bab-i

Upload: imelda-roza

Post on 02-Mar-2016

47 views

Category:

Documents


1 download

TRANSCRIPT

Bab I. Sistem Bilangan Real

Sistem Bilangan

Vmm b

SISTEM BILANGAN

1.1 Pendahuluan

A

pakah bilangan itu ?, tampaknya tak seorangpun dapat memberikan jawaban yang memuaskan. Apabila seseorang mencoba menjawabnya dengan mengatakan bahwa bilangan adalah seperti -5, 1, 3, 4/3, tampaknya jawaban tersebut untuk sementara bisa diterima, akan tetapi daftar (list) angka-angka tidak bisa membangun sebuah defenisi tentang bilangan. Ide tentang bilangan hanya bisa dipahami secara intuitif, persoalannya sekarang adalah bagaimana kita mencoba memberikan sebuah defenisi yang memuaskan. Sejarah tentang konsep bilangan dimulai bersamaan dengan lahirnya peradaban manusia, ketika mereka ingin mengetahui berapa banyak hewan peliharaannya, mereka tampaknya sudah mempunyai pengertian tentang bilangan (number sense). Ide peretama yang muncul adalah mencoba melakukan perbandingan dengan menggunakan lebih sedikit daripada., sama dengan , dan lebih banyak dari., demikian juga untuk mengetahui posisi suatu obyek dari kelompok tertentu mereka membandingkan dengan posisi obyek dari kelompok tetentu, mereka membandigkannya dengan posisi objek pada kelompok lainnya.

Ide melakukan perbandingan pada dua kelompok / kumpulan mengilhami lahirnya konsep bilangan yang kita kenal hari ini dan betolak dari pemikiran tersebut, kita bisa mengembangkan defenisi bilangan sebagai berikut:

Defenisi 1.1

Bilangan (Number) : Bilangan adalah suatu sifat abstrak (abstrackt property) dari suatu himpungan yang menunjukkan suatu kuantitatif atau posisi.

Dari definisi (1) diatas terlihat bahwa bilangan adalah suatu pemikiran yang abstrak yang hanya ada dialam pemikiran (angan-angan), karena bilangan tidak dapat dilihat secara fisik. Hati-hati jangan dicampur aduk antara bilangan dengan angka , sebab angka hanya sebuah simbol untuk mempresentasikan sebuah bilangan, sesekali lagi itu hanya representative fisik dari ide tersebut.

Defenisi 1.2

Angka (numeral) : Sebuah angka adalah sebuah simbol untuk mempresentasikan sebuah bilangan.

Perhatikan sebuah team bola volley, mudah dipahami bahwa team ini adalah sebuah himpungan (set) yang mempunyai sebuah bilangan Kita tahu bahwa dalam himpunan tersebut terdapat enam pemain, dan kita menggunakan angka 6 untuk merepresentasikan bilangan tersebut. Bilangan enam itu sendiri tidak eksist secara fisik, itu hanyalah sebuah sifat (property) dari team bola voly tersebut. Selanjutnya, untuk mengetahui beberapa banyak unsur/objek didalam suatu himpunan, digunakan bilangan kardinal.

Defenisi 1.3

Bilangan cardinal (cardinal number) : sebuah bilangan cardinal adalah sebuah blangan yang menunjukkan sebuah kuantitas

Sedangkan untuk mengetahui posisi relative dari elemen-elemen suatu himpunan yangsudah disusun menurut urutan tertentu, dapat digunakan bilangan-bilangan ordinal (ordinal numbers) seperti ; pertama, kedua, ketiga, dst

Defenisi 1.4

Bilangan ordinal (ordinal numbers) : sebuah bilangan ordinal adalah sebuah bilangan yang menunjukkan posisi

Sampai sekarang sudah banyak system/cara yang telah dikembangkan orang untuk merepresentasikan bilangan, diantaranya adalah sebagai berikut

