kromatografi

19
KROMATOGRAFI Kromatografi adalah suatu teknik pemisahan molekul berdasarkan perbedaan pola pergerakan antara fase gerak dan fase diam untuk memisahkan komponen (berupa molekul) yang berada pada larutan. [1] Molekul yang terlarut dalam fase gerak, akan melewati kolom yang merupakan fase diam. [1] Molekul yang memiliki ikatan yang kuat dengan kolom akan cenderung bergerak lebih lambat dibanding molekul yang berikatan lemah. [2] Dengan ini, berbagai macam tipe molekul dapat dipisahkan berdasarkan pergerakan pada kolom. [2] Setelah komponen terelusi dari kolom, komponen tersebut dapat dianalisis dengan menggunakan detektor atau dapat dikumpulkan untuk analisis lebih lanjut. [2] Beberapa alat-alat analitik dapat digabungkan dengan metode pemisahan untuk analisis secara on-line (on-line analysis) seperti: penggabungan kromatografi gas (gas chromatography) dan kromatografi cair (liquid chromatography) dengan mass spectrometry (GC-MS dan LC-MS), Fourier- transform infrared spectroscopy (GC-FTIR), dan diode-array UV-VIS (HPLC- UV-VIS). [2] Jenis Kromatografi Kromatografi Cair (Liquid Chromatography) Kromatografi cair merupakan teknik yang tepat untuk memisahkan ion atau molekul yang terlarut dalam suatu larutan. Jika larutan sampel berinteraksi dengan fase stasioner, maka molekul-molekul didalamnya berinteraksi dengan fase stasioner; namun interaksinya berbeda dikarenakan adanya perbedaan daya serap (adsorption), pertukaran ion (ion exchange), partisi (partitioning), atau ukuran. Perbedaan ini membuat komponen terpisah satu dengan yang lain dan dapat dilihat perbedaannya dari lamanya waktu transit komponen tersebut melewati kolom. [3] Terdapat beberapa jenis kromatografi cair, diantaranya: reverse phase chromatography, High Performance Liquid Chromatography (HPLC), size exclusion chromatography, serta supercritical fluid chromatography. [4] 1

Upload: marina-fitriani

Post on 07-Nov-2015

82 views

Category:

Documents


0 download

DESCRIPTION

KROMATOGRAFI

TRANSCRIPT

KROMATOGRAFI

Kromatografi adalah suatu teknik pemisahan molekul berdasarkan perbedaan pola pergerakan antara fase gerak dan fase diam untuk memisahkan komponen (berupa molekul) yang berada pada larutan.[1] Molekul yang terlarut dalam fase gerak, akan melewati kolom yang merupakan fase diam.[1] Molekul yang memiliki ikatan yang kuat dengan kolom akan cenderung bergerak lebih lambat dibanding molekul yang berikatan lemah.[2] Dengan ini, berbagai macam tipe molekul dapat dipisahkan berdasarkan pergerakan pada kolom.[2]Setelah komponen terelusi dari kolom, komponen tersebut dapat dianalisis dengan menggunakan detektor atau dapat dikumpulkan untuk analisis lebih lanjut.[2] Beberapa alat-alat analitik dapat digabungkan dengan metode pemisahan untuk analisis secara on-line (on-line analysis) seperti: penggabungan kromatografi gas (gas chromatography) dan kromatografi cair (liquid chromatography) dengan mass spectrometry (GC-MS dan LC-MS), Fourier-transform infrared spectroscopy (GC-FTIR), dan diode-array UV-VIS (HPLC-UV-VIS).[2]

Jenis Kromatografi

Kromatografi Cair (Liquid Chromatography)

