diagnosis - partial discharges

Upload: ricky-erick-maulana

Post on 16-Oct-2015

74 views

Category:

Documents


2 download

DESCRIPTION

diagnosis peralatan

TRANSCRIPT

  • Diagnosis

    of High Voltage Equipments

    Suwarno

    Institut Teknologi Bandung

    2011

  • Beban (stress) yang penyebab penuaan

    isolasi peralatan tegangan tinggi

    Thermal Temperatur maksimum, gradien temperatur

    Electrical Tegangan/medan , arus, frekuensi

    Ambient Kelembaban, gas, radiasiUV, zat kimia

    Mechanical Kompresi, vibrasi

  • LifeExtension:maintenance,

    repair

    SAFETY

    MARGIN

    LEVEL

    KRITIS

    NORMAL PENURUNAN KINERJA GANGGUAN

    WAKTU

    GAGAL

    Lifetime cycle

  • Maintenance Strategy

    Breakdown maintenance

    Time based maintenance (TBM)

    Condition based maintenance (CBM)

    Reliability Centered Maintenance (RCM)

  • Cable GIS Generator Transformer

    Partial Discharge

    Internal Surface Corona

  • Partial Discharge

  • PD Signal Sensor Application

    Gelombang EM Elektroda UHF, Antena GIS, Switchgear,

    Saluran udara

    Tegangan dari

    impuls arus

    Coupling Capacitor Mesin listrik, kabel

    Arus Impuls Transformator arus

    frekuensi tinggi (HF CT)

    Kabel, transformator

    Suara/

    Vibrasi

    Sensor Ultrasonic (AE) Transformator, GIS

    Cahaya Sensor Pockels

    UV (Corona) camera

    GIS , isolator,

    transformator

    Panas IR Camera Isolator, Mesin listrik

    Partial Discharge

  • LATAR BELAKANG

    Partial Discharge (PD) dapat muncul pada

    isolasi padat

    PD menyebabkan degradasi isolasi

    Diagnosis kondisi

  • Bentuk gel. PD

    1 10 ns

    INS.

    VOID

    Elektron

    Ion

  • Rangkaian ekivalen Void

    Whitehead

    Cm

    Cg

    Cb

    ELEKTRODA

    VOID

    LDPE

    ELEKTRODA

  • Munculnya Void

    1. Fabrikasi : Cross Linking

    2. Instalasi : jointing

    3. Operasi: short circuit

  • Persamaan-persamaan

    )()( tVxCC

    CtV

    bg

    bg

    Muatan PD pada void : Qg = Cg . Vg

    bg

    bgmbmg

    a

    bg

    bg

    ma

    CC

    CCCCCCC

    CC

    CCCC

    .

    Tegangan Void

    Kapasitansi total

  • Discharges in gas

    1 10 ns

    INS.

    VOID

  • Tegangan-arus PD

  • Hubungan tegangan arus

  • Quantities Sensor type Application

    EM wave UHF Electrode, Antenna GIS, Switchgear, OH Lines

    Voltage Coupling Capacitor Rotating Machines, Cables

    Current RF CT Cable

    Sound/Vibration Ultrasonic sensor (AE) Transformer, GIS

    Light Pockels sensor GIS

    PD Detection

  • Capacitive Detector of PD

    t

    d

    d dttiC

    tV0

    )(1

    )(

    Rk

    Cp

    Rd

    Cd

    Vd

    Ca

    Proportional to q

  • 19

    Spektrum Gelombang

    Elektromagnetik

    PD

  • Visual Electrical Discharge Activity Observations

    Water Drop

    Corona

    Spot Corona /

    Discharge

    Dry Band Corona Dry Band

    Discharge

    CoroCAM Mark I

  • Example: HV CABLE

    1. Conductor

    2. Conductor Screen

    3. XLPE Insulation

    4. Insulation Screen

    5. Lead Alloy Sheath

    6. Copper Screen

    7. Water Blocking Tape

    8. Bedding

    9. Armouring

    10. Outer Sheath

    ProtrusionVoid

  • Stator generator

  • PD Coupler

  • Overhead Lines & Outdoor insulators

    Corona & surface discharges

  • Isolator surface discharge &

    Flashover

  • Appearance of defects

    1. Fabrication : Cross Linking

    2. Installation : jointing

    3. Operation: short circuit

  • ri 2

    Lines of electrical field

    Semicon layer protrusion

    (Stress concentration at the tip)

    Void

    (Field strength doubling)

