bahan konstruksi teknik kimia - cara bijak memilih perangkat masak

Upload: pratiti-dini-fachrurrozi

Post on 19-Oct-2015

66 views

Category:

Documents


0 download

DESCRIPTION

Perbandingan material terbaik dalam perancangan alat masak (cookware)

TRANSCRIPT

Cara Bijak Memilih Perangkat Masak - Bag 1 Cara Bijak Memilih Perangkat Masak - Bag 1

Memiliki kesulitan memilih set peralatan masak yang tepat untuk rumah Anda? Ini tidak mudah. Jumlah peralatan masak merek tampaknya tumbuh setiap hari dan berbagai panci dan wajan sangat besar dengan bahan bervariasi dari stainless steel, besi cor, aluminium dan tembaga. Dan membingungkan masalah ini bahkan lebih adalah gaya berpakaian rentang masak yang masak terdiri dari dua atau lebih logam yang berbeda.Jadi dengan semua ini dalam pikiran bagaimana Anda akhirnya memutuskan pada jenis peralatan masak kanan sementara menjaga dalam anggaran Anda? Jawabannya adalah untuk tahu persis apa yang Anda inginkan sebelum Anda membeli. Singkatnya ini berarti bahwa Anda harus cukup tahu tentang peralatan masak untuk memungkinkan Anda untuk membuat keputusan.

Apa yang harus Anda cari ketika membeli peralatan masak? Ada hal-hal tertentu yang perlu Anda pertimbangkan ketika memilih peralatan masak. Ini termasuk:

Konduktivitas panas - Beberapa logam merupakan konduktor panas yang lebih baik daripada yang lain. Sebagai contoh, tembaga adalah konduktor panas yang sangat baik sedangkan stainless steel tidak. Apa ini berarti dalam hal peralatan masak adalah bahwa semakin baik konduktivitas panas yang lebih baik dan lebih merata makanan Anda akan memasak. Ini juga berarti bahwa ketika Anda mengubah panas atas atau bawah peralatan masak tembaga akan bereaksi jauh lebih cepat terhadap perubahan suhu dari peralatan masak stainless steel.

Harga - Jumlah yang Anda bayar untuk peralatan masak Anda kemungkinan besar akan menjadi faktor menentukan dalam apa yang Anda akhirnya membeli. Aturan praktis dengan cookware untuk membeli yang terbaik yang Anda mampu.

Ketahanan - Beberapa jenis peralatan masak akan menjaga penampilan baik mereka dan bertahan lebih lama daripada yang lain. Stainless steel dianggap salah satu yang terbaik dalam hal ini.

Reaktivitas - Beberapa logam bereaksi dengan makanan tertentu. Aluminium misalnya memiliki kecenderungan untuk bereaksi dengan tomat dan hidangan asam lainnya. Ini berarti bahwa makanan Anda benar-benar dapat menyerap beberapa logam, jadi berhati-hati dengan pilihan peralatan masak Anda dan memastikan bahwa Anda menyadari reaktivitas dari setiap produk.

Pemeliharaan - Jika Anda memilih untuk tidak memiliki peralatan masak Anda untuk bersinar setiap malam hanya untuk tetap terlihat baik maka Anda akan perlu mempertimbangkan jumlah perawatan yang diperlukan untuk tetap dalam kondisi prima. Tembaga dan besi cor peralatan masak umumnya memerlukan cukup sedikit pekerjaan untuk tetap mencari sementara stainless steel murni biasanya sedikit lebih mudah untuk melihat setelah. Diposkan oleh iamnothere di 08.21 Tidak ada komentar: Kirimkan Ini lewat EmailBlogThis!Berbagi ke TwitterBerbagi ke FacebookBagikan ke PinterestLabel: amctopfe.com Minggu, 22 Januari 2012Material Perangkat Masak - Bag 2 Material Perangkat Masak - Bag 2