Hindu- Arab 4 Romawi IV

Mesir IIII Yunani ( Babilonia China

Tampak jelas bahwa bilangan empat direpresentasikan secara berbeda-beda oleh masing-masing Negara menurut kebudayaannya. Tetapi penting dicatat behwa meskipun simbol-simbol tersebut diatas berbeda-beda, namun mereka semuanya merepresentasikan sebuah ide atau bilangan yang sama yaitu bilangan empat. Jelaslah bahwa angka empat 4 (hindu-arab) hanyalah sebuah simbol yang secara fisik merepresentasikan bilangan empat, sedangkan bilangan empat itu sendiri tidak dapat dilihat secara fisik karena hanya ada dalam benak pemikiuran kita ( Roethel & Weinstein, Logic, Set and Numbers)

Dasar utama pengembangan matematika adalah teori bilangan dan geometri. Teori bilangan terus berkembang dan mendasari berbagai cabang matematika lanjut. Pentingnya bilangan untuk memahami alam semesta telah dirasakan oleh Phytagoras sejak 2500 tahun yang lalu dengan ungkapan the number rule the universe, demikian pula Kronecker (1823 -1891) dengan ungkapannya God made integers, all the rest is the work of man. Pada pertengahan abad ke-19, pentinganya bilangan sebagai suatu pengertian bebas diwujudkan , sehinga studi tentang bilangan tidak bergantung lagi pada intuisi geometri. Sekarang kita akan membicarakan system bilangan real. Untuk praktisnya dalam pembahasan ini, istilah bilangan bebas diwujudkan.

1.2 Sistem Bilangan Real

Sistem bilangan real adalah himpunan bilangan real R yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma tertentu, dinotasikan dengan : ( R , + , x ).

Pada system bilangan real, diperlukan tiga aksioma, yaitu aksioma lapangan, urutan dan kelengkapan.

Aksioma Lapangan adalah aksioma yang mengatur tentang ketertutupan terhadap operasi penjumlahan dan perkalian, sifat kumulatif, asosiatif, distributive, dan terdapatnya unsur kesatuan 0 dan 1, serta terdapatnya unsur invers terhadap penjumlahan dan perkalian. Dari aksioma ini dapat dibuktikan berbagai sifat yang mendasari operasi aljabar atas berbagai objek kalkulus, yaitu konstanta, peubah dan parameter.

Aksioma Urutan adalah aksioma yang mengatur tentang pemunculan bilangan positif dan negatif, sehingga setiap bilangan real dapat diurutkan dari sampai besar. Dari aksioma ini pula dapat diturunkan berbagai sifat yang mendasari penyelesaian suatu pertidaksamaan. Selanjutnya dirancang konsep nilai mutlak sebagai ukuran jarak dua bilangan real dan suatu alat untuk menyelesaikan pertidaksamaan yang berkaitan dengan limit.

Aksioma Kelengkapan, aksioma ini mengatur tentang adanya batas atas terkecil atau batas bawah terbesar bagi setiap himpunan bagian R yang tidak kosong dan terbatas diatas atau dibawah. Selanjutnya terdapatnya korespondensi satu-satu diantara bilangan real dan titik pada garis, dan diantara dua bilangan real terdapat tak terhingga banyaknya bilangan rasional dan irrasional, kemudian diperkenalkan konsep selang hingga dan selang tak hingga, yang akan berperan dalam kalkulus.

1.2.1 Aksioma Lapangan

Pandang () adalah system bilangan real, dan misalkan , maka berlaku sifat-sifat berikut :

1. ( (Sifat ketertutupan terhadap operasi penjumlahan) dan

( (Sifat ketertutupan terhadap operasi perkalian)

2.( (Sifat komutatif terhadap penjumlahan) dan

( (Sifat komutatif terhadap perkalian)

3.( (Sifat assosiatif terhadap penjumlahan) dan

( (Sifat assosiatif terhadap perkalian).

4.

(Sifat distributif)

5.( Terdapat unsur , sehingga dan

( Terdapat unsur , sehingga .

Bilangan 0 disebut unsur kesatuan terhadap penjumlahan dan

Bilangan 1 disebut unsur kesatuan terhadap perkalian

6.( Terdapat unsur invers sehingga dan

( Terdapat unsur invers, sehingga

EMBED Equation.3 .

Bilangan real dinamakan lawan atau negative dari, dan

Bilangan real dinamakan kebalikkan dari .

