makalah material.docx

43
1. Diagmagnetik Pengertian : - Diamagnetisme adalah sifat suatu benda untuk menciptakan suatu medan magnet ketika dikenai medan magnet. Sifat ini menyebabkan efek tolak menolak. Diamagnetik adalah salah satu bentuk magnet yang cukup lemah, dengan pengecualian superkonduktor yang memiliki kekuatan magnet yang kuat. Sifat : - Semua material menunjukkan peristiwa diamagnetik ketika berada dalam medan magnet. Oleh karena itu, diamagnetik adalah peristiwa yang umum terjadi karena pasangan elektron, termasuk elektron inti di atom, selalu menghasilkan peristiwa diamagnetik yang lemah. Namun demikian, kekuatan magnet material diamagnetik jauh lebih lemah dibandingkan kekuatan magnet material feromagnetik ataupun paramagnetik. - Mempunyai kerentanan magnetik (k) negatif dan sangat kecil artinya ialah memiliki sitat magnetik yang lemah - Superkonduktor adalah contoh diamagnetik sempurna Contoh : Material yang disebut diamagnetik umumnya berupa benda yang disebut ‘non-magnetik’, termasuk di antaranya air, kayu, senyawa organik seperti minyak bumi dan beberapa jenis plastik, serta beberapa logam seperti tembaga, merkuri, emas dan bismut. http://fikrintambang08.blogspot.com 2. Feromagnetik

Upload: lusi-puspita-sari

Post on 14-Nov-2015

87 views

Category:

Documents


14 download

TRANSCRIPT

1. Diagmagnetik Pengertian : - Diamagnetisme adalah sifat suatu benda untuk menciptakan suatu medan magnet ketika dikenai medan magnet. Sifat ini menyebabkan efek tolak menolak. Diamagnetik adalah salah satu bentuk magnet yang cukup lemah, dengan pengecualian superkonduktor yang memiliki kekuatan magnet yang kuat. Sifat : - Semua material menunjukkan peristiwa diamagnetik ketika berada dalam medan magnet. Oleh karena itu, diamagnetik adalah peristiwa yang umum terjadi karena pasangan elektron, termasuk elektron inti di atom, selalu menghasilkan peristiwa diamagnetik yang lemah. Namun demikian, kekuatan magnet material diamagnetik jauh lebih lemah dibandingkan kekuatan magnet material feromagnetik ataupun paramagnetik. - Mempunyai kerentanan magnetik (k) negatif dan sangat kecil artinya ialah memiliki sitat magnetik yang lemah - Superkonduktor adalah contoh diamagnetik sempurna Contoh : Material yang disebut diamagnetik umumnya berupa benda yang disebut non-magnetik, termasuk di antaranya air, kayu, senyawa organik seperti minyak bumi dan beberapa jenis plastik, serta beberapa logam seperti tembaga, merkuri, emas dan bismut. http://fikrintambang08.blogspot.com 2. Feromagnetik Pengertian : - Ferromagnetisme adalah sebuah fenomena dimana sebuah material dapat mengalami magnetisasi secara spontan, dan merupakan satu dari bentuk kemagnetan yang paling kuat. Fenomena inilah yang dapat menjelaskan kelakuan magnet yang kita jumpai sehari-hari. Ferromagnetisme dan ferromagnetisme merupakan dasar untuk menjelaskan fenomena magnet permanen. Sifat : - Bahan ferromagnetik sangat mudah di pengaruhi medan magnetic karena mempunyai resultan medan magnet atomis yang besar, sehingga apabila bahan ini diberi medan magnet dari luar maka electron elektronnya akan mengusahakan dirinya untuk menimbulkan medan magnet atomis tiap tiap atom/ molekul searah dengan medan magnet luar. - Bahan ini jika diberi medan magnet dari luar, maka domain-domain ini akan mensejajarkan diri searah dengan medan magnet dari luar. Semakin kuat medan magnetnya semakin banyak domain-domain yang mensejajarkan dirinya. Akibatnya medan magnet dalam bahan ferromagnetik akan semakin kuat. Setelah seluruh domain terarahkan, penambahan medan magnet luar tidak memberi pengaruh apa-apa karena tidak ada lagi domain yang disearahkan. Keadaan ini dinamakan jenuh atau keadaan saturasi. - tetap bersifat magnetik sangat baik sebagai magnet permanen Contoh : besi, baja, nikel dan kobal 3. Paramagnetik Pengertian : - Semua zat yang mempunyai susceptibilitas magnetik positif adalah zat paramagnetik. Dalam zat semacam ini setiap atom atau molekul mempunyai momen magnetik total yang tak sama dengan nol dalam medan luar yang nol. Hal