Sebuah Perangkat Masak yang baik, adalah perangkat masak yang telah melalui beberapa tahapan yang telah sesuai dengan standar manufacturing internasional. Salah satu solusi untuk masalah ini adalah untuk membuat lembaran tebal. Ketika memanaskan sepotong baja tebal (bukan lembaran tipis), permukaan bagian bawah baja tidak memiliki pola suhu yang sama seperti permukaan atas. Karena permukaan atas jarak yang lebih besar dari elemen pemanas, kebutuhan energi untuk melakukan dari bawah ke atas (seperti melakukan energi keluar). Permukaan atas dari baja lebih merata dipanaskan dalam kasus ini. Gambar di bawah menunjukkan lembaran tebal dari baja setelah telah diiris sehingga pusat dari tepi depan dimana panas kompor menyentuh bagian bawah lembaran. Hot spot (putih) berkurang pada saat melakukan panas ke atas permukaan lembaran. Di mana lembaran sedang dipanaskan, suhu lebih seragam sekarang, tapi kita masih memiliki pemanas merata dengan bahan ini.Untuk alasan ini, baja tebal, kurang variasi suhu di permukaan atas. Sayangnya, konduktivitas termal rendah berarti banyak energi harus diberikan ke bagian bawah baja dalam rangka untuk mendapatkan puncak panas. Jadi panci yang terbuat dari bahan konduktif termal rendah akan memakan waktu lebih lama untuk mencapai suhu memasak. Bahkan, bahan dengan konduktivitas termal yang rendah membutuhkan waktu lebih lama untuk bereaksi terhadap perubahan suhu, sehingga respon termal dari panci juga akan lambat. (Respon Thermal adalah seberapa cepat suhu permukaan panci bereaksi ketika kita meningkatkan atau menurunkan api dari kompor.)Dalam aplikasi memasak paling, diinginkan untuk memiliki alat panas dengan cepat, tidak mengembangkan hot spot, dan bereaksi terhadap perubahan yang kami lakukan dengan kontrol jangkauan. Bahan dengan konduktivitas termal tinggi memenuhi kebutuhan kami karena mereka mengirimkan panas cepat menghasilkan respon yang cepat terhadap perubahan termal dan bahkan distribusi energi kinetik internal.

Berikut adalah daftar dari beberapa bahan yang umum digunakan dalam peralatan masak dan konduktivitas termal masing mereka:Bahan termal konduktivitasTembaga 401 W / m * KAluminium 237 W / m * KCast Iron 80 W / m * KBaja karbon 51 W / m * KStainless steel 16 W / m * K

Kapasitas panasJumlah energi kinetik internal yang disimpan dalam suatu material dapat disebut sebagai kapasitas panas itu. Ini bukan hal yang sama seperti suhu, yang merupakan energi kinetik rata-rata molekul dalam materi. Sebagai contoh, sebuah kg air pada 100 F mengandung energi lebih dari kg baja pada 100 F. Sementara konduktivitas termal menggambarkan kemampuan bahan untuk menyerap energi, kapasitas panas adalah jumlah energi yang diperlukan untuk menaikkan atau menurunkan suhu material. Komposisi molekul dari beberapa bahan seperti itu karena mereka menyerap energi, banyak yang akan dikonversi menjadi energi potensial dan hanya sejumlah kecil akan meningkatkan energi kinetik molekul (air adalah contoh yang umum). Bahan lain, seperti kebanyakan logam, meningkatkan energi kinetik molekul mereka siap dan tidak menyimpan banyak energi yang diserap sebagai energi potensial. Kapasitas panas bahan adalah berbanding lurus dengan massanya. Jadi, sepotong 2 kg baja telah melipatgandakan kapasitas panas dari sepotong 1 kg baja (masuk akal, kan?).

Apakah ini berarti bahwa alat masak terbuat dari bahan dengan kapasitas panas yang tinggi, akan memakan waktu lebih lama untuk memanaskan, tetapi juga akan memiliki sejumlah besar energi yang tersimpan ketika itu panas. Ketika energi ditarik keluar dari bahan, suhu bahan akan lebih rendah perlahan-lahan bila dibandingkan dengan bahan dengan kapasitas panas rendah. Besi cor sering dikutip sebagai contoh dari bahan kapasitas panas tinggi peralatan masak. Panas spesifik (kapasitas panas dari bahan untuk sebuah massa diberikan) dari besi cor adalah setengah dari panas spesifik aluminium, tetapi karena besi cor peralatan masak umumnya beberapa kali massa dari aluminium peralatan masak, ia memiliki kapasitas panas lebih tinggi.Ketebalan logam yang digunakan dalam konstruksi peralatan masak sering diletakkan oleh produsen (misalnya, 3 aluminium mm), tapi karena kapasitas panas adalah fungsi dari massa materi, kepadatan harus diketahui untuk membuat perbandingan antara alat masak yang berbeda bahan.Densitas Bahan Tertentu PanasAluminium 910 J / kg * K 2600 kg/m3Stainless Steel 500 J / kg * K 7500-8000 kg/m3Baja Karbon 500 J / kg * K 7500-8000 kg/m3Cast Iron 460 J / kg * K 7900 kg/m3Tembaga 390 J / kg * K 8900 kg/m3

