fluida

14
Fluida Fluida Statis Suatu zat yang mempunyai kemampuan mengalir dinamakan fluida. Cairan adalah salah satu jenis fluida yang mempunyai kerapatan mendekati zat padat. Letak partikelnya lebih merenggang karena gaya interaksi antar partikelnya lemah. Gas juga merupakan fluida yang interaksi antar partikelnya sangat lemah sehingga diabaikan. Dengan demikian kerapatannya akan lebih kecil. Karena itu, fluida dapat ditinjau sebagai sistem partikel dan kita dapat menelaah sifatnya dengan menggunakan konsep mekanika partikel. Apabila fluida mengalami gaya geser maka akan siap untuk mengalir. Jika kita mengamati fluida statik, misalnya air di tempayan. Sistem ini tidak mengalami gaya geser tetapi mempunyai tekanan pada dinding tempayan. Berdasarkan uraian di atas, maka pada materi ini akan dibahas dulu mengenai fluida statik. Pada kegiatan berikutnya akan dibahas secara khusus fluida dinamik. Pembahasan sering menggunakan konsep umum maupun prinsip mekanika partikel. Dengan mempelajari materi ini berarti Anda akan dapat mengkaji sifat fluida statik dan fluida dinamik dengan menggunakan mekanika partikel. Setelah Anda

Upload: lailitwin

Post on 28-Dec-2015

4 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Fluida

Fluida

Fluida Statis

Suatu zat yang mempunyai kemampuan mengalir dinamakan fluida. Cairan adalah salah satu

jenis fluida yang mempunyai kerapatan mendekati zat padat. Letak partikelnya lebih merenggang

karena gaya interaksi antar partikelnya lemah. Gas juga merupakan fluida yang interaksi antar

partikelnya sangat lemah sehingga diabaikan. Dengan demikian kerapatannya akan lebih kecil.

Karena itu, fluida dapat ditinjau sebagai sistem partikel dan kita dapat menelaah sifatnya dengan

menggunakan konsep mekanika partikel. Apabila fluida mengalami gaya geser maka akan siap

untuk mengalir. Jika kita mengamati fluida statik, misalnya air di tempayan. Sistem ini tidak

mengalami gaya geser tetapi mempunyai tekanan pada dinding tempayan.

Berdasarkan uraian di atas, maka pada materi ini akan dibahas dulu mengenai fluida

statik. Pada kegiatan berikutnya akan dibahas secara khusus fluida dinamik. Pembahasan

sering menggunakan konsep umum maupun prinsip mekanika partikel. Dengan

mempelajari materi ini berarti Anda akan dapat mengkaji sifat fluida statik dan fluida

dinamik dengan menggunakan mekanika partikel. Setelah Anda mempelajari materi ini,

Anda dapat:

Menjelaskan makna hukum utama hidrostatik.

Menggunakan hukum utama hidrostatik untuk menjelaskan sifat-sifat khusus fluida

statik.

Membedakan macam-macam aliran fluida.

Menghitung debit aliran fluida.

Menjelaskan makna hukum Bernoulli.

Menggunakan hukum Bernoulli untuk menjelaskan sifat-sifat aliran fluida.

Menjelaskan masalah fluida pada kehidupan sehari-hari dengan menggunakan konsep

fisika.

Page 2: Fluida

FLUIDA STATIKA

Pada kegiatan pertama ini dibahas mengenai fluida statik. Pada kehidupan sehari-hari, sering

digunakan air sebagai contoh. Marilah kita perhatikan air tenang yang berada di tempayan.

Gambar 1. Gaya-gaya yang bekerja pada dinding tempayan

tempat fluida adalah gaya normal

Cairan yang berada dalam bejana mengalami gaya-gaya yang seimbang sehingga cairan itu tidak

mengalir. Gaya dari sebelah kiri diimbangi dengan gaya dari sebelah kanan, gaya dari atas

ditahan dari bawah. Cairan yang massanya M menekan dasar bejana dengan gaya sebesar Mg.

