL RESULTS Primary diagrams

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    134/175

    134

    EXPERIMENTAL RESULTS Primary diagrams

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    135/175

    135

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    136/175

    EXPERIMENTAL RESULTS Primary diagrams

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    137/175

    137

    EXPERIMENTAL RESULTS Primary diagrams

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    138/175

    138

    EXPERIMENTAL RESULTS Primary diagrams

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    139/175

    139

    EXPERIMENTAL RESULTS Comparison of the diagrams

    Comparison line

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    140/175

    140

    Line 1: Weakening effect of

    doorway cut-out

    Line 2: Strengthening effect

    of CFRP-EBR (a)

    Line 3: Strengthening effectof CFRP-EBR (b)

    EXPERIMENTAL RESULTS Envelope curves

    DRAWING PROCESS FILTERING TARGET DRIFT LINES (CICLE 1 AND CICLE 2)

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    141/175

    141

    ( )

    CALCULATION (INTERPRETATION) OF N / D / AT THE TARGET DRIFT

    CALCULATION AVERAGES OF C1/2 AND M FOR V/N - DRIFT

    DATA ENVELOPE: 7(TAB) x 40(LINE) x 30(COL) = 8 400

    ENVELOPE AVERAGE (C12/M): 7(TAB) X 22/11(LINE) x 5(COL) = 770/385

    EXPERIMENTAL RESULTS Envelope curves

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    142/175

    142

    EXPERIMENTAL RESULTS Envelope curves

    Load envelopes

    Cyclic: C1, C2, C (mean)

    Monotonic: M calculated

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    143/175

    143

    Monotonic: M, calculated

    only for lateral load

    Displacement envelopesCyclic: C1, C2

    Strain envelopes

    Cyclic: C1, C2

    EXPERIMENTAL RESULTS Envelope curves

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    144/175

    144

    EXPERIMENTAL RESULTS Envelope curves

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    145/175

    145

    EXPERIMENTAL RESULTS Envelope curves

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    146/175

    146

    EXPERIMENTAL RESULTS Equivalent envelope curves -Monotone

    Three curve-clustersaccording to the cut-out

    condition

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    147/175

    147

    Strength

    Stiffness

    Drift at peak and failure

    EXPERIMENTAL RESULTS Envelope curves

    Backbone

    Tri-linear

    Point 1 (V1, R1): cracking

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    148/175

    148

    Point 1 (V1, R1): cracking

    Point 2 (V2, R2): peak load

    Point 3 (V3, R3): failure

    Elasto-plasticBi-linearPoint 1: yield

    Point 2: ultimate

    EXPERIMENTAL RESULTS Strength Analysis

    Effect of cut-out condition

    SHEAR STRENGTH COMPARISON

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    149/175

    149

    Effect of strengtheningcondition

    Effect of concrete strength

    EXPERIMENTAL RESULTS Strength Analysis

    Effect of cut-out condition

    LOAD SUSTAINABILITY (OVERSTRENGTH) COMPARISON

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    150/175

    150

    Effect of strengtheningcondition

    Effect of concrete strength

    EXPERIMENTAL RESULTS Displacement and Strain Analysis

    Effect of cut-out condition

    DRIFT RATIO COMPARISON

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    151/175

    151

    Effect of strengtheningcondition

    Effect of concrete strength

    Shear characteristichorizontal lengthening at the

    mid-height of the walls.

    Thi t f b h i i

    DISPLACEMENT ENVELOPE COMPARISON

    EXPERIMENTAL RESULTS Displacement and Strain Analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    152/175

    152

    This type of behaviour is

    exhibited intensively by thesolid wall.

    Cut-out condition reduces this

    effect.

    DISPLACEMENT DUCTILITY COMPARISON

    Effect of cut-out condition

    EXPERIMENTAL RESULTS Displacement and Strain Analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    153/175

    153

    Effect of strengtheningcondition

    Effect of concrete strength

    EXPERIMENTAL RESULTS Stiffness Analysis

    Monotonic envelope stiffness

    secant; tangent

    STIFFNESS DEFINITIONS

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    154/175

    154

    Backbone stiffnesssecant; tangent

    Average loading curve

    stiffness

    secant; tangent

    EXPERIMENTAL RESULTS Stiffness Analysis

    STIFFNESS DEGRADATION

    Comparison of the initial

    stiffness

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    155/175

    155

    Three groups of initialstiffness in accordance to

    the cut-out condition

    Influence of concrete

    strength (spec No. 4)

    EXPERIMENTAL RESULTS Stiffness Analysis

    STIFFNESS COMPARISON

    Effect of cut-out condition

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    156/175

    156

    Effect of strengthening

    condition

    EXPERIMENTAL RESULTS Energy Dissipation Analysis

    DEFINITION OF ENERGY ABSORPTION

    The area of the hysteresisloops (symbol: A or W,

    unit: kNm)