Melihat tabel di atas, jika Anda kalikan dengan kepadatan panas spesifik, Anda akan menemukan bahwa kapasitas panas per satuan volume dari baja, besi cor, dan tembaga adalah sekitar 1,5 kali dari aluminium. Ini berarti, untuk mencapai kapasitas panas yang sama dalam sebuah panci aluminium seperti pada panci stainless steel, aluminium panci harus 1,5 kali lebih tebal (dengan asumsi dimensi panci lain adalah sama).

Menarik bersama-sama: difusivitas termalJika Anda telah membayar perhatian, Anda akan menyadari bahwa saya telah menyesatkan Anda ketika saya bahas konduktivitas termal. Konduktivitas termal sendiri tidak menentukan seberapa cepat panci akan memanas (dan juga bagaimana merata akan panas). Bahkan, kapasitas panas memainkan peran dalam menentukan ini juga. Bukankah lebih bagus jika kita memiliki nomor tunggal yang mengatakan kepada kami apa tingkat panas yang akan mentransfer melalui dan tersebar dalam materi? Ada, itu disebut difusivitas termal dari material dan hanya konduktivitas termal dibagi dengan satuan kapasitas panas (panas kepadatan waktu tertentu).

Mari kita lihat bagaimana bahan menumpuk:Bahan difusivitas termalTembaga 120 * 10-6 m2 / sAluminium 100 * 10-6 m2 / sCast Iron 10-6 22 * m2 / sBaja Karbon 14 * 10-6 m2 / sStainless Steel 4.3 * 10-6 m2 / sTanpa perhitungan tambahan berdasarkan persamaan konduksi panas, ada sangat sedikit yang bisa kita lakukan dengan tabel nilai, kecuali membandingkan bahan terhadap satu sama lain. Hal ini jelas, bagaimanapun, bahwa bahan yang berkinerja terbaik (dalam hal dishing energi) adalah tembaga dan aluminium. Hal ini membawa kita untuk pertimbangan terakhir kami: reaktivitas.

ReaktivitasTidak hanya kita harus menyibukkan diri dengan sifat termal bahan, tetapi kita perlu memastikan bahwa materi yang kami gunakan dalam peralatan masak kita tidak merugikan kita atau mempengaruhi rasa makanan kita (Anda memutuskan mana yang lebih buruk). Untuk alasan ini, di samping difusivitas termal yang tinggi, kami juga ingin bahan non-reaktif. Sayangnya, kedua tembaga dan aluminium bereaksi cepat terhadap makanan. (Tembaga, ketika tertelan dalam kuantitas atau secara konsisten, dapat menyebabkan hati, perut, dan masalah ginjal serta anemia Juga, aluminium telah lama dicurigai memberikan kontribusi untuk penyakit Alzheimer.. Oh, masak setiap menyebutkan, pada titik ini dalam diskusi, bahwa sesekali berbusa putih telur dikocok dalam mangkuk tembaga tidak cukup untuk menyakiti Anda -. tapi menahan diri dari memasak setiap hari pada tembaga terkena) Stainless baja, reaktif setidaknya dari semua bahan yang populer digunakan dalam peralatan masak, juga memiliki difusivitas termal terburuk.