Gaya ini tersebar merata pada seluruh permukaan dasar bejana sebagaimana diperhatikan oleh

bagian cairan dalam kolom kecil pada gambar 2. Selama cairan itu tidak mengalir (dalam

keadaan statis), pada cairan tidak ada gaya geseran sehingga hanya melakukan gaya ke bawah

oleh akibat berat cairan dalam kolom tersebut:

W = m g = ρ V g (1)

di mana ρ adalah kerapatan zat cair dan V adalah volume kolom. Jika V = h ∆A, kita dapatkan:

W = ρ h ∆A g (2)

Jika berat itu ditopang oleh luasan ∆A, yang sebanding dengan luas ∆A, akibatnya gaya ini

tersebar rata di permukaan dasar bejana.

Tekanan sebagai perbandingan gaya dengan luas, seperti diilustrasikan pada gambar 2.

gaya ρ h ∆A g

p = = = ρ g h (3)

luas ∆A

Di mana p adalah tekanan yang dialami dasar bejana. Dalam satuan tekanan diukur dalam N/m2,

dan dinamai Pascal yang disingkat Pa.

Page 3: Fluida

Gambar 2. Cairan setinggi h menekan dasar bejana A

Sebagai contoh, misalnya akan kita cari tekanan dalam Pa, yang dialami dasar bejana cairan

dengan ρ = 670 kg/m3 dan dalamnya 46 cm.

p = ρ g h = (670 kg/m3) (9,8 m/s2) (0,46 m)

= 3020 kg.m/s2 = 3020 n/m2 = 3020 pa

Tekanan adalah kuantitas skalar tanpa arah. Gaya yang menghasilkan tekanan yang bekerja pada

permukaan adalah vektor yang arahnya selalu tegak lurus ke permukaan. Kita dapat

menggunakan keadaan setimbang gaya-gaya yang bekerja pada bagian kecil cairan, seperti

dilukiskan pada gambar 3.

Gambar 3. Keseimbangan gaya pada bagian kecil cairan.

Bagian kecil cairan yang tebalnya ∆A dan luas permukaan bagian atas (ada bagian bawah) A

serta luas sisi lainnya A mengalami keseimbangan gaya. Dalam hal ini cairan tidak mengalami

pergolakan yang mengakibatkan cairan mengalir. Tiap bagian dari cairan mestilah diam.

Tekanan yang dilakukan bagian cairan lain pada bagian kecil cairan tersebut yang dilakukan oleh

gaya-gaya F3 dan F4 saling meniadakan, demikian pula oleh gaya-gaya F5 dan F6. Gaya F2

mestilah cukup besar terhadap F1 agar dapat menopang bagian cairan tersebut.

Karena F3 = F4 dan F5 = F6, maka p3 (=F3/A2) = p4 (=F4/A2) dan p5 (=F5/A2) = p6 (F6/A2)

Page 4: Fluida

Sekarang, karena F2 > F1, maka

p2 A1 . p1 A1 = ρ g A1 ∆h

p2 . p1 = ρ g ∆h

atau

∆p = ρ g ∆h (4)

Jadi, apabila kerapatannya konstan, perubahan tekanan di antara dua titik di dalam cairan

berbanding lurus dengan perbedaan kedalamannya. Pada kedalaman yang sama mempunyai

tekanan yang sama. Selama variasi tekanan di dalam cairan statis hanya tergantung pada

kedalamannya, maka penambahan tekanan dari luar yang dilakukan pada permukaan cairan,

misalnya karena perubahan tekanan atmosfer atau tekanan piston, mestilah merupakan

penambahan tekanan pada semua titik dalam cairan, seperti dikemukakan oleh Blaise Pascal

(1623-1662), yang dikenal sebagai Hukum Pascal.

Tekanan yang dilakukan pada cairan dalam ruang tertutup, akan diteruskan kemana-mana sama

besarnya termasuk dinding tempatnya.