Adapun operasi pengurangan dan pembagian pada himpunan bilangan real didefinisikan sebagai berikut :

Defenisi 1.5

Misalkan

Pengurangan dari dan disebut selisih dari dan , ditulis , didefenisikan sebagai bilangan real

Pembagian dari dan disebut hasil bagi dari dan , ditulis dan didefenisikan sebagai bilangan real

EMBED Equation.3 .

Berdasarkan aksioma lapangan diatas, kita dapat membuktikan berbagai sifat-sifat aljabar bilangan real berikut, yang sering digunakan sebagai operasi aljabar dalam menyelesaikan soal matematika, sebagaimana dalam teorema berikut :

Teorema 1.6

Misalkan , maka berlaku :

(1 ). Jika dan

(2 ). Jika (Hukum pencoretan untuk penjumlahan)

(3 ). Jika (Hukum pencoretan untuk perkalian)

(4 ).

(5 )

(6 )

(7 ). Jika maka

(8 ). Jika atau (Salah satunya sama dengan 0 atau dua-duanya samadengan 0

(9 ).

(10).

(11). dan

(12). dan

(13). dan =

(14).

1.2.2. Komponen Bilangan Real

Bilangan yang kita pergunakan sehari-hari adalah bilangan yang berbasis sepuluh yang dikenal dengan bilangan decimal (dikelompokkan sepuluh-sepuluh). Pada bilangan berbasis sepuluh angka 0, 1, 2, 3, 4, 5, 6, 7, 8 dan 9 yang disebut digit atau angka.

Sebuah bilangan merupakan susunan sekelompok angka yang memenuhi aturan tertentu, misalnya 30, -70, dan sebagainya.

Perhatikan contoh berikut :

1. 2375 (dua ribu tiga ratus tujuh puluh lima ), dapat diurai menjadi :

2375 = 2. (1000) + 3. (100) + 7. (10) + 5 . (1)

2375 = 2. 103 + 3 . 102 + 7 .101 + 5. 100

(dua ribuan + 3 ratusan + 7 puluhan + 5 satuan).

2. 432,069 (Empat ratus tiga puluh dua dan enampuluh sembilan perseribu)

432,069 = 4.(100) + 3.(10) + 2.(1) + 0.(1/10) + 6.(1/100) + 9 (1/1000)

432,069 = 4.102 + 3.101 + 2.100 + 0.10-1 + 6.10-2 + 9. 10-3( 4 ratusan + 3 puluhan + 2 satuan + 0 ersepuluhan + 6 perseratusan + 9 perseribuan).

_._._.___|____|____|____|__.__|____|____|___._._._

10310210110010-110-210-3

(1000)(100)(10)(1)(1/10)(1/100)(1/1000)

RibuanratusanpuluhansatuanpersepuluhanperseratusanPerseribuan

Titik desimal

Bilangan Real dapat dikelompokan sebagai berikut:

Bilangan Asli : 1, 2, 3, , berfungsi sebagai bilanan kardinal

untuk menghitung banaknya objek suatu himpunan. Himpunan bilangan asli dinotasikan dengan huruf N dengan N ={ 1, 2, 3, }. Bilangan asli atau bilangan bulat positif terdiri atas :

Bilangan 1 adalah bilangan asli yang mempunyai tepat satu factor.

Bilangan prima : 2, 3, 5, 7, 11, 13, 17, , adalah bilangan asli yang mempunyai tepat dua faktor. Bilangan komposisi : 4, 6, 8, 10, 12, 15 , adalah bilangan asli yang mempunyai lebih dari dua faktor.

Bilangan Cacah : 0, 1, 2, 3, adalah bilangan asli beserta unsur nol, biasanya digunakan dalam kegiatan sensus . Bilangan cacah biasanya juga disebut blangan bulat non negatif.

Bilangan Bulat Negatif ( lawan bilangan asli ) : -1, -2, -3,

Bilangan Bulat : .-3, -2, -1, 0, 1, 2, 3, adalh bilangan bulat terdiri atasbilangan genap dan bilangan ganjil.

Bilangan genap : -4, -2, 0, 2, 4, 6 adalah bilangan bulat kelipatan dua yang dinotasikan 2n , n bilangan bulat.