Tampaknya saat ini, fisika bukan teman kita. Tapi, melalui keajaiban perusahaan peralatan masak ingin menemukan cara untuk mengisi kita banyak uang, solusi telah dirancang untuk memungkinkan kita untuk menikmati peralatan masak yang terbuat dari bahan dengan difusivitas termal tinggi dan reaktivitas rendah. Dengan menggabungkan permukaan non-reaktif dari stainless steel dengan sifat termal dari tembaga atau aluminium, Anda mendapatkan yang terbaik dari kedua dunia. Ada beberapa variasi pada tema ini: baja atau kaleng berlapis tembaga, stainless steel dengan disk aluminium atau tembaga, aluminium stainless steel cladded, dan tembaga stainless steel cladded. Tabel di bawah ini merangkum penilaian subyektif saya tentang efektivitas kombinasi berbagai bahan (mereka yang tercantum dalam urutan dari yang paling efektif untuk paling tidak):

Komposisi peringkat Komentar

1 Tembaga dengan lapisan timah respon tertinggi; lapisan timah dapat rewel dapat rentan terhadap mencair; eksterior tembaga membutuhkan perawatan lebih

2 Tembaga dengan lapisan stainless steel eksterior Tembaga membutuhkan perawatan lebih tetapi Pembaptisan alat dengan sifat yang sangat baik termal tembaga

3 Aluminium dengan lapisan stainless steel aluminium tebal memberikan respon termal yang sangat baik untuk interior baja tipis

4 Tembaga sepenuhnya terbungkus oleh lapisan Tembaga stainless steel mungkin lebih tipis dari tembaga dengan lapisan stainless steel; eksterior dan interior yang tahan lama dan mudah untuk mempertahankan Aluminium sepenuhnya dibalut oleh lapisan Aluminium stainless steel mungkin lebih tipis dari aluminium dengan lapisan stainless steel; eksterior dan interior yang tahan lama dan mudah untuk mempertahankanAluminium dengan lapisan stainless steel dan tembaga eksterior kinerja Sama seperti aluminium cladded, tetapi dengan kesulitan dalam mempertahankan tembaga

5 Stainless steel dengan tepi tembaga disk yang melengkung dari bagian bawah menyebabkan disk untuk tidak datang ke dalam kontak penuh dengan bagian bawah panci lengkap sehingga konduksi panas lebih rendah dibandingkan dengan tembaga cladded. Stainless steel aluminium dengan disk Sama seperti stainless steel dengan disk tembaga.

Sebelumnya, saya menyebutkan bahwa besi cor memiliki kapasitas panas yang besar dibandingkan dengan bahan lain (terutama karena massa yang digunakan ketika membuat perangkat masak). Karena atribut ini, besi cor mendapat tempat khusus di dapur. Ketika tugas memasak membutuhkan kemampuan untuk mempertahankan panas yang konsisten (dan jumlah yang banyak dari itu), tidak ada yang mengalahkan besi cor. Karena besi cor dapat bereaksi dengan makanan asam dan bahan-bahan yang dimasak untuk waktu yang lama, besi cor cookware berpengalaman - suatu proses dimana lapisan lemak yang perlahan-lahan dimasak ke dalam besi berpori sampai lemak berpolimerisasi membentuk lapisan pelindung (dan membuat alat yang relatif non-stick).

Bahan yang umum dan bagaimana mereka membandingkan. Sekarang kita telah melihat sifat penting dalam memilih bahan peralatan masak, mari kita lihat masing-masing bahan yang umum digunakan dalam peralatan masak.

Common Materials of Cookware(http://www.cookingforengineers.com/article/120/Common-Materials-of-Cookware)

Over the last year, I've received several requests to write an article on cookware. This is a huge subject, and I've been struggling to figure out a way to present the information accurately and concisely. I decided to divide the information up into separate articles and focus this one on some common materials used in the construction of cookware. I also had to decide how much science and math to include. After some thought on the subject, since this site is called "Cooking For Engineers" and not "Cooking for Physicists", I've decided to include enough information that my readers will grasp the concepts without actually doing any derivations (perhaps this could be a future article). Also, since this article is a bit long and relatively complicated, if I've made any mistakes, please let me know so I can correct them as soon as possible.