Apabila kerapatan ρ (massa jenis) sangat kecil, misalnya fluida berbentuk gas, maka perbedaan

tekanan pada dua titik di dalam fluida dapat diabaikan. Jadi di dalam suatu bejana yang berisi

gas, tekanan gas di mana-mana adalah sama. Hal ini tentu saja bukan untuk ∆h yang sangat

besar. Tekanan dari udara sangat bervariasi untuk ketinggian yang besar dalam atmosfer. Dalam

kenyataan, kerapatan ρ berbeda pada ketinggian yang tidak sama dan ρ ini hendaklah kita

ketahui sebagai fungsi dari h sebelum persamaan 3 di atas kita pergunakan.

Marilah kita perhatikan hal berikut ini. Andaikan ke dalam pipa berbentuk U dimasukkan dua

jenis cairan yang tidak dapat bercampur secara sempurna, misalnya air dengan minyak tanah.

Gambar 4. Pipa berbentuk U berisi dua jenis cairan.

Setelah cairan yang kerapatannya ρ1 dimasukkan ke dalam pipa, cairan yang kedua dengan

kerapatan ρ2 (di mana ρ1 > ρ2) dimasukkan ke salah satu pipa sehingga permukaan cairan yang

Page 5: Fluida

pertama turun setinggi 1 di bawah cairan yang kedua itu, sedangkan permukaan lainnya naik

setinggi 1 seperti dilukiskan pada gambar 4 di atas. Akan kita tentukan perbandingan kerapatan

kedua jenis cairan tersebut. Pada gambar 4 titik C menyatakan keseimbangan tekanan. Tekanan

di C yang dilakukan cairan di atasnya adalah

Untuk cairan pertama : p1 g 2 1

Untuk cairan kedua : p1 g 2 1

Sehingga :

ρ1 g 2 1 = ρ2 g (d + 2 1)

atau

ρ2 2 1

=

ρ1 d + 2 1

Perbandingan kerapatan suatu bahan terhadap kerapatan air dinamakan kerapatan relatif atau

gravitas spesifik dari bahan tersebut.

Archimedes mendapatkan suatu prinsip sebagai berikut. Apabila suatu benda dicelupkan ke

dalam cairan (seluruhnya atau sebagian), benda itu mengalami gaya ke atas sebesar berat cairan

yang dipindahkannya.

Apabila sebuah benda dicelupkan ke dalam cairan, seperti ditunjukkan dalam gambar 5, total

gaya ke atas atau gaya angkat, dilakukan pada benda. Akibat gaya ini terdapat perbedaan tekanan

pada bagian bawah dan bagian atas benda. Selama tekanan ini tergantung pada kedalaman

cairan, dengan mudah dapat kita hitung gaya ke atas untuk sederhana, antara lain untuk balok

tegar di mana salah satu permukaannya horizontal.

Gambar 5. Gaya-gaya yang dialami benda di dalam cairan.

Benda yang bentuknya sembarang, agak sulit kita menentukan tekanan karena bervariasinya

titik-titik permukaan benda. Untuk itu prinsip Archimedes sangat membantu. Andaikan benda

Page 6: Fluida

dikeluarkan dari dalam cairan akan menggantikan tempat benda sebanyak tempat yang tadinya

ditempati oleh benda. Jika volume tempat benda itu telah diisi oleh cairan, ini menunjukkan

bahwa adanya keseimbangan gaya yang terjadi antar cairan penyelubung dengan bagian cairan

yang menggantikan tempat benda tersebut. Jadi gaya netto yang arahnya ke atas adalah sama

dengan m1 g, di mana m1 adalah massa cairan yang mengisi volume yang ditinggalkan oleh

benda.

Sekarang kita tinggalkan pengandaian tadi dengan benda sesungguhnya yang massanya mo.

