mikroskop

10
Mikroskop (bahasa Yunani : micron = kecil dan scopos = tujuan) adalah sebuah alat untuk melihat obyek yang terlalu kecil untuk dilihat dengan mata telanjang. Ilmu yang mempelajari benda kecil dengan menggunakan alat ini disebut mikroskopi , dan kata mikroskopik berarti sangat kecil, tidak mudah terlihat oleh mata. Jenis-jenis mikroskop Jenis paling umum dari mikroskop, dan yang pertama diciptakan, adalah mikroskop optis. Mikroskop ini merupakan alat optik yang terdiri dari satu atau lebih lensa yang memproduksi gambar yang diperbesar dari sebuah benda yang ditaruh di bidang fokal dari lensa tersebut. Berdasarkan sumber cahayanya, mikroskop dibagi menjadi dua, yaitu, mikroskop cahaya dan mikroskop elektron . Mikroskop cahaya sendiri dibagi lagi menjadi dua kelompok besar, yaitu berdasarkan kegiatan pengamatan dan kerumitan kegiatan pengamatan yang dilakukan. Berdasarkan kegiatan pengamatannya, mikroskop cahaya dibedakan menjadi mikroskop diseksi untuk mengamati bagian permukaan dan mikroskop monokuler dan binokuler untuk mengamati bagian dalam sel. Mikroskop monokuler merupakan mikroskop yang hanya memiliki 1 lensa okuler dan binokuler memiliki 2 lensa okuler. Berdasarkan kerumitan kegiatan pengamatan yang dilakukan, mikroskop dibagi menjadi 2 bagian, yaitu mikroskop sederhana (yang umumnya digunakan pelajar) dan mikroskop riset (mikroskop dark-field, fluoresens, fase kontras, Nomarski DIC, dan konfokal).

Upload: tazkiyatan-isria

Post on 29-Jan-2016

42 views

Category:

Documents


0 download

DESCRIPTION

mikroskop

TRANSCRIPT

Page 1: MIKROSKOP

Mikroskop (bahasa Yunani: micron = kecil dan scopos = tujuan) adalah sebuah alat untuk melihat obyek yang terlalu kecil untuk dilihat dengan mata telanjang. Ilmu yang mempelajari benda kecil dengan menggunakan alat ini disebut mikroskopi, dan kata mikroskopik berarti sangat kecil, tidak mudah terlihat oleh mata.

Jenis-jenis mikroskop

Jenis paling umum dari mikroskop, dan yang pertama diciptakan, adalah mikroskop optis. Mikroskop ini merupakan alat optik yang terdiri dari satu atau lebih lensa yang memproduksi gambar yang diperbesar dari sebuah benda yang ditaruh di bidang fokal dari lensa tersebut.

Berdasarkan sumber cahayanya, mikroskop dibagi menjadi dua, yaitu, mikroskop cahaya dan mikroskop elektron. Mikroskop cahaya sendiri dibagi lagi menjadi dua kelompok besar, yaitu berdasarkan kegiatan pengamatan dan kerumitan kegiatan pengamatan yang dilakukan. Berdasarkan kegiatan pengamatannya, mikroskop cahaya dibedakan menjadi mikroskop diseksi untuk mengamati bagian permukaan dan mikroskop monokuler dan binokuler untuk mengamati bagian dalam sel. Mikroskop monokuler merupakan mikroskop yang hanya memiliki 1 lensa okuler dan binokuler memiliki 2 lensa okuler. Berdasarkan kerumitan kegiatan pengamatan yang dilakukan, mikroskop dibagi menjadi 2 bagian, yaitu mikroskop sederhana (yang umumnya digunakan pelajar) dan mikroskop riset (mikroskop dark-field, fluoresens, fase kontras, Nomarski DIC, dan konfokal).