Kromatografi cair merupakan teknik yang tepat untuk memisahkan ion atau molekul yang terlarut dalam suatu larutan. Jika larutan sampel berinteraksi dengan fase stasioner, maka molekul-molekul didalamnya berinteraksi dengan fase stasioner; namun interaksinya berbeda dikarenakan adanya perbedaan daya serap (adsorption), pertukaran ion (ion exchange), partisi (partitioning), atau ukuran. Perbedaan ini membuat komponen terpisah satu dengan yang lain dan dapat dilihat perbedaannya dari lamanya waktu transit komponen tersebut melewati kolom.[3] Terdapat beberapa jenis kromatografi cair, diantaranya: reverse phase chromatography, High Performance Liquid Chromatography (HPLC), size exclusion chromatography, serta supercritical fluid chromatography.[4]Reverse phase chromatographyReverse phase chromatography merupakan alat analitikal yang kuat dengan memadukan sifat hidrofobik serta rendahnya polaritas fase stasioner yang terikat secara kimia pada padatan inert seperti silika.[4] Metode ini biasa digunakan untuk proses ekstraksi dan pemisahan senyawa yang tidak mudah menguap (non-volatile).[4]High performance liquid chromatographyHigh performance liquid chromatography (HPLC) mempunyai prinsip yang mirip dengan reverse phase.[4] Hanya saja dalam metode ini, digunakan tekanan dan kecepatan yang tinggi.[4] Kolom yang digunakan dalam HPLC lebih pendek dan berdiameter kecil, namun dapat menghasilkan beberapa tingkatan equilibrium dalam jumlah besar.[4]Size exclusion chromatographySize exclusion chromatography, atau yang dikenal juga dengan gel permeation atau filtration chromatography biasa digunakan untuk memisahkan dan memurnikan protein.[4] Metode ini tidak melibatkan berbagai macam penyerapan dan sangat cepat.[4] Perangkat kromatografi berupa gel berpori yang dapat memisahkan molekul besar dan molekul kecil.[4] Molekul besar akan terelusi terlebih dahulu karena molekul tersebut tidak dapat penetrasi pada pori-pori.[4]Kromatografi Pertukaran Ion (Ion-Exchange Chromatography)

Kromatografi pertukaran ion (ion-exchange chromatography) biasa digunakan untuk pemurnian materi biologis, seperti asam amino, peptida, protein.[5]

HYPERLINK "file:///C:\\Users\\TOSHIBA\\Downloads\\Kromatografi%20-%20Wikipedia%20bahasa%20Indonesia,%20ensiklopedia%20bebas.htm" \l "cite_note-Carrier-6" [6] Metode ini dapat dilakukan dalam dua tipe, yaitu dalam kolom maupun ruang datar (planar).[5] Terdapat dua tipe pertukaran ion, yaitu pertukaran kation (cation exchange) dan pertukaran anion (anion exchange).[6] Pada pertukaran kation, fase stasioner bermuatan negatif; sedangkan pada pertukaran anion, fase stasioner bermuatan positif.[6] Molekul bermuatan yang berada pada fase cair akan melewati kolom.[6] Jika muatan pada molekul sama dengan kolom, maka molekul tersebut akan terelusi.[6] Namun jika muatan pada molekul tidak sama dengan kolom, maka molekul tersebut akan membentuk ikatan ionik dengan kolom.[6] Untuk mengelusi molekul yang menempel pada kolom diperlukan penambahan larutan dengan pH dan kekuatan ionik tertentu.[6] Pemisahan dengan metode ini sangat selektif dan karena biaya untuk menjalankan metode ini murah serta kapasitasnya tinggi, maka metode ini biasa digunakan pada awal proses keseluruhan.[6]Kromatografi adalah teknik untuk memisahkan campuran menjadi komponennya dengan bantuan perbedaan sifat fisik masing-masing komponen. Alat yang digunakan terdiri atas kolom yang di dalamnya diisikan fasa stasioner (padatan atau cairan). Campuran ditambahkan ke kolom dari ujung satu dan campuran akan bergerak dengan bantuan pengemban yang cocok (fasa mobil). Pemisahan dicapai oleh perbedaan laju turun masing-masing komponen dalam kolom, yang ditentukan oleh kekuatan adsorpsi atau koefisien partisi antara fasa mobil dan fasa diam (stationer).