  • Protrusion on the inner semiconducting layer of an HV cable. The electric strength at the tip of the protrusion is estimated to be 1,100 kV/mm

    r

    dr

    VEm 4

    ln

    2Local field enhancement

    Em: maximum field

    V : voltage

    r : radius of protrusion

    d: electrode separation

  • No treeing Early stage

    Growing tree

    DEVELOPMENT OF ELECTRICAL TREEING

  • Treeing equivalent circuit

    (2.4)

    tVCC

    CV

    bg

    b

    g

    dt

    tdVtV

    CC

    CCRV

    bg

    bg

    R

  • Energy released by a discharge

    Heat

    Light emission

    Chemical

    processes

    Mechanical

    waves

    Discharge

    Current in external

    circuit

    Elektromagnetic

    radiation

    Reference or Validation : CIGRE TF 15.01.04 paper 15-302 Paris Session 2000

  • Elektroda CIGRE II untuk Void

  • RANGKAIAN PENGUKURAN

    PD

    Detector

    HV Source

    Sample

    Wave

    detector

    PD

    Analyzer

    TDSSwitch PC

  • 1. Osiloskop Digital TDS 220

    2. Personal Computer Pentium II

    3. RC Detector dan High Pass Filter

    4. Arrester ( dipasang di channel 1 pada osiloskop )

  • PD pada Void rH 56 %

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    10000

    Sudut Phasa [deg.]

    Mu

    ata

    n P

    D [p

    C]

    56%.rH

  • PD pada Void rH 92%

    -10000

    -8000

    -6000

    -4000

    -2000

    0

    2000

    4000

    6000

    8000

    10000

    Sudut Phasa [deg.]

    Mu

    ata

    n P

    D [p

    C]

    92%.rH

  • BESARAN PD

    Muatan (q) [pC]

    Sudut phasa terjadinya(q) [der.]

    Banyaknya kejadian (n) [per siklus]

    DISTRIBUSI PD

    q-q-n

    q-q

    q-n

  • Muatan Maksimum

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    0 10 20 30 40 50 60

    Waktu [menit]

    Mu

    ata

    n M

    ak

    sim

    um

    PD

    [p

    C]

    Pos Neg Pos. Neg.

  • Jumlah PD per siklus

    0

    5

    10

    15

    20

    25

    0 10 20 30 40 50 60

    Waktu [menit]

    Jum

    lah

    pu

    lsa

    PD

    pe

    r s

    iklu

    s

    Pos.Neg.

    [Pos.][Neg.]

  • Pengaruh tegangan thd q

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000

    45000

    0 1 2 3 4 5 6 7

    Tegangan [kV rms]

    Mu

    ata

    n P

    D M

    aks

    imu

    m [

    pC

    ]

    Pos. Neg. [Pos.] [Neg.]

  • No Sumber PD

    Waktu antar

    Kejadian PD

    Rata-rata (ms)

    Polaritas

    1 Pemohonan

    Listrik 2

    Positif

    dan

    Negatif

    2

    Void 0.4

    Positif

    dan

    Negatif

    3 Korona 0.1 Negatif

    Tipikal karakteristik urutan waktu PD

  • Frekuensi PD

    Muatan PD

    Polaritas

    Pengaruh tegangan sisa

    Beberapa perbandingan

  • 0 60 120 180 240 300 360-100

    -75

    -50

    -25

    0

    25

    50

    75

    100

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-125

    -100

    -75

    -50

    -25

    0

    25

    50

    75

    100

    125

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    Inisiasi Aging Menjelang gagal

    Electrical treeing mengeluarkan partial discharge

    Pola Partial Discharge dapat menjadi indikasi

    degradasi isolasi kabel

  • PD Parameters

    Charge (q) [pC]

    Phase of occrurrence(q) [deg.]

    Number of envent (n) [per cycle]

    PD Wave shape

    PD distribution

    q-q-n

    q-q

    q-n

  • 0 60 120 180 240 300 360-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-30

    -20

    -10

    0

    10

    20

    30

    P

    D C

    harg

    e[p

    C]

    Phase Angle [deg.]

    a.Treeingb. Void

    c.Corona

    Typical q-q-n patterns (a) treeing,

    (b) void (c) corona

  • 0 60 120 180 240 300 360-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    P

    D C

    harg

    e[pC

    ]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-75

    -50

    -25

    0

    25

    50

    75

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-30

    -20

    -10

    0

    10

    20

    30

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    PD Pulse Sequence

    Treeing Void

    Corona

  • Frequency of PD

    PD Charge

    Polarity

    Effects of residual voltage

    Statistical analysis

    Trending

    Analysis of PD data

  • Statatistical parameters

    t

    Nt

    i

    i

    mN

    x

    x 1

    t

    Nt

    i

    mi

    N

    xx

    1

    2

    2

    Nt

    i

    mi

    k

    xxS

    13

    3

    Mean

    Variance

    Skewness

  • Pulse Height freq distribution of Phase R

    (example)

    PD big enough

    Positive PD dominant semi conductive

    coating/surface.