Bilangan ganjil : -3, -1, 1, 3, 5, 7, 9 adaah bilangan bulat bukan kelipatan dua, yang dinotasikan 2n+1 atau 2n-1 dengan n bilangan bulat.

Bilangan Pecahan adalah bilangan berbentuk , dimana m bilangan bulat dan n bilangan asli dengan m tidak dapat dibagi n. Bilangan bulat antara 0 dan 1 disebut bilangan pecahan sejati. Bilangan Rasional adalah bilangan bulat beserta bilangan pecahan. Bilangan rasional adalah bilangan berbentuk , dimana p bilangan bulat dan q bilangan asli. Disini x bilangan bulat bilamana p habis dibagi q dan x pecahan bila p tidak habis dibagi q.

Bilangan rasional bersifat selalu mempunyai bentuk decimal berakhir atau berulang, sebagaimana diperlihatkan pada contoh berikut :

a) 13 = 13, 0 (berakhir)

b) - 2 = - 2,5 (berakhir)

c) 11 = 11, 6666. = 11, (berulang)

d) 0, 49999 .. = 0,4 (berulang)

e) (berulang)

f) (berulang)

g)

Catatan : Tanda bar yang dibubuhkan diatas angka pada contoh diatas menunjukkan bagian decimal yang berulang.

Contoh : Tunjukkan bahwa a). 1,09090909. b). -2,03333

adalah bilangan rasional.

Solusi : Ide adalah menunjukkan bilangan tersebut dapat dinyatakan dalam bentuk dengan p bilangan bulat dan g bilangan asli.

a). Misal maka

(dikalikan 100 karena ada dua digit yang berulang). Jadi (100x - x) = (109, - 1, ) 99x =108

jadi adalah bilangan rasional.

b). Misal x = -2,0333. = -2,0 maka 10x = - 20,333 ..= -20,

sehingga (10x - x) = -20, - (-2,0) 9x = -18,3

x = adalah bilangan rasional.

Diskusikan di kelas (Dosen + Mahasiswa)

Tunjukkan bahwa bilangan 0,499999 adalah bilangan rasional.

Bilangan Irrasional adalah bilangan yang bukan rasional. Bilangan irrasional ini bukan hasil bagi bilangan bulat dan bilangan asli, sehingga tidak dapat dinyatakan dalam bentuk dan juga tidak mempunyai bentuk decimal berulang, sebagai contoh bilangan irrasional.

(tidak berakhir dan tidak berulang)

(tidak berakhir dan tidak berulang)

(tidak berakhir dan tidak berulang)

(tidak berakhir dan tidak berulang)

(tidak berakhir dan tidak berulang)

Diskusikan dikelas (Dosen dan Mahasiswa)Tunjukkan bahwa bukan bilangan rasional.

Bilangan Real adalah gabungan bilangan rasional dan irrasional.

Bilangan real dilambangkan dengan huruf kapital R. Semua himpunan bagian dari R dapat digambarkan dalam bentuk diagram pohon berikut

HimpunanNotasiRepresentasi/Contoh

Bilangan asli (Natural) N

Bilangan Prima( Prime numbers)-

Bilangan Komposisi (Composite numbers)-

Bilangan Bulat (integer)B

Nol (Zero)O0

Bilangan genap (even numbers)2n

Bilangan Ganjil ( Odd numbers)2n (1

Bilangan Cacah-

Negatif Bilangan asli (Bil. Bulat negatif)-

Bilangan Pecahan (Praction)-N

Bilangan Rasional (Rational number)Q

Bilangan Irrasional (Irrational number)-

Bilangan Real (Real number)R

Kiranya jelas bahwa :

Catatan : bukan bilangan real.

Beberapa catatan bilangan asli1. Setiap bilangan genap yang lebh besar 2, dapat dinyatakan sebagai jumlah dari dua bilangan prima.

Contoh : 4 = 2 + 210 = 3 + 7

6 = 3 + 312 = 5 + 7

8 = 3 + 524 = 11 + 13 dst

2. Setiap bilangan komposit selalu dapat dinyatakan sebagai perkalian bilangan-bilangan prima secara tunggal, yaitu :

.