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    157/175

    157

    Characteristic loadingpoints

    Positive and negative half-

    cycle dissipation

    Cumulative drift

    EXPERIMENTAL RESULTS Energy Dissipation Analysis

    CUMULATIVE DISSIPATION CURVE 1

    Continuous cumulative

    sum of the areas (with

    sign) below the load-drift

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    158/175

    158

    curve

    Characteristic points

    Cyclic energy dissipation

    Half-cycle energy

    dissipation

    Continuouscumulative

    sumoftheareas(with

    sign)belowtheloaddrift

    EXPERIMENTAL RESULTS Energy Dissipation Analysis

    CUMULATIVE DISSIPATION CURVE 1

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    159/175

    curvevs

    cumulative

    drift

    ratio

    Characteristicpoints

    Cyclicenergydissipation

    Halfcycleenergy

    dissipation

    EXPERIMENTAL RESULTS Energy Dissipation Analysis

    ENERGY DISSIPATION ENVELOPE

    Four envelopes

    Point 7 envelope was

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    160/175

    160

    considered

    EXPERIMENTAL RESULTS Energy Dissipation Analysis

    ENERGY DISSIPATION ENVELOPE

    Two envelopes: upper and

    lower bound

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    161/175

    161

    Upper bound envelopewas considered

    Effect of cut-out condition

    Energy Dissipation Analysis

    EXPERIMENTAL RESULTS Energy Dissipation Analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    162/175

    Effect of strengthening

    condition

    162

    Effect of cut-out condition

    Effect of strengthening

    ENERGY DISSIPATION ENVELOPES

    EXPERIMENTAL RESULTS Energy Dissipation Analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    163/175

    Effect of strengthening

    condition

    Energy dissipation rate

    the ratio of the cumulative

    energy dissipated and thecumulative displacement

    (CED/CD, results in force

    unit)

    163

    Definition

    ED/EDmax

    DISSIPATION RATIO

    EXPERIMENTAL RESULTS Energy Dissipation Analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    164/175

    ED hysteretic energy

    EDmax maximum energy

    dissipation (area of the

    peak to peak rectangle)

    164

    Approximate value of 10%

    ULTIMATE DISSIPATION RATIO

    EXPERIMENTAL RESULTS Energy Dissipation Analysis

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    165/175

    Seismic Retrofit of Precast RC Walls by CFRP Composites 64

    Seems to characterizes theboundary conditions

    (restrained rotation by

    variable axial loading)

    1. INTRODUCTION

    2. EXPERIMENTAL PROGRAMME

    3. EXPERIMENTAL ELEMENT

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    166/175

    166

    4. TEST SET-UP5. LOADING STRATEGY

    6. INSTRUMENTATION

    7. DAMAGE ASSESSMENT AND STRENGTHENING

    8. EXPERIMENTAL RESULTS

    9. CONCLUSIONS

    LOAD TRANSFER MECHANISM

    Shear transferred along

    diagonal load paths:

    DIAGONAL

    SHEAR MECHANISMS

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    167/175

    COMPRESSIONand/or

    DIAGONAL TENSION

    Proportion between shears

    carried by the two load

    paths:

    stiffness

    loading conditions

    boundary conditions

    167

    LOAD TRANSFER MECHANISM

    Diagonal tension

    VDT=nAss

    SHEAR MECHANISMS

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    168/175

    Predicted/Measured ratio

    at R=0.4%

    VP/M=300/940=0.32

    at ultimateVP/M=446/1210=0.37

    Excessive underestimation

    168

    LOAD TRANSFER MECHANISM

    SHEAR MECHANISMS

    Diagonalcompression

    VDC=FDCsin

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    169/175

    Predicted/Measured ratio

    at R=0.4%

    VP/M=652/940=0.7

    at ultimate

    VP/M=990/1210=0.82

    Slight underestimation

    169

    ENGINEERING PRACTICE

    EFFECT OF DOORWAY CUT-OUT

    Practicing engineers can use the

    experimental results to evaluate the

    performance ratios in terms of

    strength, stiffness and energy

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    170/175

    dissipation rate.

    (R)weak=(R)soundp

    wherep=1-

    =lo/lw for dissipation rate

    =(Ao/Aw)0.5 for V; K.

    170

    ENGINEERING PRACTICE

    EFFECT OF CFRP-EBR RETROFIT

    CFRP-EBR strengthening

    improves the seismic

    performance

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    171/175

    The most significant

    improvement is in terms of

    energy dissipation

    171

    ENGINEERING PRACTICE

    CFRP-EBR RETROFIT LIMITATION

    CFRP-strips subjected to

    alternating tension-

    compression reversals

    ll l t fib di ti

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    172/175

    parallel to fiber directionare likely to fail

    prematurely.

    Further subject-oriented

    investigations are

    necessary on this issue.

    172

    ENGINEERING PRACTICE

    SHEAR SPAN CONDITIONS

    Laboratory investigations

    on cantilever walls tend to

    overestimate the shear

    diti l ti t

    VR

    V

    VR

    VE

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    173/175

    span conditions relative tothe as-built situation.

    A reduced shear span

    condition may change the

    failure mode from flexural

    to shear for the same

    specimen.

    Further investigations arenecessary on this topic

    VE

    173

    ENGINEERING PRACTICE

    Diagonalcompression

    dominated shear

    response

    RESPONSE CHARACTERISTICS

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    174/175

    Reloading stiffness ratio:

    0.20.33

    Energy dissipation ratio: 10%

    174

  • 8/11/2019 Prg Experim Di_t 2013 11 19

    175/175

    THANK YOU FOR YOUR

    ATTENTION!

    Wall tests videos on:-PRCWP 5-S/E3-T

    -PRCWP 3-S/E1-T/R

    -PRCWP 1-S-T

    -PRCWP 3-S/E1-T