Cairan mestilah melakukan kontak dengan setiap titik pada permukaan benda yang memberikan

gaya-gaya sama di mana-mana. Gaya ini mestilah sama dengan gaya penopang cairan yang

volumenya adalah sama. Gaya ini adalah gaya angkat (ke atas) yang besar.

Fb = mf g = ρ1 Vg (5)

Di mana m1 adalah massa cairan yang dipindahkan oleh benda yang tercelup ke dalam cairan

adalah kerapatan cairan. Gaya angkat ini arahnya vertikal ke atas.

Persamaan 5 dinamakan Prinsip Archimedes yang dikemukakan oleh Archimedes pada tahun

250 SM. Jika gaya ke atas lebih kecil daripada berat benda yang dicelupkan, mala benda itu akan

tenggelam. Jika berat benda lebih kecil daripada gaya ke atas, benda itu akan terapung.

Seandainya ρo adalah kerapatan benda, dengan volume V, maka beratnya

W = mo g = ρo V g

Gaya ke atas dinyatakan oleh persamaan 5.

Fb = ρ1 V g (6)

Netto gaya ke atas ketika benda semuanya tercelup dalam cairan

Fnet = Fb . W =( ρf. ρo) V g (7)

Jadi benda dengan kerapatan lebih besar dari kerapatan cairan akan tenggelam, dan yang lebih

kecil akan terapung.

Fluida Dinamis 

ciri - ciri fluida ideal

1. tak termampatkan ( tidak kompresibel ), artinya bahwa fluida ideal tidak akan mengalami

perubahan volume ( atau massa jenis ) ketika mendapatkan pengaruh tekanan.

2. tidak kental ( non - viskos ) , artinya fluida ideal tidak akan mengalami gesekan antara lapisan

Page 7: Fluida

fluida satu dengan lapisan yang lain maupun dengan dinding saluran akibat gejala viskositas.

3. alirannya tidak bergolak ( non turbulen ), artinya fluida ideal memiliki aliran garis - arus

( streamline) sehingga tidak ada elemen fluida yang memiliki kecepatan sudut tertentu.

4. alirannya tidak bergantung waktu ( tunak ) artinya kecepatan fluida ideal di titik tertentu

adalah konstan, namun kecepatan fluida pada dua titik yang berbeda boleh saja tidak sama. pada

aliran tunak, garis arus ( lintasan yang dilalui oleh aliran fluida ) dalam suatu penampang aliran

tampak berlapis - lapis, sehingga aliran tunak juga disebut aliran laminer ( berlapis)

Definisi aliran turbulen

Ketika melebihi suatu kelajuan tertentu, aliran fluida menjadi turbulen. Aliran turbulen ditandai

oleh adanya aliran berputar.

Persamaan Kontinuitas

Debit adalah besaran yang menyatakan volume fluida yang mengalir melalui suatu penampang

tertentu dalam satuan waktu tertentu.

Debit = Volume Fluida / Selang Waktu

Q = V / t

Persamaan debit kontinuitas

Pada fluida tak termampatkan debit fluida dititik mana saja selalu konstan

Perbandingan kecepatan fluida dengan luas dan diameter penampang- kelajuan aliran fluida tak

termampatkan berbanding terbalik dengan luas penampang yang dilaluinya.- kelajuan aliran

fluida tak termampatkan berbanding terbalik dengan kuadrat jari-jari penampang atau diameter

penampang.

Daya oleh debit fluida

Page 8: Fluida

Debit fluida yang mengalir pada ketinggian tertentu dipengaruhi oleh gravitasi dan massa jenis

air.

JADI PERSAMAAN KONTINUITAS

P1A1V1 = P2A2V2

TAK TERMAMPATKAN MAKA P1 = P2 KONSTAN

A1V1 = A2V2 = A3V3………..KONSTAN

JUGA PERSAMAAN DEBIT AIR DAPAT DIKATAKAN

Q = A . V

Q1 = Q2 = Q3……….KONSTAN

PENERAPAN HUKUM KONTINUITAS

- UJUNG SELANG PEMADAM KEBAKARAN YANG BERPENAMPANG KECIL.