Komponen utama kromatografi adalah fasa stationer dan fasa mobil dan kromatografi dibagi menjadi beberapa jenis bergantung pada jenis fasa mobil dan mekanisme pemisahannya, seperti ditunjukkan di Tabel 12.1

Tabel 12.1 Klasifikasi kromatografi

KriteriaNama

Fasa mobilKromatografi cair, kromatografi gasKromatografi adsorpsi, kromatografi partisi

MekanismeKromatografi pertukaran ionkromatografi gel

Fasa stationerKromatografi kolom, kromatografi lapis tipis,kromatografi kertas

Beberapa contoh kromatografi yang sering digunakan di laboratorium diberikan di bawah ini.

a. Kromatografi partisi

Prinsip kromatografi partisi dapat dijelaskan dengan hukum partisi yang dapat diterapkan pada sistem multikomponen yang dibahas di bagian sebelumnya. Dalam kromatografi partisi, ekstraksi terjadi berulang dalam satu kali proses. Dalam percobaan, zat terlarut didistribusikan antara fasa stationer dan fasa mobil. Fasa stationer dalam banyak kasus pelarut diadsorbsi pada adsorben dan fasa mobil adalah molekul pelarut yang mengisi ruang antar partikel yang ter adsorbsi.

Contoh khas kromatografi partisi adalah kromatografi kolom yang digunakan luas karena merupakan sangat efisien untuk pemisahan senyawa organik (Gambar 12.3).

Kolomnya (tabung gela) diisi dengan bahan seperti alumina, silika gel atau pati yang dicampur dengan adsorben, dan pastanya diisikan kedalam kolom. Larutan sampel kemudian diisikan kedalam kolom dari atas sehingga sammpel diasorbsi oleh adsorben. Kemudian pelarut (fasa mobil; pembawa) ditambahkan tetes demi tetes dari atas kolom.

Partisi zat terlarut berlangsung di pelarut yang turun ke bawah (fasa mobil) dan pelarut yang teradsorbsi oleh adsorben (fasa stationer). Selama perjalanan turun, zat terlarut akan mengalami proses adsorpsi dan partisi berulang-ulang. Laju penurunan berbeda untuk masing-masing zat terlarut dan bergantung pada koefisien partisi masing-masing zat terlarut. Akhirnya, zat terlarut akan terpisahkan membentuk beberapa lapisan.

Akhirnya, masing-masing lapisan dielusi dengan pelarut yang cocok untuk memberikan spesimen murninya. Nilai R didefinisikan untuk tiap zat etralrut dengan persamaan berikut.

R = (jarak yang ditempuh zat terlarut) / (jarak yang ditempuh pelarut/fasa mobil).

Gambar 12.3 Diagram skematik kromatografi

b. Kromatografi kertas

Mekanisme pemisahan dengan kromatografi kertas prinsipnya sama dengan mekanisme pada kromatografi kolom. Adsorben dalam kromatografi kertas adalah kertas saring, yakni selulosa. Sampel yang akan dianalisis ditotolkan ke ujung kertas yang kemudian digantung dalam wadah. Kemudian dasar kertas saring dicelupkan kedalam pelarut yang mengisi dasar wadah. Fasa mobil (pelarut) dapat saja beragam. Air, etanol, asam asetat atau campuran zat-zat ini dapat digunakan.

Kromatografi kertas diterapkan untuk analisis campuran asam amino dengan sukses besar. Karena asam amino memiliki sifat yang sangat mirip, dan asam-asam amino larut dalam air dan tidak mudah menguap (tidak mungkin didistilasi), pemisahan asam amino adalah masalah paling sukar yang dihadapi kimiawan di akhir abad 19 dan awal abad 20. Jadi penemuan kromatografi kertas merupakan berita sangat baik bagi mereka.

Kimiawan Inggris Richard Laurence Millington Synge (1914-1994) adalah orang pertama yang menggunakan metoda analisis asam amino dengan kromatografi kertas. Saat campuran asam amino menaiki lembaran kertas secara vertikal karena ada fenomena kapiler, partisi asam amino antara fasa mobil dan fasa diam (air) yang teradsorbsi pada selulosa berlangsung berulang-ulang. Ketiak pelarut mencapai ujung atas kertas proses dihentikan. Setiap asam amino bergerak dari titik awal sepanjang jarak tertentu. Dari nilai R, masing-masing asam amino diidentifikasi.

Kromatografi kertas dua-dimensi (2D) menggunakan kertas yang luas bukan lembaran kecil, dan sampelnya diproses secara dua dimensi dengan dua pelarut.