Mikroskop cahaya

Dari Wikipedia bahasa Indonesia, ensiklopedia bebasLangsung ke: navigasi, cari

Mikroskop cahaya atau dikenal juga dengan nama "Compound light microscope" adalah sebuah mikroskop yang menggunakan cahaya lampu sebagai pengganti cahaya matahari sebagaimana yang digunakan pada mikroskop konvensional. Pada mikroskop konvensional, sumber cahaya masih berasal dari sinar matahari yang dipantulkan dengan suatu cermin datar ataupun cekung yang terdapat dibawah kondensor. Cermin ini akan mengarahkan cahaya dari luar kedalam kondensor.

Page 2: MIKROSKOP

Mikroskop elektron adalah sebuah mikroskop yang mampu untuk melakukan pembesaran objek sampai 2 juta kali, yang menggunakan elektro statik dan elektro magnetik untuk mengontrol pencahayaan dan tampilan gambar serta memiliki kemampuan pembesaran objek serta resolusi yang jauh lebih bagus daripada mikroskop cahaya. Mikroskop elektron ini menggunakan jauh lebih banyak energi dan radiasi elektromagnetik yang lebih pendek dibandingkan mikroskop cahaya.

Struktur mikroskop

Ada dua bagian utama yang umumnya menyusun mikroskop, yaitu:

Bagian optik, yang terdiri dari kondensor, lensa objektif, dan lensa okuler. Bagian non-optik, yang terdiri dari kaki dan lengan mikroskop, diafragma, meja

objek, pemutar halus dan kasar, penjepit kaca objek, dan sumber cahaya.

Pembesaran

Tujuan mikroskop cahaya dan elektron adalah menghasilkan bayangan dari benda yang dimikroskop lebih besar. Pembesaran ini tergantung pada berbgai faktor, diantaranya titik fokus kedua lensa( objektif f1 dan okuler f2, panjang tubulus atau jarak(t) lensa objektif terhadap lensa okuler dan yang ketiga adalah jarak pandang mata normal(sn). Rumus:

Sifat bayangan

baik lensa objektiv maupun lensa okuler keduanya merupakan lensa cembung Secara sederhana dan garis besar lensa objektif menghasilkan suatu bayangan sementara yang mempunyai sifat semu, terbalik, dan diperbesar terhadap posisi benda mula mula. baik pada mikroskop cahaya maupun mikroskop elektron. Yang menentukan sifat bayangan akhir selanjutnya adalah lensa okuler. Pada mikroskop cahaya bayangan akhir mempunyai sifat yang sama seperti bayangan sementara semu, terbalik, dan lebih lagi diperbesar. Pada mikroskop elektron bayangan akhir mempunyai sifat yang sama seperti gambar benda nyata, sejajar, dan diperbesar. Petunjuk: Jika seseorang menggunakan mikroskop cahaya dia meletakkan huruf A dibawah mikroskop maka yang dia lihat pada mikroskop tampilan bayangan tersebut adalah huruf tersebut hanya terbalik dan diperbesar.

Light Microscopy

Page 3: MIKROSKOP

For many biologists, the microscope belongs to the gadgets they use most. The reason is obvious: cells are the basic units of life and their size is, with only few exceptions, below the upper limit of the resolution of the human eye. Numerous statements on the refraction of light by lenses or waterfilled spheres and the resulting magnification proof, that the effects of magnification were already known in antiquity. In the 13th century, the British natural scientist ROGER BACON used segments of glass spheres as magnifying glasses and recommended them to partially sighted persons as spectacles. The grinding of lenses was perfected in the following centuries.

The physician P. BORCH records, that HANS and ZACHARIAS JENSEN (father and son) from the Dutch town Middelburg invented the compound microscope at the beginning of the 17th century by placing one lens behind the other. They are regarded as the inventors of the telescope, too. Other sources name C. J. DREBBEL (1572 - 1634) from Alkmaar as the inventor of the microscope. Even if this should not be the case, he has helped a lot to make the microscope known. The term microscope was introduced by members of the Italian Accademia de Lincei (Academy of The Lynx), whose most prominent member was G. GALILEI.