K = Bilangan komposisi ; Pi = bilangan prima ; ni = Bilangan asli

Contoh :

4=2215=3 . 5

6=2 . 316=24

8=2318=2 . 32

9=3272=23 . 32

10=2 . 5540=22 .33. 5

Sifat- Sifat Bilangan Nol Bilangan 0 dalam bentuk pecahan muncul dalam 3 kasus :

Kasus (i) . Misal karena , maka haruslah

Jadi

Kasus (ii) Misal , berarti . Hal ini bertentangan dengan pengandaian semula Jadi adalah tak terdefenisi,

Kasus (iii) Misalkan , berarti ruas kanan bernilai nol untuk semua x. Jadi adalah tidak tentu

Catatan :

Bilangan nol tidak termasuk bilangan positif maupun negatif..

1.2.3 Aksioma Urutan

Sampai disini kita belum dapat menyatakan apakah suatu bilangan lebih besar atau lebih kecil dari bilangan lainnya, sebab kita belum mendefenisikan istilah lebih besar atau lebih kecil. Aksioma lapangan yang sudah dibicarakan diatas belum dapat mengurutkan bilangan-bilangan real.

Pada himpunan bilangan real R terdapat suatu himpunan bagian yang unsur-unsurnya dinamakan bilangan positif yang memenuhi aksioma urutan berikut.

(i). Jika bilangan real, maka hanya satu dari pernyataan- pernyataan dibawah ini yang benar positif ; ; positif

(ii). Jumlah dua bilangan positif adalah positif dan hasil kali dua bilangan positif adalah positif.

Sekarang pada himpunan bilangan real, kita defenisikan istilah lebih besar dan lebih kecil dengan menggunakan istilah bilangan positif yang telah dideskripsikan pada aksioma urutan.

Defenisi 1.7 Misalkan dan bilangan real, maka :

a). lebih kecil dari , ditulis Jika dan hanya jika adalah bil. Positif.

b). lebih besar dari , ditulis Jika dan hanya jika adalah bil. negatif.

c). Lambang (lebih kecil atau sama dengan) dan (lebih besar atau sama dengan) menyatakan relasi :

jika atau

jika atau

d). Lambang-lambang < , > , dinamakan tanda pertidaksamaan dan pernyataan yang dihubungkan dengan tanda pertidaksamaan disebut pertidaksamaan

e). Bilangan real dikatakan negatif bila adalah bilangan positif

Contoh :

1). 3< 5 oleh karena 5 -3 = 2 adalah bilangan positif

-7 < -3 oleh karena -3 (-7) = 4 adalah bilangan positif

2). 8 > -2 oleh karena -2 8 = -10 adalah bilangan negatif

oleh karena adalah bilangan negative

3). -0,35 adalah negatif, oleh karena (-0,35) = 0,35 adalah bilangan positif.

Jelaslah bahwa jika dan hanya jika

Untuk mempersingkat penulisan, maka kalimat panjang :

bilangan positif dinotasikan dengan dan

bilangan negatif dinotasikan dengan .

Keterkaitan antara bilangan real positif dengan tanda pertidaksamaan dan berbagai sifat untuk menyelesaikan pertidaksamaan diberikan dalam teorema berikut :

Teorema 1.8

(a). bilangan positif. (c).

(b). bilangan negatif (d).

Catatan Lambang dibaca jika dan hanya jika atau ekivalen.Bukti a) . Akan tetapi adalah bilangan positif. Jadi bilangan positif.

Bukti b) adalah bilangan positif. Jadi bilangan negatif

Bukti c) bilangan positif bilangan positif bilangan negatif . Jadi

Bukti d) bilangan negatif bilangan negatif bilangan positif Jadi

Teorema 1.9

Andaikan bilangan real, maka berlaku :

(a). jika dan maka (sifat transitif).

(b). jika dan maka

(c). jika dan bilangan real sembarang, maka

(d). jika dan , maka

(e). jika dan , maka

(f). jika dan , maka

(g).jika , atau , maka

Catatan : Sifat-sifat diatas juga berlaku apabila tanda < diganti dengan atau tanda > diganti dengan .