Gambar 12.4 Contoh hasil kromatografi kertas pigmen dari www.indigo.com/ science-supplies/filterpaper. html

c. Kromatografi gas

Campuran gas dapat dipisahkan dengan kromatografi gas. Fasa stationer dapat berupa padatan (kromatografi gas-padat) atau cairan (kromatografi gas-cair).

Umumnya, untuk kromatografi gas-padat, sejumlah kecil padatan inert misalnya karbon teraktivasi, alumina teraktivasi, silika gel atau saringan molekular diisikan ke dalam tabung logam gulung yang panjang (2-10 m) dan tipis. Fasa mobil adalah gas semacam hidrogen, nitrogen atau argon dan disebut gas pembawa. Pemisahan gas bertitik didih rendah seperti oksigen, karbon monoksida dan karbon dioksida dimungkinkan dengan teknik ini.

Dalam kasus kromatografi gas-cair, ester seperti ftalil dodesilsulfat yang diadsorbsi di permukaan alumina teraktivasi, silika gel atau penyaring molekular, digunakan sebagai fasa diam dan diisikan ke dalam kolom. Campuran senyawa yang mudah menguap dicampur dengan gas pembawa disuntikkan ke dalam kolom, dan setiap senyawa akan dipartisi antara fasa gas (mobil) dan fasa cair (diam) mengikuti hukum partisi. Senyawa yang kurang larut dalam fasa diam akan keluar lebih dahulu.

Metoda ini khususnya sangat baik untuk analisis senyawa organik yang mudah menguap seperti hidrokarbon dan ester. Analisis minyak mentah dan minyak atsiri dalam buah telah dengan sukses dilakukan dengan teknik ini.

Efisiensi pemisahan ditentukan dengan besarnya interaksi antara sampel dan cairannya. Disarankan untuk mencoba fasa cair standar yang diketahui efektif untuk berbagai senyawa. Berdasarkan hasil ini, cairan yang lebih khusus kemudian dapat dipilih. Metoda deteksinya, akan mempengaruhi kesensitifan teknik ini. Metoda yang dipilih akan bergantung apakah tujuannya analisik atau preparatif.

d. HPLC

Akhir-akhir ini, untuk pemurnian (misalnya untuk keperluan sintesis) senyawa organik skala besar, HPLC (high precision liquid chromatography atau high performance liquid chromatography) secara ekstensif digunakan. Bi la zat melarut dengan pelarut yang cocok, zat tersebut dapat dianalisis. Ciri teknik ini adalah penggunaan tekanan tinggi untuk mengirim fasa mobil kedalam kolom. Dengan memberikan tekanan tinggi, laju dan efisiensi pemisahan dapat ditingkatkan dengan besar.

Silika gel atau oktadesilsilan yang terikat pada silika gel digunakan sebagai fasa stationer. Fasa stationer cair tidak populer. Kolom yang digunakan untuk HPLC lebih pendek daripada kolom yang digunakan untuk kromatografi gas. Sebagian besar kolom lebih pendek dari 1 m.

Kromatografi penukar ion menggunakan bahan penukar ion sebagai fasa diam dan telah berhasil digunakan untuk analisis kation, anion dan ion organik.

Latihan

12.1 Distilasi fraktionalTekanan uap dua cairan A dan B adalah 1,50 x 104 N m-2 dan 3,50 x 104 N m-2 pada 20C. dengan menganggap campuran A dan B mengikuti hukum Raoult, hitung fraksi mol A bila tekanan uap total adalah 2,90 x 104 N m-2 pada 20C.