Independent of the beginning development of the two-lensed - also called the compound microscope - stronger and stronger lenses became fashionable, too. Again, it was a Dutchman, A. van LEEUWENHOEK, who succeeded in the construction of lenses with 270 fold magnification and a focal length of about one millimetre, with which he worked. His resulting observations constitute the pinnacle of "single-lensed microscopes".

In 1667, the "Micrographia" of the British natural scientist ROBERT HOOKE was published. HOOKE examined vegetable tissues with the help of a compound microscope and thus detected their basic elements, the cells. The further development of microscopes and especially the use of microscopes in the 18th century went on rather hesitantly. This was on one hand caused by the opinion of many natural scientists of reputation, that a lot had still to be discovered even without the use of microscopes. On the other hand, the interfering chromatic aberrations were a continuing source of misinterpretations. This led to the prejudice, that anything you wanted to see could be seen within a microscope.

As soon as 1695, D. GREGORY considered the combination of several lenses with differing dispersions in order to minimise this handicap. The mathematician L. EULER brought forth a theoretical explanation of achromates (systems of lenses with corrected colors) in 1771 and he suggested the calculation of such achromatic objectives. They were finally built by F. G. BEELDSNYDER (1735 - 1808), who placed a biconcave lens out of flint glass between two biconvex lenses out of another type of glass, that had a different index of refraction.

G. D. AMICI (1786 - 1863) developed achromatic systems of lenses further and invented also immersion objectives. The actual break-through on the way to the construction of modern microscopes was due to the formulation of a theory of image formation within the microscope by E. ABBÉ (1840 - 1905). He proved, that an absolute upper limit of microscopic image formation exists and that it was dependent of the aperture of the

Page 4: MIKROSKOP

objective and the wave length of the light. His theory permitted the development of reproducible high-performance microscopes and their production in series.

The use of newly developed types of glasses by O. SCHOTT (1851 - 1935) led in 1886 to the development of apochromatic objectives (objectives, that remove a rest of colors, the so-called secondary spectrum) by E. ABBÉ and C. ZEISS.

The progress of microscope building enabled a quick series of numerous discoveries in the subjects of histology, cytology and bacteriology. The progress was helped by the development and use of suitable methods of fixation, embedding and cutting, specific dyes and conservatives.

The Theory of Light Microscopy

The closer an object is to the eye, the more details can be distinguished until the limit is reached, below which the eye cannot depict the object clearly any more. This limit is 250 mm for the average grown-up. The measure for the ability to tell two points apart is called the power of resolution. It describes whether two adjoining points can still be perceived as separate. To examine objects below this limit of resolution, a magnifying glass is needed. Its magnification can be calculated in the following way:

V = 250 [mm] / f [mm].

250 mm is the image distance of the human eye and f is the focal length of the lens. If the magnifying power of the lens is known and the focal length has to be calculated, than the formula has to be used as shown beneath:

f [mm] = 250 [mm] / V

The picture to the left shows the way the fan of rays of an object that is collected by a single lens is imaged.

If you want to magnify an object even more, two lenses in tandem have to be used (objective and eyepiece or ocular). The resulting construct is a simple microscope. The objective magnifies the object or specimen (O) and a turned up real image (O´) is formed in front of the focal plane of the second lens. The eyepiece than forms an enlarged virtual

Page 5: MIKROSKOP

image (O''), that can be seen as a turned up image at a distance of 250 mm. The magnification of a microscope is thus a product of

Vobjective x Vocular

Light path in the microscope: F = Focal plane, O = Object (Specimen), Ob = Objective, Oc = ocular (eyepiece)

Nonetheless the power of resolution is given exclusively by the objective. To describe an objective not only the magnifying power has to be taken in account, but, too, the numerical aperture. The numerical aperture is defined as the sine of half the angle of the cone of light from each point of the object, that can be accepted by the objective (alpha) multiplied by the index of refraction of the medium in which the object is immersed (n):

A = n sin alpha.