The selection of pots and pans can be a complicated affair. The shape of the cooking surface and handle(s), materials used in its construction, the intended purpose of the utensil's design, and its flexibility of use in the kitchen all are important factors in choosing cookware. Understanding the materials used is a good first step in understanding how cookware works and what factors may be important to your cooking style. Related ArticlesBeef Stroganoff Creamy Garlic Mashed Potatoes Cooking With Aluminum Chef's Knives Rated Clarified Butter Basic principles The purpose of cookware is to impart energy to ingredients. In America, the energy comes mainly in two forms: burning natural gas or propane gas and electrical resistivity. In both methods, the source of the heat is not uniformly spread over the pan. In a gas stove, the gas come out at regular intervals and forms a ring of individual flames. The heating elements of an electric range are designed to cover as much area as possible, but still have patterns (usually spirals) where there is no heat. Because the heat is not applied evenly, the cook must be aware of this and either compensate with cooking technique or through cookware. High quality cookware should not only be durable, but also take the energy from the heat source and effectively transmit this energy to the ingredients. There are several factors that affect this capability. The two most important factors are thermal conductivity and heat capacity. Almost all discussions concerning the materials used in cookware are focused on these two factors. Thermal conductivity In short, the thermal conductivity of a material is how readily that material absorbs and transmits (releases) energy. When the fire or heating element of a range comes in contact to a pan, the energy from the heat source is transmitted to the pan. This increases the internal kinetic energy of the pan (commonly called "heating up"). The heated material then transmits the energy to nearby materials that are at a lower average molecular kinetic energy level (at a lower temperature than the material). The higher the thermal conductivity of the material, the faster it will heat up and also, the faster the heated area will spread to unheated areas of the same piece of material.

For example, if we placed a large sheet of stainless steel (fairly low thermal conductivity as cooking materials go) on a burner and turned on the burner, the area directly under the burner would get hot while the rest of the sheet slowly heats up. The burner imparts heat quickly only to the region of steel directly over it. The rest of the pan heats up from the conduction of the heat from that spot. When the outer edges of the sheet have reached a hot temperature, the spot directly over the burner would be extremely hot. The figure below shows an example of the temperature of the sheet of steel over a gas burner. The hottest parts are shown in white, hot is red and cool is blue.

One solution to this problem is to make the sheet thicker. When heating a thick piece of steel (instead of a thin sheet), the bottom surface of the steel does not have the same temperature pattern as the top surface. Because the top surface is a greater distance from the heating element, the energy needs to conduct from the bottom to the top (just like the energy conducts outwards). The top surface of the steel is more evenly heated in this case. The figure below shows the thick sheet of steel after it has been sliced so the center of the front edge is where the burner heat touches the bottom of the sheet. The hot spot (white) is reduced by the time the heat conducts to the top surface of the sheet. Where the sheet is being heated, the temperature is more uniform now, but we still have uneven heating with this material.

For this reason, the thicker the steel, the less variation in temperature on the top surface. Unfortunately, low thermal conductivity means it a lot of energy needs to be imparted to the bottom of the steel in order to get the top hot. So a pan made of a low thermally conductive material will take a longer time to reach cooking temperatures. In fact, materials with low thermal conductivity take longer to react to any change in temperature, so the thermal response of the pan would also be slow. (Thermal response is how quickly the surface temperature of the pan reacts to when we increase or decrease the flame of the burner.)

In most cooking applications, it is desirable to have the utensil heat up quickly, not develop hot spots, and react to changes we make to the range controls. Materials with high thermal conductivity fulfill our needs because they transmit heat quickly resulting in fast response to thermal changes and even distribution of the internal kinetic energy.

Here is a list of some common materials used in cookware and their respective thermal conductivity:MaterialThermal conductivity