12.1 Jawab Fraksi mol A, nA, dinyatakan dengan.

(nA x 1,50 x 104) + (1 nA) x 3,50 x 104 = 2,90 x 104 nA = 0,30

KROMATOGRAFI LAPIS TIPIS

Kromatografi lapis tipis merupakan salah satu analisis kualitatif dari suatu sampel yang ingin dideteksi dengan memisahkan komponen-komponen sampel berdasarkan perbedaan kepolaran.[1]

Prinsip

Prinsip kerjanya memisahkan sampel berdasarkan perbedaan kepolaran antara sampel dengan pelarut yang digunakan.[1] Teknik ini biasanya menggunakan fase diam dari bentuk plat silika dan fase geraknya disesuaikan dengan jenis sampel yang ingin dipisahkan.[1] Larutan atau campuran larutan yang digunakan dinamakan eluen.[1] Semakin dekat kepolaran antara sampel dengan eluen maka sampel akan semakin terbawa oleh fase gerak tersebut.[2]Visualisasi

Proses berikutnya dari kromatografi lapis tipis adalah tahap visualisasi.[1] Tahapan ini sangat penting karena diperlukan suatu keterampilan dalam memilih metode yang tepat karena harus disesuaikan dengan jenis sampel yang sedang di uji.[1] Salah satu yang dipakai adalah penyemprotan dengan larutan ninhidrin.[3] Ninhidrin (2,2-Dihydroxyindane-1,3-dione) adalah suatu larutan yang akan digunakan untuk mendeteksi adanya gugus amina.[3] Apabila pada sampel terdapat gugus amina maka ninhidrin akan bereaksi menjadi berwarna ungu.[3] Biasanya padatan ninhidirn ini dilarutkan dalam larutan butanol.[3]Nilai Rf

Jarak antara jalannya pelarut bersifat relatif.[4] Oleh karena itu, diperlukan suatu perhitungan tertentu untuk memastikan spot yang terbentuk memiliki jarak yang sama walaupun ukuran jarak plat nya berbeda.[4] Nilai perhitungan tersebut adalah nilai Rf, nilai ini digunakan sebagai nilai perbandingan relatif antar sampel.[4] Nilai Rf juga menyatakan derajat retensi suatu komponen dalam fase diam sehingga nilai Rf sering juga disebut faktor retensi.[4] Nilai Rf dapat dihitung dengan rumus berikut[4]:

Rf = Jarak yang ditempuh substansi/Jarak yang ditempuh oleh pelarut

Semakin besar nilai Rf dari sampel maka semakin besar pula jarak bergeraknya senyawa tersebut pada plat kromatografi lapis tipis.[5] Saat membandingkan dua sampel yang berbeda di bawah kondisi kromatografi yang sama, nilai Rf akan besar bila senyawa tersebut kurang polar dan berinteraksi dengan adsorbent polar dari plat kromatografi lapis tipis.[5]Nilai Rf dapat dijadikan bukti dalam mengidentifikasikan senyawa.[5] Bila identifikasi nilai Rf memiliki nilai yang sama maka senyawa tersebut dapat dikatakan memiliki karakteristik yang sama atau mirip.[5] Sedangkan, bila nilai Rfnya berbeda, senyawa tersebut dapat dikatakan merupakan senyawa yang berbeda.[5]Kromatografi Lapis Tipis

Bagian ini merupakan pengantar ke topik kromatografi lapis tipis. Meskipun anda adalah seorang pemula yang mungkin lebih mengenal kromatografi kertas, penjelasantentang kromatografi lapis tipis sama mudahnya dengan kromatografi kertas.

Pelaksanaan kromatografi lapis tipisLatar Belakang

Kromatografi digunakan untuk memisahkan substansi campuran menjadi komponen-komponennya. Seluruh bentuk kromatografi berkerja berdasarkan prinsip ini.

Semua kromatografi memiliki fase diam (dapat berupa padatan, atau kombinasi cairan-padatan) dan fase gerak (berupa cairan atau gas). Fase gerak mengalir melalui fase diam dan membawa komponen-komponen yang terdapat dalam campuran. Komponen-komponen yang berbeda bergerak pada laju yang berbeda. Kita akan membahasnya lebih lanjut.

Pelaksaanan kromatografi lapis tipis menggunakan sebuah lapis tipis silika atau alumina yang seragam pada sebuah lempeng gelas atau logam atau plastik yang keras.

Jel silika (atau alumina) merupakan fase diam. Fase diam untuk kromatografi lapis tipis seringkali juga mengandung substansi yang mana dapat berpendarflour dalam sinar ultra violet, alasannya akan dibahas selanjutnya. Fase gerak merupakan pelarut atau campuran pelarut yang sesuai.