Contoh :

(a1). 2 < 5 dan 5 < 9 maka 2 1, akar ke-n dari bilangan real , ditulis didefenisikan sebagai bilangan real yang memenuhi

Contoh : , karena -2 bilangan real yang memenuhi .

Sifat-Sifat Bilangan Bentuk Akar Kuadrat

Misal dan bilangan real positif, maka :

(a). Contoh : *

(b). *

(c). *

PENGURAIAN DAN FAKTORISASI

Defenisi 1.12

(a). Penguraian adalah suatu transformasi bentuk perkalian ke dalam bentuk jumlahan

Contoh :

(b). Faktorisasi adalah suatu transformasi bentuk jumlahan ke dalam bentuk perkalian.

Contoh :

Untuk memfaktorkan sebuah jumlah dapat ditempuh berbagai cara :

(i ). Kita dapat membuat faktor bersama pada setiap suku jumlahan.

Contoh :

= .

(ii). Kita dapat menggunakan kesamaan istimewa :

Contoh :

= , ingat bentuk

(iii). Gabungan metode (i) dan (ii) dan berbagai manipulasi aljabar

Contoh

EMBED Equation.3

EMBED Equation.3

, ingat bentuk

Berikut ini ditunjukkan beberapa cara menguraikan suatu bentuk aljabar atas faktor-faktor linier dan/atau kuadrat definit-positif. Berdasarkan Teorema 1.6 dan berbagai teknik manipulasi aljabar diperoleh uraian berikut:

a). ; tambahkan dan kurangkan faktor

; kumpulkan faktor-faktor yang bersesuain

; keluarkan faktor yang sama, sehingga diperoleh faktorisasinya

b).

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3 = x

EMBED Equation.3

=

c)

d).

e).

Definit Positif dan Definit Negatif

Bentuk kuadrat ; dengan , dikatakan bersifat definit positif bilamana nilainya selalu positif . Perhatikan bahwa :

dimana

EMBED Equation.3 disebut deskriminan

maka bentuk kuadrat bersifat definitive positif jika dan hanya jika a>0 dan D0 dan

D = 4 12 = - 8 < 0.

Diskusikan Di Kelas ( Dosen Dan Mahasiswa)

1) Berikan defenisi bentuk kuadrat yang definit negative dan tentikan syarat-syarat-

nya , kemudian berikan contohnya.

2) Uraikan bentuk

EMBED Equation.3 Soal Latihan

(1). Pada setiap pernyataan berikut, berikan argumentasinya bila pernyataannya benar, dan berikan contoh penyangkal bila argumentasinya salaha) bilangan 27 adalah bilangan prima

b) setiap bilangan prima yang lebih besar dari 2 adalah bilangan ganjil

c) bilangan 0 adalah bilangan yang tidak positif dan tidak negatif

d) bilangan 0 adalah bilangan yang tidak genap dan tidak ganjil

e) kuadrat sebuah bilangan ganjil adalah bilangan ganjil

f) jika x bilangan ganjil maka x2 juga bilangan ganjil

g) jika x2 bilangan genap maka x juga bilangan genap

h) setiap bilangan yang tidak positif adalah bilangan negatif

i) jika x2 adalah bilangan bulat kelipatan 3, maka x bilangan bulat kelipatan 3

j) bilangan 0 tidak dapat ditulis dalam bentuk decimal berulang

k) himpunan bilangan real positif tidak mempunyai unsur terkecil

l) jika , maka himpunan tidak mempunyai unsur terbesar

m) bukan bilangan rasional

n) adalah bilangan irrasional.

(2). Apakah himpunan bilangan bulat B disertai operasi penjumlahan dan perkalian membentuk suatu lapangan (medan)? Jika tidak, sebutkan aksioma-aksioma mana saja yang tidak dipenuhi ?

(3). Dengan memberikan contoh-contoh, tunjukkan bahwa jika , maka dapat merupakan bilangan positif atau negatif. Hal ini tergantung daripada x.

(4). Ubahlah bilangan-bilangan rasional berikut sebagai hasil bagi bilangan bulat .

a. 21,212121, d. 0,037037037,

b. -0,027027027, e. 23,82037037037,

c. 13,153153153, f. 4,157404040,

(5). Nyatakan bilangan-bilangan berikut dalam bentuk desimal

a).

b).