ini terjadi pada zat-zat yang subkulitnya tak penuh hingga maksimum. Misalnya : 22Ca hingga 28Ni, 41Ne hingga 25Rh, 57Li hingga 78Pt, 90Tn hingga 92U. Hingga susceptibilitasnya tergantung temperatur. Sifat : - Material paramagnetik juga dapat menarik dan menolak benda-benda logam namun jika medan magnet eksternal dijauhkan, material paramagnetik juga akan kehilangan daya magnetnya. Magnet paramagnetisme disebut juga magnet sementara atau magnet tidak tetap. - Jika solenoida dimasuki bahan ini akan dihasilkan induksi magnetik yang lebih besar. Contoh logam yang bersifat paramagnetisme adalah Kromium. 4. Antiferomagnetik Pengertian : - Gabungan momen magnetik antara atom-atom atau ion-ion yang berdekatan dalam suatu golongan bahan tertentu akan menghasilkan pensejajaran anti paralel. Sifat : - terdapat MnO, bahan keramik yang bersifat ionik yang memiliki ion-ion Mn2+ dan O2-. Tidak ada momen magnetik netto yang dihasilkan oleh ion O2-, hal ini disebabkan karena adanya aksi saling menghilangkan total pada kedua momen spin dan orbital. Tetapi ion Mn2+ memiliki momen magnetik netto yang terutama berasal dari gerak spin. Ion-ion Mn2+ ini tersusun dalam struktur kristal sedemikian rupa sehingga momen dari ion yang berdekatan adalah antiparalel. Karena momen-momen magnetik yang berlawanan tersebut saling menghilangkan, bahan MnO secara keseluruhan tidak memiliki momen magnetik. 5. Ferrimagnetik Pengertian : Material ini mempunyai susceptibilitas magnetik yang sangat besar dan tergantung pada suhu, domain-domain magnetik dalam material ini terbagi-bagi dalam keadaan daerah yang menyearah saling berlawanan tetapi momen magnetik totalnya tak nol jika medan luar nol. Praktis semua mineral magnetik adalah ferrimagnetik. Meskipun dalam beberapa hal magnetisasi batuan bergantung terutama pada kekuatan sesaat dar sesaat dari medan magnetik bumi di sekeliling dan kandungan mineral magnetikny

Read this: http://fikrintambang08.blogspot.com/2013/03/pengertian-dan-karakteristik-magnet.htmlCopyright http://fikrintambang08.blogspot.com/ Under Creative Commons Attribution 3.0| Hak cipta sama pemilik postingan, informasi lebih lanjut hub via twitter @fikrin atau email [email protected] dan Definisi magnet dan Medan magnet atau magnetisme. Magnet adalah benda yang mempunyai medan magnet dan mempunyai gaya tolak menolak dan tarik menarik terhadap benda-benda tertentu. Efek tarik menarik dan tolak menolak pada magnet disebut magnetisme. Setiap magnet mempunyai dua kutub yang terletak di bagian ujung-ujungnya yaitu kutub selatan dan kutub utara.

Magnet hanya bisa di buat dari logam-logam tertentu saja. Seperti besi, kobalt, nikel ataupun kromium. berdasarkan daya magnetis dan bentuknya magnet di bedakan menjadi beberapa jenis. Jenis-jenis magnet antara lain:

1. Jenis magnet berdasarkan daya magnetisme nya terbagi menjadi 2, yaitu Paramagnetisme adalah jenis magnet yang mempunyai daya magnet lemah. Paramagnetisme terjadi karena adanya medan magnet eksternal. Material paramagnetik juga dapat menarik dan menolak benda-benda logam namun jika medan magnet eksternal dijauhkan, material paramagnetik juga akan kehilangan daya magnetnya. Magnet paramagnetisme disebut juga magnet sementara atau magnet tidak tetap. Contoh logam yang bersifat paramagnetisme adalah Kromium. Feromagnetisme adalah jenis magnet yang mempunyai daya magnet tinggi. Material feromagnetis tidak dipengaruhi oleh medan magnet eksternal dan tetap memiliki kemampuan tarik menarik dan tolak menolak meski tidak ada medan magnet lain di sekitarnya. Magnet Feromagnetisme disebut juga magnet tetap atau permanen. Contoh logam yang bisa menjadi magnet permanen atau feromagnetisme antara lain adalah besi, baja, nikel, dll.2. Jenis magnet berdasarkan bentuknya terbagi menjadi 4, yaitu: Magnet batang Magnet jarum Magnet ladam Magnet CincinJika suatu objek ditarik oleh magnet, maka objek tersebut akan melekat dikedua ujung magnet yang disebut kutub. Bumi adalah sebuah magnet raksasa. Bumi juga mempunyai 2 kutub dimana medan magnet berpusat