Kromatogram

Kita akan mulai membahas hal yang sederhana untuk mencoba melihat bagaimana pewarna tertentu dalam kenyataannya merupakan sebuah campuran sederhana dari beberapa pewarna.

Sebuah garis menggunakan pinsil digambar dekat bagian bawah lempengan dan setetes pelarut dari campuran pewarna ditempatkan pada garis itu. Diberikan penandaan pada garis di lempengan untuk menunjukkan posisi awal dari tetesan. Jika ini dilakukan menggunakan tinta, pewarna dari tinta akan bergerak selayaknya kromatogram dibentuk.

Ketika bercak dari campuran itu mengering, lempengan ditempatkan dalam sebuah gelas kimia bertutup berisi pelarut dalam jumlah yang tidak terlalu banyak. Perlu diperhatikan bahwa batas pelarut berada di bawah garis dimana posisi bercak berada.

Alasan untuk menutup gelas kimia adalah untuk meyakinkan bawah kondisi dalam gelas kimia terjenuhkan oleh uap dari pelarut. Untuk mendapatkan kondisi ini, dalam gelas kimia biasanya ditempatkan beberapa kertas saring yang terbasahi oleh pelarut. Kondisi jenuh dalam gelas kimia dengan uap mencegah penguapan pelarut.

Karena pelarut bergerak lambat pada lempengan, komponen-komponen yang berbeda dari campuran pewarna akan bergerak pada kecepatan yang berbeda dan akan tampak sebagai perbedaan bercak warna.

Gambar menunjukkan lempengan setalah pelarut bergerak setengah dari lempengan.

Pelarut dapat mencapai sampai pada bagian atas dari lempengan. Ini akan memberikan pemisahan maksimal dari komponen-komponen yang berwarna untuk kombinasi tertentu dari pelarut dan fase diam.

Perhitungan nilai Rf

Jika anda ingin mengetahui bagaimana jumlah perbedaan warna yang telah terbentuk dari campuran, anda dapat berhenti pada bahasan sebelumnya. Namun, sering kali pengukuran diperoleh dari lempengan untuk memudahkan identifikasi senyawa-senyawa yang muncul. Pengukuran ini berdasarkan pada jarak yang ditempuh oleh pelarut dan jarak yang tempuh oleh bercak warna masing-masing.

Ketika pelarut mendekati bagian atas lempengan, lempengan dipindahkan dari gelas kimia dan posisi pelarut ditandai dengan sebuah garis, sebelum mengalami proses penguapan.

Pengukuran berlangsung sebagai berikut:

Nilai Rf untuk setiap warna dihitung dengan rumus sebagai berikut:

Rf=jarak yang ditempuh oleh komponenjarak yang ditempuh oleh pelarut

Sebagai contoh, jika komponen berwarna merah bergerak dari 1.7 cm dari garis awal, sementara pelarut berjarak 5.0 cm, sehingga nilai Rf untuk komponen berwarna merah menjadi:

Jika anda dapat mengulang percobaan ini pada kondisi yang tepat sama, nilai Rf yang akan diperoleh untuk setiap warna akan selalu sama. Sebagai contoh, nilai Rf untuk warna merah selalu adalah 0.34. Namun, jika terdapat perubahan (suhu, komposisi pelarut dan sebagainya), nilai tersebut akan berubah. Anda harus tetap mengingat teknik ini jika anda ingin mengidentifikasi pewarna yang tertentu. Mari kita lihat bagaimana menggunakan kromatografi lapis tipis untuk menganalisis pada bagian selanjutnya.

Bagaimana halnya jika substansi yang ingin anda analisis tidak berwarna?

Ada dua cara untuk menyelesaikan analisis sampel yang tidakberwarna.

Menggunakan pendarflour

Mungkin anda masih ingat apa yang telah saya sebutkan bahwa fase diam pada sebuah lempengan lapis tipis seringkali memiliki substansi yang ditambahkan kedalamnya, supaya menghasilkan pendaran flour ketika diberikan sinar ultraviolet (UV). Itu berarti jika anda menyinarkannya dengan sinar UV, akan berpendar.