  • Pulse Height Chart frequency distribution

    phase T (example)

    Small PD

    not

    significant

  • NQN for phase R,S T at 13 kV

  • Qmax for phase R,S and T at 13 kV

  • PD Parameters

    Conventional : Charge (q)[pC]

    Modern

    Chage (q) [pC]

    Phase(q) [deg.]

    Frequency (n) [per cycle]

    DISTRIBUTION of PD

    q-q-n

    q-q

    q-n

  • 0 60 120 180 240 300 360-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-30

    -20

    -10

    0

    10

    20

    30

    P

    D C

    harg

    e[p

    C]

    Phase Angle [deg.]

    a.Treeingb. Void

    c.Korona

    f-q-n patterns (a) Electrical treeing,

    (b) void and (c) corona

  • 0 60 120 180 240 300 360-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    P

    D C

    harg

    e[pC

    ]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-75

    -50

    -25

    0

    25

    50

    75

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-30

    -20

    -10

    0

    10

    20

    30

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    PD Pulse sequence

    Treeing Void

    Korona

  • Ilustrasi skewness

    Sk = 0 Sk > 0 Sk < 0

  • Kurtosis

    3

    4

    1

    4

    Nt

    i

    mi

    u

    xx

    K

    Ku > 0 Ku = 0 Ku < 0

  • PD sources Corona on conductor

    Surface discharges

    Streamer in liquid

    Treeing PD

    Void PD

    -How to distinguish PD sources & interpret the physical processes behind

    f-q-n/f-n patterns, pulse-sequence and waveshape

    -The role of applied voltage : sinusoidal, triangular, rectangular

  • nfq-n , pulse sequence and pulse waveshape of corona

    discharge

    q ~ v(t) , unbalance , n ~ v(t), Townsend process

    0 60 120 180 240 300 360-30

    -20

    -10

    0

    10

    20

    30

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-30

    -20

    -10

    0

    10

    20

    30

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    -20.0n 0.0 20.0n 40.0n 60.0n 80.0n 100.0n 120.0n

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2Rise time = 6.4 ns

    Width = 41 ns

    PD

    Curr

    ent (m

    A)

    Time (ns)0 60 120 180 240 300 360

    -500

    -400

    -300

    -200

    -100

    0

    100

    200

    300

    400

    500

    ch

    arg

    e (

    pC

    )

    phase angle (deg)

    Corona in air under sinusoidal voltage

    f-q-n

    f-n

    Pulse

    sequences

  • Corona in air under triangular

    voltage

    0 30 60 90 120 150 180 210 240 270 300 330 360

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    Ch

    ag

    e (

    pC

    )

    Phase angle (deg)0 30 60 90 120 150 180 210 240 270 300 330 360

    -200

    -150

    -100

    -50

    0

    50

    100

    150

    200

    PD

    nu

    mb

    er

    (a.u

    .)

    Phase angle (deg)

    Discharge magnitude as well as probability is

    dependent on the instantaneous of the applied

    voltage. Strongly unsymmetrical.

    f-q-n f-n

  • Streamer PD in Silicone oil of 100 cSt

    0 60 120 180 240 300 360-30

    -20

    -10

    0

    10

    20

    30

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0 60 120 180 240 300 360-25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    20

    25

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    0.0 20.0n 40.0n 60.0n 80.0n 100.0n 120.0n

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    PD

    Curr

    ent (m

    A)

    Time (s)0 30 60 90 120 150 180 210 240 270 300 330 360-70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    PD

    nu

    mb

    er

    (a.u

    .)