yaitu kutub utara dan kutub selatan. Untuk menentukan kutub utara dan kutub selatan magnet di gunakan jarum kompas yang juga terbuat dari magnet. Kutub selatan magnet akan menunjuk kutub utara dan kutub utara magnet akan menunjuk kutub selatan. Kutub utara dan selatan magnet ketika didekatkan akan saling tarik menarik, jika kutub yang sama didekatkan maka akan muncul gaya tolak menolak. - See more at: http://www.kamusq.com/2012/08/magnet-dan-jenis-jenis-magnet.html#sthash.ujBLpavM.dpufPengertian magnet Magnetatau magnitadalah suatu obyek yang mempunyai suatu medan magnet. Asal kata magnet diduga dari kata magnesia yaitu nama suatu daerah di Asia kecil. Menurut cerita di daerah itu sekitar 4.000 tahun yang lalu telah ditemukan sejenis batu yang memiliki sifat dapat menarik besi atau baja atau campuran logam lainnya. Benda yang dapat menarik besi atau baja inilah yang disebut magnet. Di dalam kehidupan sehari-hari kata magnetsudah sering kita dengar, namun sering juga berpikir bahwa jika mendengar kata magnet selalu berkonotasi menarik benda. Untuk bisa mengambil suatu barang dari logam (contoh obeng besi) hanya dengan sebuah magnet, misalkan pada peralatan perbengkelan biasanya dilengkapi dengan sifat magnet sehingga memudahkan untuk mengambil benda yang jatuh di tempat yang sulit dijangkau oleh tangan secara langsung. Bahkan banyak peralatan yang sering digunakan, antara lain bel listrik, telepon, dinamo, alat-alat ukur listrik, kompas yang semuanya menggunakan bahan magnet. Magnet dapat dibuat dari bahan besi, baja, dan campuran logam serta telah banyak dimanfaatkan untuk industri otomotif dan lainnya. Sebuah magnet terdiri atas magnet-magnet kecil yang memiliki arah yang sama (tersusun teratur), magnetmagnet kecil ini disebut magnet elementer. Pada logam yang bukan magnet, magnet elementernya mempunyai arah sembarangan (tidak teratur) sehingga efeknya saling meniadakan, yang mengakibatkan tidak adanya kutub-kutub magnet pada ujung logam. Setiap magnet memiliki dua kutub, yaitu: utara dan selatan. Kutub magnetadalah daerah yang berada pada ujung-ujung magnet dengan kekuatan magnet yang paling besar berada pada kutub-kutubnya. Magnet dapat menarik benda lain, beberapa benda bahkan tertarik lebih kuat dari yang lain, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyaidaya tarik yang tinggi oleh magnet. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik yang rendah oleh magnet. Satuan intensitas magnet menurut sistem metrik Satuan Internasional (SI) adalah Tesladan SI unit untuk total fluks magnetik adalah weber(1 weber/m2= 1 tesla) yang mempengaruhi luasan satu meter persegi.2.3. Macam-macam magnet Berdasarkan sifat kemagnetannya magnet dapat dibedakan menjadi dua macam, yaitu: a. Magnet permanen. Magnet permanen adalah suatu bahan yang dapat menghasilkan medan magnet yang besarnya tetap tanpa adanya pengaruh dari luar atau disebut magnet alam karena memiliki sifat kemagnetan yang tetap. Magnet permanen dibuat orang dalam berbagai bentuk dan dapat dibedakan menurut bentuknya menjadi : - Magnet batang - Magnet ladam (sepatu kuda) - Magnet jarum - Magnet silinder - Magnet lingkaran b. Magnet remanen Magnet remanen adalah suatu bahan yang hanya dapat menghasilkan medan magnet yang bersifat sementara. Medan magnet remanen dihasilkan dengan cara mengalirkan arus listrik atau digosok-gosokkan dengan magnet alam. Bila suatu bahan pengantar dialiri arus listrik, besarnya medan magnet yang dihasilkan tergantung pada besar arus listrik yang dialirkan. Medan magnet remanen yang digunakan dalam praktek kebanyakan dihasilkan oleh arus dalam kumparan yang berinti besi. Agar medan magnet yang dihasilkan cukup kuat, kumparan diisi dengan besi atau bahan sejenis besi dan sistem ini dinamakan electromagnet. Keuntungan electromagnet adalah bahwa kemagnetannya dapat dibuat sangat kuat, tergantung dengan arus yang dialirkan. Dan kemagnetannya dapat dihilangkan dengan memutuskan arus listriknya.2.4.3. Bahan Ferromagnetik Bahan ferromagnetik mempunyai resultan medan magnet atomis