Pendaran ini ditutupi pada posisi dimana bercak pada kromatogram berada, meskipun bercak-bercak itu tidak tampak berwarna jika dilihat dengan mata. Itu berarti bahwa jika anda menyinarkan sinar UV pada lempengan, akan timbul pendaran dari posisi yang berbeda dengan posisi bercak-bercak. Bercak tampak sebagai bidang kecil yang gelap.

Sementara UV tetap disinarkan pada lempengan, anda harus menandai posisi-posisi dari bercak-bercak dengan menggunakan pinsil dan melingkari daerah bercak-bercak itu. Seketika anda mematikan sinar UV, bercak-bercak tersebut tidak tampak kembali.

Penunjukkan bercak secara kimia

Dalam beberapa kasus, dimungkinkan untuk membuat bercak-bercak menjadi tampak dengan jalan mereaksikannya dengan zat kimia sehingga menghasilkan produk yang berwarna. Sebuah contoh yang baik adalah kromatogram yang dihasilkan dari campuran asam amino.

Kromatogram dapat dikeringkan dan disemprotkan dengan larutan ninhidrin. Ninhidrin bereaksi dengan asam amino menghasilkan senyawa-senyawa berwarna, umumnya coklat atau ungu.

Dalam metode lain, kromatogram dikeringkan kembali dan kemudian ditempatkan pada wadah bertutup (seperti gelas kimia dengan tutupan gelas arloji) bersama dengan kristal iodium.

Uap iodium dalam wadah dapat berekasi dengan bercak pada kromatogram, atau dapat dilekatkan lebih dekat pada bercak daripada lempengan. Substansi yang dianalisis tampak sebagai bercak-bercak kecoklatan.

Dalam metode lain, kromatogram dikeringkan kembali dan kemudian ditempatkan pada wadah bertutup (seperti gelas kimia dengan tutupan gelas arloji) bersama dengan kristal iodium.

Uap iodium dalam wadah dapat berekasi dengan bercak pada kromatogram, atau dapat dilekatkan lebih dekat pada bercak daripada lempengan. Substansi yang dianalisis tampak sebagai bercak-bercak kecoklatan.

Penggunaan kromatografi lapis tipis untuk mengidentifikasi senyawa-senyawa

Anggaplah anda mempunyai campuran asam amino dan ingin menemukan asam amino-asam amino tertentu yang terkandung didalam campuran tersebut. Untuk sederhananya, mari kira berasumsi bahwa anda mengetahui bahwa campuran hanya mungkin mengandung lima asam amino.

Setetes campuran ditempatkan pada garis dasar lempengan lapis tipis dan bercak-bercak kecil yang serupa dari asam amino yang telah diketahui juga ditempatkan pada disamping tetesan yang akan diidentifikasi. Lempengan lalu ditempatkan pada posisi berdiri dalam pelarut yang sesuai dan dibiarkan seperti sebelumnya. Dalam gambar, campuran adalah M dan asam amino yang telah diketahui ditandai 1-5.

Bagian kiri gambar menunjukkan lempengan setelah pelarut hampirmencapai bagian atas dari lempengan. Bercak-bercak masih belum tampak. Gambar kedua menunjukkan apa yang terjadi setelah lempengan disemprotkan ninhidrin.

Tidak diperlukan menghitung nilai Rf karena anda dengan mudah dapat membandingkan bercak-bercak pada campuran dengan bercak dari asam amino yang telah diketahui melalui posisi dan warnanya.

Dalam contoh ini, campuran mengandung asam amino 1, 4 dan 5.

Bagaimana jika campuran mengandung lebih banyak asam amino daripada asam amino yang digunakan sebagai perbandingan? Ini memungkinkan adanya bercak-bercak dari campuran yang tidak sesuai dengan asam amino yang dijadikan perbandingan itu. Anda sebaiknya mengulangi eksperimen menggunakan asam amino lain sebagai perbandingan.

Bagaimana kromatografi lapis tipis berkerja?

Fase diam-jel silika

Jel silika adalah bentuk dari silikon dioksida (silika). Atom silikon dihubungkan oleh atom oksigen dalam struktur kovalen yang besar. Namun, pada permukaan jel silika, atom silikon berlekatan pada gugus -OH.