(6). Uraikan bilangan-bilangan berikut dalam bentuk seperti soal no 5

a). 20,0043 c). -4,72 e). 960

b). 304,607 d). 0,0019

(7). Jika m , n , p , q adalah bilangan bulat dengan tunjukkan bahwa

a). c). apakah

EMBED Equation.3 b). Q = himpunan bilangan rasional.

(8). Hitung nilai tiap bentuk berikut (jika ada). Dalam tidak terdefenisi sebutkan.

a). 0 + 0 dan 0 0 c). dan e).

b). 0 . 0 dan d). 0 -

(9). Bilangan-bilangan manakah yang berikut rasional atau irrasional ?

a). d). 3,7125 g). j).

b). e). h). k).

c). f). i). 2,718281... l).

(10).Tentukan pernyataan berikut benar atau salah

a). 0 < -2 f).

b). 3 < -15 g).

c). h).

d). i).

e). -5 > -25

1.2.5 Garis Bilangan Dan Selang (Interval)

Hal-hal mengenai bilangan real yang telah dibicarakan diatas dapat diberikan interpretasi geometri, dengan mengkaitkan bilangan real dengan titik-titik pada sebuah garis.

Setiap bilangan real dapat digambarkan sebagai titik pada garis, dan setiap titik pada garis dapat dinyatakan sebagai representasi bilangan real. Hal ini berarti terdapat korespondensi satui-satu diantara bilangan real dan titik pada garis. Diantara dua bilangan real terdapat tak hingga banyaknya bilangan rasional dan irrasional. Akibatnya, kita dapat menggambarkan bilangan real R sebagai himpunan titik sepanjang suatu garis lurus, yang dikenal sebagai garis bilangan real, lihat gambar berikut :

* mula-mula kita meletakkan

titik 0 sebagai titik asal (origin),

lihat gambar 1.a

* selanjutnya kita dapat memilih suatu

titik sembarang disebelah kiri atau kanan

titik asal yang mempunyai jarak tertentu

dari titik asal, lihat gambar 1.b

* akhirnya kita dapat menggambarkan setiap bilangan real (rasional maupun irrasional) yang kita kehendaki pada garis bilangan, lihat gambar 1.c

Catatan

Perhatikan bahwa bilangan real positif terletak disebelah kanan titik 0,

dan bilangan real negatif terletak disebelah kiri titik 0.

Sekarang kita defenisikan himpunan bilangan real yang memenuhi suatu pertaksamaan tertentu, yang dikenal sebagai selang hingga dan selang tak hingga.

Selang hingga adalah himpunan bagian tak kosong dari R yang terbatas diatas dan dibawah.

Selang tak hingga adalah tidak terbatas diatas atau dibawah.

Berikut ini diberikan defenisi selang (interval) sebagai himpunan titik dan representasinya pada garis bilangan.

Tabel 1.

SELANG (INTERVAL) HINGGA

NoPertaksamaan yang dipenuhi bil real xSelang sebagai himpunan titikRepresentasi selang pada garis bilangan.

1

2

3

4

Catatan : Selang yang tidak memuat kedua titikujungnya dinamakan selang terbuka

Selang yang memuat sekaligus kedua titik ujungnya dinamakan selang tertutup

Selang yang hanya memuat salah satu ujungnya dinamakan selang setengah tutup/buka.

Untuk selang tak hingga digunakan lambang dan - yang memenuhi relasi urutan untuk setiap . Berdasarkan hal tersebut, lambang digunakan untuk suatu yang lebih besar dari setiap bilangan real (membesar tanpa batas) dan lambing digunakan untuk sesuatu yang lebih kecil dari setiap bilangan real (mengecil tanpa batas). Kedua lambang ini dan - bukan bilangan real.

Tabel 2.

SELANG TAK HINGGA

NOPertaksamaan yang dipenuhi bil real xSelang sebagai Himpunan TitikRepresentasi Selang pada garis bilangan

1

2

3

4

5

Catatan ; Selang dan adalah selang terbuka

Selang dan adalah selang setengah tutup

Sebagai latihan, pembaca diharapkan melengkapi tabel berikut (diberikan contoh pada baris ketiga).