besar, hal ini disebabkan oleh momen magnetik spin elektron. Pada bahan ini banyak spin elektron yang tidak berpasangan, masing-masing spin elektron yang tidak berpasangan ini akan menimbulkan medan magnetik, sehingga medan magnet total yang dihasilkan oleh satu atom menjadi lebih besar (Halliday & Resnick, 1989). Medan magnet dari masing-masing atom dalam bahan ferromagnetik sangat kuat, sehingga interaksi diantara atom-atom tetangganya menyebabkan sebagian besar atom akan mensejajarkan diri membentuk kelompok-kelompok, kelompok inilah yang dikenal dengan domain. Domain-domain dalam bahan ferromagnetik, dalam ketiadaan medan eksternal, momen magnet dalam tiap domain akan paralel, tetapi domain-domain diorientasikan secara acak, dan yang lain akan terdistorsi karena pengaruh medan eksternal. Domain dengan momen magnet paralel terhadap medan eksternal akan mengembang, sementara yang lain mengerut. Semua domain akan menyebariskan diri dengan medan eksternal pada titik saturasi, artinya bahwa setelah seluruh domain sudah terarahkan, penambahan medan magnet luar tidak memberi pengaruh apa-apa karena tidak ada lagi domain yang perlu disearahkan, keadaan ini disebut dengan penjenuhan (saturasi). Bahan ini juga mempunyai sifat remanensi, artinya bahwa setelah medan magnet luar dihilangkan, akan tetap memiliki medan magnet, karena itu bahan ini sangat baik sebagai sumber magnet permanen. Permeabilitas bahan : dengan suseptibilitas bahan : . Contoh bahan ferromagnetik : besi, baja. Sifat kemagnetan bahan ferromagnetik akan hilang pada temperatur Currie. Temperatur Currie untuk besi lemah adalah 770oC dan untuk baja adalah 1043oC. Sifat bahan ferromagnetik biasanya terdapat dalam bahan ferit. Ferit merupakan bahan dasar magnet permanen yang banyak digunakan dalam industri- industri elektronika, seperti dalamloudspeaker, motor-motor listrik,dynamo dan KWH- meter. 2.5 Material Magnet Lunak dan Magnet Keras Material magnetik diklasifikasikan menjadi dua yaitu material magnetic lemah atau soft magnetic materials maupun material magnetic kuat atau hard magnetic materials. Penggolongan ini berdasarkan kekuatan medan koersifnya dimana soft magnetic atau material magnetic lemah memiliki medan koersif yang lemah sedangkan material magnetic kuat atau hard magnetic materials memiliki medan koersif yang kuat. Hal ini lebih jelas digambarkan dengan diagram histerisis atau hysteresis loop sebagai loop. Gambar 2.5 histeris material magnet (a) Material lunak, (b) Material keras Diagram histeresis diatas menunjukkan kurva histeresis untuk material magnetic lunak pada gambar (a) dan material magnetic keras pada gambar (b). H adalah medan magnetik yang diperlukan untuk menginduksi medan berkekuatan B dalam material. Setelah medan H ditiadakan, dalam specimen tersisa magnetisme residual Br, yang disebut residual remanen, dan diperlukan medan magnet Hc yang disebut gaya koersif, yang harus diterapkan dalam arah berlawanan untuk meniadakannya. Magnet lunak mudah dimagnetisasi serta mudah pula mengalami demagnetisasi, seperti tampak pada Gambar 2.5 Nilai H yang rendah sudah memadai untuk menginduksi medan B yang kuat dalam logam, dan diperlukan medan Hc yang kecil untuk menghilangkannya. Magnet keras adalah material yang sulit dimagnetisasi dan sulit di demagnetisasi. Karena hasil kali medan magnet (A/m) dan induksi (V.det/m2) merupakan energi per satuan volume, luas daerah hasil integrasi di dalam loop histerisis adalah sama dengan energi yang diperlukan untuk satu siklus magnetisasi mulai dari 0 sampai +H hingga Hsampai 0. energi yang dibutuhkan magnet lunak dapat dapat diabaikan; medan magnet keras memerlukan energi lebih banyak sehingga pada kondisi-ruang, demagnetisasi dapat diabaikan. Dikatakan, magnetisasi permanen. 