- MENYEMPITKAN UJUNG SELANG SAAT MENYIRAM TANAMAN.

- PIPA ALIRAN AIR PADA PLTA BERPENAMPANG KECIL SEBAGAI PENGGERAK

TURBIN

Page 9: Fluida

luida:

Fluida dapat disebut juga sebagai zat alir. Atau lebih lengkapnya disebuta zat yang dapat mengalir. Kita ketahui bahwa zat atau benda terbagi menjadi tiga jenis yakni padat, cair dan gas.

Manakah yang termasuk pada Fluida?dari ketiga jenis zat tersebut yang merupakan fluida adalah gas dan cair.

Konsep Awal:

Tekanan Pada Zat PadatApa yang dimaksud dengan tekanan?

Tekanan adalah gaya yang diberlakukan terhadap satuan luas tertentu. Tekanan berbanding lurus dengan gaya yang diberikannya dan berbanding terbalik dengan luas daerahnya. Semakin besar gaya maka semakin besar tekanan, kebalikan dengan luas, semain luas daerah yang ditekan maka semakin kecil tekanannya.

Sesuai dengan persamaan berikut: Rumus Tekanan pada Zat Padat

Ket:P = Tekanan (N/m*2) atau Pascal (Pa)F = Gaya (N)A = Luas Permukaan (m*2)

Apakah buktinya bahwa dengan luas permukaan yang besar tekanan kecil? Coba tebak apa yang terjadi saat seorang perempuan menginjak tanah lumpur dengan memakai sepatu hak tinggi dengan sepatu tidak memiliki hak? jawabannya pastilah dengan memakai sepatu berhak tinggi akan membuat tanah lumpur tertekan lebih dalam dibandingkan dengan yang tidak berhak.

Atau contoh lain, manakah yang lebih sakit saat ditusuk jarum suntik ketika diobati dokter dengan ditusuk tangan telunjuk? jelas suntikan lebih sakit karena luas permukaannya sangat kecil.

Lalu Apa Hubungannya Tekanan dengan Fluida?

Semua fluida memberikan tekanan seperti udara di dalam ban. Partikel-partikel dari fluida terus bergerak ke segala arah secara acak, pergerakan tersebut menabrak partikel satu sama lain. Tabrakan ini menyebabnkan tekanan, dan tekanan yang diberikan merata ke segala arah. 

Page 10: Fluida

Ketika partikel dikumpulkan di dalam satu bagian dari ruang tertutup, seperti partikel udara yang memasukiban, partikel-partikel tersebut dengan cepat menyebar untuk mengisi semua ruang yang tersedia. Itu karenapartikel udara selalu bergerak dari daerah tekanan tinggi ke daerah tekanan rendah. Hal ini menjelaskan mengapa udara yang masuk ban melalui lubang kecil dengan cepat mengisi ban keseluruhan.

Jenis-Jenis FluidaFluida digolongkan menjadi dua jenis yaitu: Fluida Statis dan Fluida Dinamis. Apa perbedaannya? Fluida statis adalah fluida dalam keadaan diam sedangkan fluida dinamis adalah fluida dalama keadaan bergerak.

Kita Pelajari Materi ini di Halaman posting berikutnya:(Klik Link di Bawah Untuk Mempelajari Materi Fluida).

Fluida Statis:Berikut adalah beberapa hal yang dipelajari dalam fluida statis:

1. Tekanan Hidrostatis2. Tekanan Mutlak3. Asas Bejana Berhubungan4. Hukum Pascal5. Hukum Archimides6. Tegangan Permukaan7. Kapilaritas

Fluida Dinamis:

Berikut adalah materi yang dipelajari dalam fluida dinamis:

1. Debit Air2. Persamaan Kontinuitas3. Azas Bernoulli yang terdiri dari: Toricelli, Venturimeter, Manometer, dan

Tabung Pitot serta Gaya Angkat Pesawat.4. Viskositas