Copper401 W/m*K

Aluminum237 W/m*K

Cast Iron80 W/m*K

Carbon steel51 W/m*K

Stainless steel16 W/m*K

Heat capacity The amount of internal kinetic energy stored in a material can be referred to as it's heat capacity. This isn't the same thing as temperature, which is the average molecular kinetic energy within the material. For example, a kg of water at 100F contains more energy than a kg of steel at 100F. While thermal conductivity describes the materials ability to absorb energy, heat capacity is the amount of energy that is needed to raise or lower the temperature of the material. The molecular composition of some materials is such that as they absorb energy, much of it gets converted into potential energy and only a small amount increases the molecular kinetic energy (water is a common example). Other materials, like most metals, increase their molecular kinetic energy readily and do not store much of the absorbed energy as potential energy. The heat capacity of a material is proportional to its mass. So, a 2 kg piece of steel has double the heat capacity of a 1 kg piece of steel (make sense, right?). What this means is that cookware made of materials with high heat capacity, will take longer to heat up, but will also have a significant amount of energy stored up when it is hot. When energy is pulled out of the material, the temperature of the material will lower slowly when compared to materials with low heat capacity. Cast iron is often cited as an example of a high heat capacity cookware material. The specific heat (the heat capacity of a material for a given mass) of cast iron is half of aluminum's specific heat, but because cast iron cookware is generally several times the mass of aluminum cookware, it has a much higher heat capacity. The thickness of metals used in the construction of cookware are often sited by the manufacturer (for example, 3 mm aluminum), but since heat capacity is a function of the mass of the material, density must be known to make comparisons between cookware of different materials.MaterialSpecific HeatDensity

Aluminum910 J/kg*K2600 kg/m3

Stainless Steel500 J/kg*K7500 - 8000 kg/m3

Carbon Steel500 J/kg*K7500 - 8000 kg/m3

Cast Iron460 J/kg*K7900 kg/m3

Copper390 J/kg*K8900 kg/m3

Looking at the table above, if you multiply specific heat with density, you'll find that the heat capacity per unit volume of steel, cast iron, and copper are about 1.5 times that of aluminum. This means, to achieve the same heat capacity in an aluminum pan as in stainless steel pan, the aluminum pan needs to be 1.5 times as thick (assuming the other pan dimensions are the same). Pulling it together: thermal diffusivity If you've been paying attention, you'll realize that I've misled you when I discussed thermal conductivity. Thermal conductivity alone does not determine how fast the pan will heat up (and also how evenly it will heat). In fact, the heat capacity plays a role in determining this as well. Wouldn't it be great if we had a single number that told us at what rate heat would transfer through and spread out in the material? There is, it's called the thermal diffusivity of a material and is simply the thermal conductivity divided by the unit heat capacity (specific heat times density). Let's take a look at how the materials stack up:MaterialThermal diffusivity

Copper120 * 10-6 m2/s

Aluminum100 * 10-6 m2/s

Cast Iron22 * 10-6 m2/s

Carbon Steel14 * 10-6 m2/s

Stainless Steel4.3 * 10-6 m2/s

Without additional calculations based on the heat conduction equation, there is very little that we can do with this table of values, except compare the materials against each other. It is clear, however, that the best performing materials (in terms of dishing out energy) are copper and aluminum. This leads us to our final consideration: reactivity.

Reactivity Not only do we have to concern ourselves with the thermal properties of materials, but we need to make sure that the materials we use in our cookware do not harm us or adversely affect the taste of our food (you decide which is worse). For this reason, in addition to the high thermal diffusivity, we would also like a non-reactive material. Unfortunately, both copper and aluminum react readily to foods. (Copper, when ingested in quantity or consistently, can cause liver, stomach, and kidney problems as well as anemia. Also, aluminum has long been suspected of contributing to Alzheimer's disease. Oh, every cookbook mentions, at this point in the discussion, that the occasional foamed egg white whipped in a copper bowl is not enough to harm you - but refrain from cooking every day on exposed copper.) Stainless steel, the least reactive of all popular materials used in cookware, also has the worst thermal diffusivity.

It seems that today, physics is not our friend. But, through the magic of cookware companies wanting to find ways to charge us lots of money, solutions have been devised to enable us to enjoy cookware made of materials with high thermal diffusivity and low reactivity. By combining the non-reactive surface of stainless steel with the thermal properties of copper or aluminum, you get the best of both worlds. There are several variations on this theme: steel- or tin-lined copper, stainless steel with aluminum or copper disk, stainless steel cladded aluminum, and stainless steel cladded copper. The table below summarizes my subjective assessment of the effectiveness of various material combinations (they are listed in order from most effective to least):RankCompositionComments

1Copper with tin liningHighest response; tin lining can be finicky can be susceptible to melting; copper exterior requires more care

2Copper with stainless steel liningCopper exterior requires more care but imparts the utensil with copper's excellent thermal properties

3Aluminum with stainless steel liningThick aluminum provides excellent thermal response to thin steel interior