2.6 Magnet keramik Keramik adalah bahan-bahan yang tersusun dari senyawa anorganik bukan logam yang pengolahannya melalui perlakuan dengan temperatur tinggi. Kegunaannya adalah untuk dibuat berbagai keperluan desain teknis khususnya dibidang kelistrikan, elektronika, mekanik dengan memanfaatkan magnet keramik sebagai magnet permanen, dimana material ini dapat menghasilkan medan magnet tanpa harus diberi arus listrik yang mengalir dalam sebuah kumparan atau selenoida untuk mempertahankan medan magnet yang dimilikinya. Disamping itu, magnet permanen juga dapat memberikan medan yang konstan tanpa mengeluarkan daya yang kontinyu. Bahan keramik yang bersifat magnetik umumnya merupakan golongan ferit, yang merupakan oksida yang disusun oleh hematit (-Fe2O3) sebagai komponen utama. Bahan ini menunjukkan induksi magnetik spontan meskipun medan magnet dihilangkan. Material ferit juga dikenal sebagai magnet keramik, bahan itu tidak lain adalah oksida besi yang disebut ferit besi (ferrous ferrite) dengan rumus kimia MO.(Fe2O3)6, dimana M adalah Ba, Sr, atau Pb. 6Fe2O3+ SrCO3SrO.6Fe2O3+ CO2(2.9) Pada umumnya ferit dibagi menjadi tiga kelas : 1. Ferit Lunak, ferit ini mempunyai formula Mfe2O4, dimana M = Cu, Zn, Ni, Co, Fe, Mn, Mg dengan struktur kristal seperti mineral spinel. Sifat bahan ini mempunyai permeabilitas dan hambatan jenis yang tinggi, koersivitas yang rendah. 2. Ferit Keras, ferit jenis ini adalah turunan dari struktur magneto plumbit yang dapat ditulis sebagai Mfe12O19, dimana M = Ba, Sr, Pb. Bahan ini mempunyai gaya koersivitas dan remanen yang tinggi dan mempunyai struktur kristal heksagonal dengan momen-momen magnetik yang sejajar dengan sumbu c. 3. Ferit Berstruktur Garnet, magnet ini mempunyai magnetisasi spontan yang bergantung pada suhu secara khas. Strukturnya sangat rumit, berbentuk kubik dengan sel satuan disusun tidak kurang dari 160 atom (Idayanti, 2002).Magnet keramik yang merupakan magnet permanen mempunyai struktur Hexagonal close-pakced. Dalam hal ini bahan yang sering digunakan adalah Barrium Ferrite (BaO.6Fe2O3). Dapat juga barium digantikan bahan yang menyerupai (segolongan) dengannya, yaitu seperti Strontium (Thompson, 1968). Ferit lunak mempunyai struktur kristal kubik dengan rumus umum MO.Fe2O3 dimana M adalah Fe, Mn, Ni, dan Zn atau gabungannya seperti Mn-Zn dan Ni-Zn. Bahan ini banyak digunakan untuk inti transformator, memori komputer, induktor, recording heads, microwave dan lain-lain. Ferit keras banyak digunakan dalam komponen elektronik, diantaranya motor-motor DC kecil, pengeras suara (loud speaker), meteran air, KWH-meter, telephone receiver, circulator, dan rice cooker. Gambar 2.6 Prototipe magnet motor DC mini (Dedi, 2002).Sifat-sifat Magnet Keramik Sifat-sifat kemagnetan suatu bahan dapat diperlihatkan dalam kurva histerisis yaitu kurva hubungan intensitas magnet (H) terhadap medan magnet (B). Seperti ditunjukkan pada gambar 3 merupakan kurva histerisis pada saat magnetisasi. Gambar 2.8 Kurva saat proses megnetisasi [Moulson A.J, et all., 1985]. Pada gambar 2.9 di atas tampak bahwa kurva tidak berbentuk garis lurus sehingga dapat dikatakan bahwa hubungan antara B dan H tidak linier. Dengan kenaikan harga H, mula-mula B turut naik cukup besar, tetapi mulai dari nilai H tertentu terjadi kenaikan nilai B yang kecil dan makin lama nilai B akan konstan. Harga medan magnet untuk keadaan saturasi disebut dengan Bs atau medan magnet saturasi. Saturasi magnetisasi adalah keadaan dimana terjadi kejenuhan, nilai medan magnet B akan selalu konstan walaupun medan eksternal H dinaikkan terus. Bahan yang mencapai saturasi untuk harga H rendah disebut magnet lunak seperti yang ditunjukkan kurva (a). Sedangkan bahan yang saturasinya terjadi pada harga H tinggi disebut magnet keras seperti yang ditunjukkan kurva (c). Sesudah mencapai saturasi ketika intensitas magnet H diperkecil hingga mencapai H = 0, ternyata kurva B tidak melewati jalur kurva semula. Pada harga H = 0, medan magnet atau rapat fluks B mempunyai harga Br 0 seperti ditunjukkan pada kurva histerisis pada gambar 2.9. Harga Br ini disebut dengan induksi remanen atau remanensi bahan. Remanen atau ketertambatan adalah sisa medan magnet B dalam proses magnetisasi pada saat medan magnet H dihilangkan, atau remanensi terjadi pada saat intensitas medan magnetik H berharga