Jadi, pada permukaan jel silika terdapat ikatan Si-O-H selain Si-O-Si. Gambar ini menunjukkan bagian kecil dari permukaan silika.

Permukaan jel silika sangat polar dan karenanya gugus -OH dapat membentuk ikatan hidrogen dengan senyawa-senyawa yang sesuai disekitarnya, sebagaimana halnya gaya van der Waals dan atraksi dipol-dipol..

Fase diam lainnya yang biasa digunakan adalah alumina-aluminium oksida. Atom aluminium pada permukaan juga memiliki gugus -OH. Apa yang kita sebutkan tentang jel silika kemudian digunakan serupa untuk alumina.

Apa yang memisahkan senyawa-senyawa dalam kromatogram?

Ketika pelarut mulai membasahi lempengan, pelarut pertama akan melarutkan senyawa-senyawa dalam bercak yang telah ditempatkan pada garis dasar. Senyawa-senyawa akan cenderung bergerak pada lempengan kromatografi sebagaimana halnya pergerakan pelarut.

Bagaimana cepatnya senyawa-senyawa dibawa bergerak ke atas pada lempengan, tergantung pada:

Bagaimana kelarutan senyawa dalam pelarut. Hal ini bergantung pada bagaimana besar atraksi antara molekul-molekul senyawa dengan pelarut.

Bagaimana senyawa melekat pada fase diam, misalnya jel silika. Hal ini tergantung pada bagaimana besar atraksi antara senyawa dengan jel silika.

Anggaplah bercak awal mengandung dua senyawa, yang satu dapat membentuk ikatan hidrogen, dan yang lainnya hanya dapat mengambilbagian interaksi van der Waals yang lemah.

Senyawa yang dapat membentuk ikatan hidrogen akan melekat pada jel silika lebih kuat dibanding senyawa lainnya. Kita mengatakan bahwa senyawa ini terjerap lebih kuat dari senyawa yang lainnya. Penjerapan merupakan pembentukan suatu ikatan dari satu substansi pada permukaan.

Penjerapan bersifat tidak permanen, terdapat pergerakan yang tetap dari molekul antara yang terjerap pada permukaan jel silika dan yang kembali pada larutan dalam pelarut.

Dengan jelas senyawa hanya dapat bergerak ke atas pada lempengan selama waktu terlarut dalam pelarut. Ketika senyawa dijerap pada jel silika-untuk sementara waktu proses penjerapan berhenti-dimana pelarut bergerak tanpa senyawa. Itu berarti bahwa semakin kuat senyawa dijerap, semakin kurang jarak yang ditempuh ke atas lempengan.

Dalam contoh yang sudah kita bahas, senyawa yang dapat membentuk ikatan hidrogen akan menjerap lebih kuat daripada yang tergantung hanya pada interaksi van der Waals, dan karenanya bergerak lebih jauh pada lempengan.

Bagaimana jika komponen-komponen dalam campuran dapat membentuk ikatan-ikatan hidrogen?

Terdapat perbedaan bahwa ikatan hidrogen pada tingkatan yang sama dan dapat larut dalam pelarut pada tingkatan yang sama pula. Ini tidak hanya merupakan atraksi antara senyawa dengan jel silika. Atraksi antara senyawa dan pelarut juga merupakan hal yang penting-hal ini akan mempengaruhi bagaimana mudahnya senyawa ditarik pada larutan keluar dari permukaan silika.

Bagaimanapun, hal ini memungkinkan senyawa-senyawa tidak terpisahkan dengan baik ketika anda membuat kromatogram. Dalam kasus itu, perubahan pelarut dapat membantu dengan baik-termasukmemungkinkan perubahan pH pelarut.

Ini merupakan tingkatan uji coba ? jika satu pelarut atau campuran pelarut tidak berkerja dengan baik, anda mencoba pelarut lainnya. (Berikan tingkatan dimana anda dapat berkerja, seseorang telah berkerja keras untuk anda dan anda hanya menggunakan campuran pelarut yang telah anda berikan dan segala sesuatunya akan berkerja dengan sempurna!)

1