    Phase angle (deg)

    Many

    pulses

    ~ v

    f-q-n

    f-n

    Pulse

    sequences

    streamer

    fq-n , pulse sequence and pulse waveshape :q ~ v(t) ,

    unsymmetrical , n ~ v(t), streamer process

  • f-q-n pulse sequences and f-n PD patterns of

    streamer in silicone oil under triangular voltage

    0 30 60 90 120 150 180 210 240 270 300 330 360

    -150

    -125

    -100

    -75

    -50

    -25

    0

    25

    50

    75

    100

    125

    150

    Ch

    arg

    e (

    pC

    )

    Phase angle(deg)

    0 90 180 270 360 450 540 630 720

    -150

    -125

    -100

    -75

    -50

    -25

    0

    25

    50

    75

    100

    125

    150

    Ch

    arg

    e (

    pC

    )

    Phase angle(deg)

    0 30 60 90 120 150 180 210 240 270 300 330 360

    0

    25

    50

    75

    100

    125

    150

    Puls

    e n

    um

    be

    r (

    pe

    r 1

    00

    cycle

    s)

    Phase angle (deg)

    f-q-n

    f-n

    Pulse

    sequences

  • f-q-n pulse sequences, pulse sequences, f-n PD

    and waveforms patterns of treeing in LDPE under

    sinusoidal voltage

    0 60 120 180 240 300 360-125

    -100

    -75

    -50

    -25

    0

    25

    50

    75

    100

    125

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]0 60 120 180 240 300 360

    -100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    -10.0n 0.0 10.0n 20.0n 30.0n 40.0n 50.0n

    -0.20

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0.10

    0.15

    0.20

    PD

    Curr

    ent (m

    A)

    Time (s)0 30 60 90 120 150 180 210 240 270 300 330 360

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    PD

    nu

    mb

    er

    (a.u

    )

    Phase angle (deg)

    ~dv/dt

    Few pulses

    f-q-n

    f-n

    Pulse

    sequences

    fq-n , pulse sequence and pulse waveshape :q ~ v(t) ,

    slightly unsymmetrical , n ~ dv/dt, streamer process

  • 0 30 60 90 120 150 180 210 240 270 300 330 360

    -60

    -40

    -20

    0

    20

    40

    60

    Ch

    arg

    e (

    pC

    )

    Phase angle (deg)

    0 30 60 90 120 150 180 210 240 270 300 330 360

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    PD

    nu

    mb

    er

    (a.u

    .)

    Phase angle (deg)

    0 30 60 90 120 150 180 210 240 270 300 330 360

    -100

    -90

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Ch

    arg

    e (

    pC

    )

    Phase angle (deg)

    0 30 60 90 120 150 180 210 240 270 300 330 360

    -180

    -150

    -120

    -90

    -60

    -30

    0

    30

    60

    90

    120

    150

    180

    PD

    nu

    mb

    er

    (a.u

    .)

    Phase angle (deg)

    f-q-n and f-n PD patterns of treeing in LDPE

    under triangular and rectangular voltages

    f-q-n

    f-q-n f-n

    f-n

  • Void PD under sinusoidal voltage

    -10.0n 0.0 10.0n 20.0n 30.0n 40.0n 50.0n 60.0n-1

    0

    1

    2

    3

    4

    PD

    Curr

    ent (m

    A)

    Time (s)

    0 60 120 180 240 300 360-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]0 60 120 180 240 300 360

    -75

    -50

    -25

    0

    25

    50

    75

    PD

    Charg

    e[p

    C]

    Phase Angle [deg.]

    f-q-n

    Pulse

    sequences

    Townsend-

    Streamer

  • Void PD under sinusoidal voltage

    PD pattern is strongly dependent on the void

    condition

    f-q-n

  • Void under triangular voltage

    At early stage q dependent on dv/dt but at

    later stage the first PD pulses in each half

    cycle the q dependent on v(t) but the

    following pulses dependent on dv/dt

  • Condition Assessment

    PD Parameter determination (f-Q-N, pulse sequence etc)

    Determination of critical values

    Trending

    Assessment of condition: interpolation, pattern recognition (NN, ES etc)

  • Partial discharge location

    in Generator

  • Pulse Height Chart : R

    Large PD

    Positive PD dominant location: semiconductive

    coating/surface. Slot

    discharge or end turns.

  • Pulse Height Chart : S

    Medium PD

    Positive PD

  • Gambar 19: Kurva q-q-n fasa R

  • Gambar 19: Kurva q-q-n fasa S

  • Results for normal machines Un=21 kV

    Green-positive pulses, Unit 3

    Black-negative pulses, Unit 3

    Red-positive pulses, Unit 4

    Blue-negative pulses, Unit 4

  • Results for normal machine Un = 19 kV

    Red-positive pulses, the first test Blue-negative pulses, the first test Green-positive pulses, the second test Black-negative pulses, the second test Yellow-positive pulses, the third test Gray-negative pulses, the third test