nol dan medan magnet B menunjukkan harga tertentu. Pada gambar 2.10 tampak bahwa setelah harga intensitas magnet H = 0 atau dibuat negatif (dengan membalik arus lilitan), kurva B(H) akan memotong sumbu pada harga Hc. Intensitas Hc inilah yang diperlukan untuk membuat rapat fluks B=0 atau menghilangkan fluks dalam bahan. Intensitas magnet Hc ini disebut koersivitas bahan. Koersivitasdigunakan untuk membedakan hard magnet atau soft magnet. Semakin besar gaya koersivitasnya maka semakin keras sifat magnetnya. Bahan dengan koersivitas tinggi berarti tidak mudah hilang kemagnetannya. Untuk menghilangkan kemagnetannya diperlukan intensitas magnet H yang besar. Bila selanjutnya harga diperbesar pada harga negatif sampai mencapai saturasi dan dikembalikan melalui nol, berbalik arah dan terus diperbesar pada harga H positif hingga saturasi kembali, maka kurva B(H) akan membentuk satu lintasan tertutup yang disebut kurva histeresis. Bahan yang mempunyai koersivitas tinggi kemagnetannya tidak mudah hilang. Bahan seperti itu baik untuk membuat magnet permanen. Gambar 2.9 Kurva histerisis material magnetik [Moulson A.J, et all., 1985]. Magnet permanen dapat diberi indeks berdasarkan momen koersif yang diperlukan untuk menghilangkan induksi (tabel 2.1). Patokan ukuran yang yang lebih baik adalah hasil kali BH.BaFe12O19mempunyai nilai Hcyang sangat besar, tetapi BHmakssedang-sedang saja., karena rapat fluks lebih rendah dibandingkan bahan magnet permanen lainnya. Dari tabel 2.1 akan diperoleh gambaran mengenai peningkatan yang mungkin diperoleh beberapa para ahli peneliti dan rekayasawan dengan pengembangan alnico (metalik) dan magnet BaFe12O19(keramik) Tabel 2.1. sifat berbagai magnet keras (dari berbagai sumber) Bahan magnet Remanen, Br(V.det/m2) Medan koersif, -Hc(A/m) Produk demagnetisasi maksimum BHmaks(J/m3) Baja karbon 1,0 0,4 x 1040,1 x 104 Alnico 1,2 5,5 x 1043,4 x 104 Ferroxdur (BaFe12O19) 0,4 15,0 x 1042,0 x 104 Magnet lunak merupakan pilihan tepat untuk penggunaan pada arus bolakbalik atau frekuensi tinggi, karena harus mengalami magnetisasi dan demagnetisasi berulang kali selama selang satu detik. Spesifikasi yang agak kritis untuk magnet lunak adalah : induksi jenuh (tinggi), medan koersif (rendah), dan pemeabilitas maksimum (tinggi). Data selektif terdapat pada tabel 2.2 dan dapat dibandingkan dengan data tabel 2.1. Rasio B/Hdisebut permeabilitas. Nilai rasio B/Hyang tinggi berarti bahwa magnetisasi mudah terjadi karena diperlukan medan magnet kecil untuk menghasilkan rapat fluks yang tinggi (induksi). Tabel 2.2. Sifat berbagai magnet lunak (dari berbagai sumber) Bahan magnet Induksi jenuh, Bs(V.det/m2)Medan koersif, -HC (A/m)Permeabilitas relatif maksimum, r(maks) Besi murni (kps) 2,2 80 5.000 Lembaran trasnformator siliko ferit (terarahkan) 2,0 40 15.000 Permalloy, Ni-Fe 1,6 10 2.000 Superpermalloy, Ni-Fe Ni-Fe-Mo 0,2 0,2 100.000 Ferroxcube A, (Mn,Zn) Fe2O40,4 30 1.200 Ferroxcube B, (Ni,Zn) Fe2O40,3 30 700 Dari gambar 2.6 diperlihatkan bahwa ferrite merupakan jenis magnet permanen yang tergolong sebagai material keramik dan hanya memiliki remanensi magnet maksimal sekitar 0,2 0,6 T dan koersivitasnya relatif rendah sekitar 100 400 kA/m. Memang dibandingkan dengan magnet dari bahan logam / alloy (SmCo, AlNiCo, dan NdFeB) memang jauh perbedaannya, tetapi produksi magnet ferrite di dunia masih cukup besar, karena bahan bakunya lebih murah dibandingkan dengan magnet dari jenis logam. Jadi kebutuhan pasar akan magnet permanen ferrite masih tinggi. Keunggulan lainnya dari magnet ferrite adalah memiliki suhu kritis (Tc) relatif tinggi dan lebih tahan korosi. Perbandingan sifat magnetnya dari beberapa material dapat diperlihatkan pada gambar 2.6 . Gambar 2.10 Kurva yang menunjukkan perbandingan sifat magnet dari beberapa jenis magnet permanen Kerapatan dari bahan ferit lebih rendah dibandingkan logam-logam lain dengan ukuran yang sama. Oleh karenanya nilai saturasi dari bahan ferit relatif rendah, hal ini menguntungkan untuk dapat dihilangkan. Nilai kerapatan ferit dapat