4Copper fully clad by stainless steelCopper layer may be thinner than copper with stainless steel lining; exterior and interior are durable and easy to maintain

Aluminum fully clad by stainless steelAluminum layer may be thinner than aluminum with stainless steel lining; exterior and interior are durable and easy to maintain

Aluminum with stainless steel lining and copper exteriorSame performance as cladded aluminum, but with the difficulties in maintaining copper

5Stainless steel with copper diskCurved edge of the bottom causes the disk to not come into full contact with the complete bottom of the pan resulting in inferior heat conduction as compared to cladded copper

Stainless steel with aluminum diskSame as stainless steel with copper disk

Previously, I mentioned that cast iron has a large heat capacity as compared to the other materials (mostly because of the mass used when making the cookware). Because of this attribute, cast iron gets a special place in the kitchen. When the cooking task requires the ability to maintain consistent heat (and ample amounts of it), nothing beats cast iron. Because cast iron can react with acidic foods and ingredients that are cooked for a long time, cast iron cookware is seasoned - a process by which layers of fat are slowly cooked into the porous iron until the fat polymerizes forming a protective barrier (and makes the utensil relatively non-stick).

Common materials and how they compare Now that we've looked at the important properties in selecting cookware material, let's take a look at each of the common materials used in cookware. Copper

DescriptionCopper is a soft (scratches easily) but durable (will last a lifetime) material that has great thermal properties. The material is prone to oxidation but with care, will retain its beauty indefinitely.

Pros High thermal diffusivity With enough thickness, pans heat extremely evenly Extremely responsive

Cons Heavy Extremely expensive Copper surface can tarnish or scratch Pan may cool too fast after removal from heat (due to extremely high thermal conductivity) Cooking directly on copper may result in undesirable levels of copper intake

Best uses When lined with tin, nickel, or stainless steel, excellent for all stovetop uses.

Care Hand wash with a non-abrasive detergent and hand dry Regularly use polish on exposed copper to preserve shine

Examples Mauviel Cuprinox (extremely expensive copper with inner stainless steel lining) Mauviel Pastry & Chocolate (extremely expensive copper pans and bowls designed for pastry making) All-Clad Copper Core (Stainless steel clad copper - easier maintenance with the performance of copper)

Aluminum

DescriptionPlain aluminum utensils are low-cost, light-weight, and thermally responsive - but it's reactive. Teflon coated aluminum utensils are low-cost and both non-stick & non-reactive. Anondized aluminum has been treated to develop an aluminum oxide (extremely hard and non-reactive) coating on the surface of the utensil. Clad or lined aluminum has had stainless steel bonded to the interior of the utensil to form a non-reactive surface.

Pros Extremely low cost if plain or teflon lined; moderated priced when anondized Great thermal properties

Cons Very expensive if stainless steel lined or clad highly reactive to acid ingredients (and somewhat reactive to alkaline as well) Lower density may require thicker construction to increase heat capacity Unless anondized or lined or clad with stainless steel, may warp under high heat Unless anondized or clad, aluminum is prone to scratching.

Best uses Plain aluminum - good for non-acid foods, like boiling stock or cooking pasta Coated aluminum - excellent for all purposes if aluminum is fairly thick

CareHand-wash with a mild detergent and washcloth or sponge.

Examples Admiral Craft Saucepans (low cost aluminum pans) Admiral Craft Fry pans (low cost aluminum non-stick pans) Calphalon Commercial (moderately priced anondized aluminum) All-Clad LTD (very expensive aluminum with stainless steel lining) All-Clad Stainless (very expensive stainless steel cladded aluminum)

Cast iron

DescriptionCast iron is composed on iron, carbon (more than carbon steel), and trace elements found in common clays. The iron is melted down and poured into a sand or clay mold to form the utensil. Enameled cast iron has a thin but durable nonreactive layer of glass fused to the surface of the utensil.