The medium is usually air with a refraction index of n = 1. alpha can never be bigger than 90° and thus the numerical aperture can never outgrow 1. Its largest actual size is 0.95, since the distance between objective and the surface of the cover glass cannot reach zero. The aperture of 0.95 corresponds to an angle alpha of roughly 72°. An increase of the numerical aperture can be achieved by the choice of a medium between objective and object with an index of refraction bigger than that of air. Special oil for immersion with an index of n = 1.515 has proved to be useful. Larger indexes of refraction do not make sense, because the index of refraction of the objective itself (n = 1.525) becomes limiting. Immersion oil can be used only with specially constructed immersion objectives. If alpha

Page 6: MIKROSKOP

has the maximum of 67.5°, the aperture is accordingly 1.515 x 0.92 = 1.40. The degree of resolution (d) is set by the wavelength of light (lambda) and the numerical aperture (Aobj):

d = lambda / Aobj

If lambda is 550 nm (green light) the formula runs the following way:

d = 550 [nm] / 2 x 1.40 = 200 nm = 0.2 µm

0.2 µm is the highest theoretical resolution that can be reached with a light microscope. A rough approximation shows that the power of resolution of a light microscope lies at about half the length of a lightwave if a good immersion objective is used. If the limit of resolution of a microscope is known, then the maximal useful magnification can be calculated. A magnification is called useful when two only just clear points are magnified so strongly that they are seen as separate unities by the human eye. At 250mm is the resolution of the human eye about 0.15 - 0.2 mm. The rule of thumb for a useful magnification is thus:

500 - 1000 x Aobj.

An objective with an aperture of 1.4 has accordingly a maximal useful magnification of 1400fold.

The Wave-Particle Nature of Light; Phenomenons of Diffraction and Image Formation

We assume that the dual nature of light as both wave and particle is known and we will in the following deal with some fundamental principles of wave optics in order to be able to interpret microscopic image formation. Our main interest, nevertheless, is the understanding of modern techniques of light microscopy like phase-contrast microscopes, polarising microscopes and interference microscopes. First some terms and definitions:

Amplitude, frequency, wave length, interference, diffraction and phase are the most important parameters to describe a wave. The wavelength of visible light is between 400 and 800 nm. Interference is the mutual influence of two waves on each other, whereby the resulting crests may be either enhanced or flattened (enhancement of amplitude, reduction of amplitude). The extreme case is given by two waves that extinguish each other.

Diffraction is the partial deflection of a ray of light at the corners of opaque objects. For understanding it is useful to cast a look at phenomenons of diffraction at simple gap- or hole-shaped masks. If a screen is placed behind such a mask and light is sent through, the pattern of diffraction can be seen. It consists of a regular pattern of points or lines that

Page 7: MIKROSKOP

fades away towards the margins. The shape of the pattern is dependent on the kind of mask and the object used (for example a microscopic preparation). But the pattern is always grouped around a central axis (unmagnified picture of the gap or hole of the mask). If a mask with two openings is used, the light is diffracted at the rim of both openings. The diffraction images of the two rays overlie each other and regular enhancements and reductions can be seen in the resulting pattern. To get a magnified image, the first additional maxima of the diffraction image have to be included (E. ABBÉ). The results in the pictures above have already shown that the distances of the points in a diffraction image are reversed proportional to the corresponding distances in the object. To gain a real image from a diffraction image a collecting lens (the objective of the microscope is one) is needed. This lens has to have a big enough aperture to collect the intensity maxima (-I, +I). The real image is formed by both refracted and non-diffracted light.

Diffraction phenomenon at apertures. The closer two openings (or diaphragms) that diffract light are, the larger is the angle of the diffraction's first intensity maxima and the larger has the aperture of the collecting lens to be.

Magnifications as those that have been described can, too, be achieved with radiation of other natures. The most important additional device for biologists besides the light microscope is the electron microscope, where the diffraction of a ray of electrons is used. Another radiation to be mentioned is the short-waved Röntgen-radiation (X ray-radiation), that has proven to be of value for the elucidation of molecular structures (M. v. LAUE, L. BRAGG). Since no collecting lenses for Röntgen-radiation exist, the information contained in the diffraction pattern has to be calculated mathematically in order to get to know the structure of the molecule.