dilihat dalam daftar tabel 2.3, dan nilai perbandingan dengan material megnetik yang lain. Tabel 2.3 Kerapatan dari beberapa bahan ferit (Prihatin, 2005) No SPINELS Ferrite Kerapatan, (g/cm3) 1 Zinc Ferrite 5,4 2 cadmium 5,76 2 Ferrous 5,24 Hexagonal 4 Barium 5,3 5 Strontium 5,12 Comersial 6 MnZn (high perm) 4,29 7 MnZn (recording head 4,7 s/d 4,75 2.8 Jenis Magnet Permanen Produk magnet permanen ada dua macam berdasarkan teknik pembuatannya yaitu magnet permanen isotropi dan magnet permanen anisotropi. Gambar 2.11 Arah partikel pada magnet isotropi dan anisotropi (a) Arah partikel acak (Isotrop) (b) Arah partikel searah (Anisotrop) [Masno G, dkk, 2006]. Magnet permanen isotropi magnet dimana pada proses pembentukkan arah domain magnet partikel-partikelnya masih acak, sedangkan yang anisotropi pada pembentukkan dilakukan di dalam medan magnet sehingga arah domain magnet partikel-partikelnya mengarah pada satu arah tertentu seperti ditunjukkan pada gambar 2.12 untuk membedakan isotropi dan anisotropi. Magnet permanen isotropi memiliki sifat magnet atau remanensi magnet yang jauh lebih rendah dibandingkan dengan magnet permanen anisotropi. 2.9 Barium Hexa Ferrite (BaO.6Fe2O3) Barium hexa Ferrite merupakan keramik oksida komplek dengan rumus kimia BaO.6Fe2O3atau BaFe12O19. Barium hexa Ferrite mempunyai kestabilan kimia yang bagus dan relatif murah dan kemudahan dalam produksi. Walaupun kekuatan magnet heksaferit lebih rendah dibandingkan jenis magnet terbaru berbasis logam tanah jarang, magnet permanen hexa Ferrite (Ba-ferit dan Sr-ferit) masih menempati tempat teratas dalam pasar magnet permanen dunia baik dalam hal nilai uang maupun berat produksi. Material magnet oksida BaO6Fe2O3merupakan jenis magnet keramik yang banyak dijumpai disamping material magnet Sr.6Fe2O3. seperti pada jenis oksida lainnya, material magnet tersebut memiliki sifat mekanik yang sangat kuat dan tidak mudah terkorosi. Sebagai magnet permanen, material BaO.6Fe2O3memiliki sifat kemagnetan dengan tingkat kestabilan tinggi terhadap pengaruh medan magnet luar pada suhu diatas 300oC. Sehingga sangat cocok dipergunakan dalam peralatan teknologi pada jangkauan yang cukup luas. Barium hexa Ferrite BaO.6Fe2O3yang memiliki parameter kisi a = 5,8920 Angstrom, dan c = 23,1830 Angstrom. Gambar struktur kristal barium hexa Ferrite BaO.6Fe2O3diperlihatkan pada gambar 2.11 Gambar 2.12. Struktur kristal BaO.6Fe2O3[Moulson A.J, et all., 1985].Barium heksaferit dapat disintesa dengan beberapa metoda seperti kristalisasi gas, presipitasi hidrotermal, sol-gel, aerosol, copresipitasi dan pemaduan mekanik. Diantara metoda ini pemaduan/gerus mekanik adalah ekonomis karena ketersediaan bahan baku secara komersial dan relatif murah. Selain itu, penanganan material relatif sederhana untuk proses pemaduan mekanik dan produksi skala besar dapat diimplementasikan dengan mudah. 2.10 Aplikasi Dari Komponen Magnet Komponen magnet, khususnya keramik magnetik ferit merupakan komponen yang sangat dibutuhkan dalam berbagai bidang, diantaranya adalah : 2.10.1 Bidang elektrik Beberapa penggunaan ferit dibidang elektrik yaitu : Pada sistem magnetik loudspeaker Pada sistem eksitasi, kutub-kutub dan rotor multipolar motor listrik Motor Horse Power Fractional Motor DC Loudspeaker 2.10.2 Bidang Instrumentasi Elektronika Peralatan kontrol otomatis yang menggunakan komponen keramik magnetik antara lain adalah : Pengontrol temperatur : menggunakan transformator pulsa Pagar elektronik (electric fence) : menggunakan transformator pulsa Switch otomatis : reed relay, menggunakan inti ferit Jam elektronik; menggunakan batang ferit dan kumparan untuk mengambil medan magnet elektromagnetik jala-jala listrik. Tegangan induksi yang diperoleh digunakan sebagai sumber tegangan roferens. 