Pros Plain cast iron is low cost Manufacturing process results in thick and dense cookware for unparalleled heat capacity Thickness also results in even heating

Cons Enameled cast iron can be expensive (although some are moderately priced) High heat capacity means the utensil takes longer to heat up Although extremely hard, can crack or fracture if dropped or thermally shocked (pouring cold water into a hot pot)

Best uses Traditional woks (plain cast iron), skillets, Dutch ovens Southern cooking

CarePlain cast iron should be seasoned before first use and as needed. A seasoned utensil should receive minimal contact to soap or detergent. Wash by soaking in warm water for a few minutes and repeatedly scrubbing with salt and rinsing until salt remains white (usually one scrubbing is does it). Dry with a cloth and heat over low heat briefly to evaporate all moisture. For enameled cast iron, hand wash in hot soapy water.

Examples Lodge Logic (low cost cast iron) Wok Shop (low cost cast iron traditional Cantonese wok; this wok is awesome, but its rounded bottom works best on gas stoves) Le Creuset (expensive enameled cast iron)

Carbon steel

DescriptionCarbon steel contains less carbon than cast iron and is formed and pressed from sheets instead of being casted. It can be annealed (heating the metal until its molecular structure realigns to alleviate internal stresses and then specially cooled to preserve the new structure) to form blue steel (or black steel), a harder and less reactive material. Carbon steel can also be enamel coated.

Pros All variations are usually low cost Fast seasoning process for carbon steel; enameled carbon steel and blue or black steel does not need seasoning

Cons Poor thermal properties means slow heat up and uneven temperatures. Thin and light (this might be a pro for some people) which results in very little heat capacity

Best uses Fry pans, saute pans, woks

CareShould be seasoned before first use. Care for as if it was cast iron. If desired, pan can be washed in soapy water, scoured, and reseasoned quickly (15 minute seasoning) because of its less porous nature than cast iron.

Examples Gibson Red Parker (extremely low cost carbon steel non-stick) The Wok Shop (low cost carbon steel; also a traditional Cantonese wok)

Stainless steel

DescriptionMixing steel with chromium and nickel (18/8 stainless steel is 18% chromium and 8% nickel while 18/10 has 10% nickel) produces a corrosion resistance steel that is both hard and easy to maintain a shine. Disks of copper or aluminum can be fused to the stainless steel cookware to enhance its thermal properties. Stainless steel can also be used to line copper or aluminum utensils as well as cladding aluminum or copper (see aluminum and copper cookware summaries above).

Pros Plain stainless steel and stainless steel with aluminum or copper disks are low cost to moderately priced Shiny surface makes it easy to see how your food is browning Corrosion resistant and easy to clean With a thick aluminum or copper disk or clad around a core, stainless steel becomes one of the best materials to cook in (not just for its thermal properties, but as well as durability, ease of care, and visual control of cooking - all the benefits of stainless steel with very little of its drawbacks)

Cons Plain stainless steel: worst material to cook on (in terms of thermal properties) Salt may cause pitting over time unless added to boiling liquid

Best uses Plain stainless steel: boiling water (steaming is okay) and non-cooking related tasks (mixing bowls, storage containers, etc.) Stainless steel with copper or aluminum disk: great for all purposes if disk is well bonded and of a fair thickness

CareHand wash with mild detergent. Use gentle abrasives as needed.

Examples Cooktop Essentials(extremely low cost stainless steel) Revere Copper Clad (low cost stainless steel with misleading marketing name; the copper lining at the bottom of these pans are too thin to provide any thermal benefits) T-Fal (Tefal) (low cost stainless steel non-stick with copper marketing gimmick - again, too thin) Farberware Classic (low to moderate cost stainless steel with aluminum disk embedded inside the stainless steel exterior) Circulon Steel (moderate cost stainless steel with aluminum disk) Scanpan Steel (moderate cost stainless steel with 6.8 mm (!) aluminum disk)

My personal favorites for cookware materials are stainless steel clad aluminum or copper and cast iron (for skillets and woks). The stainless steel clad utensils perform well, are easy to clean, and look beautiful. Of course, not all stainless steel clad aluminum (sometimes called tri-ply or five-ply depending on construction) are the same. All-Clad has definitely earned their reputation as quite possibly the best general use cookware money can buy, but it's a lot of money to be spending. All-Clad rarely goes on sale, but other reputable brands, such as Calphalon, have clad lines as well - and they are more likely to have their product lines go on sale. Keep checking the Cooking For Engineers Deals Blog to see when deals do come up.