2.10.3 Bidang Telekomunikasi Dalam bidang telekomunikasi terutama telekomunikasi radio, ferit frekuensi radio (R, F Ferrite) mempunyai aplikasi yang luas untuk peralatan telekomunikasi radio, dari frekuensi audio sampai dengan frekuensi yang sangat tinggi (LF sampai dengan VHF, UHF). Didaerah ini keramik magnetik dari magnet bahan Mn-Zn digunakan pada daerah frekuensi tinggi. Keramik magnetik gelombang mikro digunakan pada daerah frekuensi ratusan MHz sampai dengan ribuan MHz (VHF,UHF, SHF dan EHF). Penggunaan ferit gelombang mikro adalah pada peralatan yang mentransmisikan energy elektromagnetik, seperti waveguide dan transmission line baik coaxial maupun strip. Ferit mempengaruhi medan elektromagnetik gelombang mikro dan kecepatan propagasi gelombang mikro, juga sebagai inti magnetikm dan transformator frekuensi radio. Selainitu juga disebutkan peralatan telekomunikasi radio yang menggunakan ferit magnet : Penerima radio (550 kHz-1600 kHz) : transformator IF dan penguat RF, inductor isolator dan magnetik ferit. Penerima radio HF : transformator dan magnetik filter (bandpass filter, choke), transformator matching impedance. Penerima TV : transformator tegangan tinggi Cahtode Ray Tube, deflection yoke (untuk kumparan refleksi CRT), choke suppression TVI (Television Interference). Penggeser gelombang radio (converter) dan penguat RF (RF Amplifier) Penguat audio : RFI suppression choke, transformator frekuensi audio, magnetik untuk kompensasi Antenna Jalur transmisi (transmission line) RF wattmeter Penggunaan keramik magnetik pada peralatan gelombang mikro adalah : Isolator Penggeser fasa (phase shiffer) Circulator Peralatan yang memanfaatkan efek faraday ; isolator dengan inti ferit berbentuk silindris. Rotater ferit ; gyrator yang terdiri atas suatu silinder ferit yang dikelilingi oleh magnet permanen. Jalur trasnmisi coaxial ; isolator frit digunakan dalam jalur transmisi ini dalam kombinasi dengan bahan dielektrik. Penguat ferrimagnetik/ferromagnetik : penguat menggunakan ferit. Pembatas daya. Isolator. Ferit juga digunakan pada peralatan telekomunikasi yang lain, seperti pada telepon dan telegrafi. 2.10.4 Bidang mekanik Pembuatan magnet untuk meteran air merupakan aplikasi komponen keramik magnetik dalam bidang mekanik. Untuk mainan. Pemegang pada white board. 2.11 Proses Pembuatan Magnet Keramik Pembuatan magnet permanen didasarkan atas cara-cara pembuatan keramik secara umum. Dimana pada proses pembuatannya meliputi beberapa tahap antara lain: pencampuran bahan baku, kalsinasi, pembentukan dan pembakaran (sintering). Parameter-parameter proses pembuatan keramik sangat tergantung pada jenis keramik yang akan dibuat, aplikasinya dan sifat-sifat fisis yang diinginkan. 2.11.1 Pencampuran bahan baku Blending dan mixing merupakan istilah yang biasa digunakan dalam proses pembuatan material dengan menggunakan metode serbuk akan tetapi kedua proses tersebut memiliki arti yang berbeda. Menurut standar ISO, blending didefenisikan sebagai proses penggilingan suatu materialtertentu hingga menjadi serbuk yang merata pada beberapa komposisi nominal. Proses blending dilakukan untuk menghasilkan serbuk yang sesuai dengan komposisi dan ukuran yang diinginkan. Sedangkan mixing didefenisikan sebagai pencampuran dua atau lebih serbuk yang berbeda (Downson , 1990) Pencampuran bahan baku dibutuhkan untuk mendapatkan campuran material yang homogen agar produk yang dihasilkan lebih sempurna. Proses pencampuran yang umum dilakukan adalah pencampuran secara kimia basah (wet chemical process). Proses ini dilakukan melalui pencampuran dalam bentuk larutan, sehingga akan diperoleh tingkat homogenitas yang lebih tinggi daripada cara konvensional. Metode ini dapat dikelompokkan menjadi dua yaitu : metode desolven dan metode presitipasi. Metode desolven dilakukan dengan cara mencampurkan beberapa sistem larutan kemudian diubah menjadi serbuk dengan cara pelepasan bahan bahan pelarutnya (solven) secara fisika melalui pemanasan/pendinginan secara tepat supaya tidak terjadi proses seperasi senyawa-senyawa (kation-kation). Metode presitipasi adalah proses bahan terlarut (solute) dari larutan dengan cara pengendapan. Untuk mengubah endapan menjadi serbuk dilakukan proses pemanasan/kalsinasi. Contoh dari metode ini antara lain coorpresipitasi, sol gel (James S.R, 1988).