Tabel 3.

NoPertaksamaan yg

dipenuhi bil. real xNotasi SelangRepresentasi selang pada garis bilanganHimpunan Titik

1

. . .

2 . . .

( ( ( ( ( ( -1 0 1 2 3 4 . . .

3

( ( ( ( ( (

-1 0 1 2 3 4

4

. . . . . . . .

5 . . . .(-1, 5) . . . . . . . . .

6

. . . . . . . . .

7

. . .

. . . .

8 . . . .

. . . . .atau 2 ( x ( 3 }

GABUNGAN DAN IRISAN DUA BUAH SELANG

Perhatikan soal 2 dan 3 pada tabel 3 diatas. Misalkan dan , maka gabungan I2 dan I3 adalah

Irisan I2 dan I3 adalah .

Langkah-langkahnya adalah sebagai berikut :

( ( ( ( (

-1 0 3I2

( ( ( ( ( (

-1 0 2 3 4 I3

maka ( (

-1 0 I2 (I3

dan

( ( ( (

0 2 3 I2 (I3

Dengan cara yang sama diperoleh:

(titik -1 tidak masuk angota gabungan)

dan

(himpunan kosong) lihat gambar

( ( ( ( ( -1 0 3

) ( ( ( ( -1 0 3

)( ( ( ( ( -1 0 3

( ( ( 0 (

Sebagai latihan, dibawah ini diberikan gabungan dan irisan beberapa selang (Tabel 4). Temukanlah jawabannya yang bersesuaian (misalnya 7 = a ; 8 = d ).

Tabel 4. Gabungan dan irisan beberapa selang, serta jawabannya yang diacak tempatnya. Ada beberapa soal yang mempunyai jawaban yang sama. Temukanlah pasangan yang bersesuaian.

NoGabungan/Irisan beberapa SelangHasil Gabungan/Irisan beberapa Selang

1

=...?a

2

=?b

3

=?c

4

=?d

EMBED Equation.3

5

=?e

6

=?f

7

=ag

EMBED Equation.3

8

=dh

9

EMBED Equation.3

EMBED Equation.3 =?i

EMBED Equation.3

10

EMBED Equation.3

EMBED Equation.3 =?j

11

EMBED Equation.3

EMBED Equation.3 =?k

EMBED Equation.3

EMBED Equation.3

EMBED Equation.3

12

EMBED Equation.3

EMBED Equation.3 =?l

13

EMBED Equation.3

EMBED Equation.3 =?m

14

EMBED Equation.3

EMBED Equation.3 =?n

15

EMBED Equation.3 =?o

EMBED Equation.3

16

EMBED Equation.3

EMBED Equation.3 =?p

EMBED Equation.3

17

EMBED Equation.3

EMBED Equation.3 =?

18

EMBED Equation.3

EMBED Equation.3 =?

Diskusikan di kelas (dosen dengan mahasiswa).

Berhubungan dengan konsep selang, pembaca diharapkan dapat menjawab pertanyaan berikut dengan argumentasi yang tepat.

1). Bandingkan sebuah bilangan dengan negatifnya, bilakah negatifnya sama,kapankah negatifnya lebih besar dan kapankah negatifnya lebih kecil dari bilangan tersebut ?

2). Bandingkan sebuah bilangan dengan kubiknya, kapankah kubiknya sama, kapankah kubiknya lebih besar dan kapankah kubiknya lebih kecil dari bilangan tersebut ?

3). Jika a sebuah bilangan real positif, bandingkan antara kuadrat dengan akar kuadratnya, kapankah kuadratnya sama dengan akar kuadratnya, kapankah kuadratnya lebih kecil dari akar kuadratnya, dan kapankah kuadratnya lebih besar dari akar kuadratnya?

1.2.6 Pertaksamaan Dan Nilai Mutlak

PertaksamaanKita ingat kembali aksioma urutan bilangan real :

(i).

(ii).

(iii). Tepat satu dan hanya satu diantara ketiga kalimat berikut yang benar :

: :

Kalimat-kalimat matematika yang berbentuk ; ; dan dinamakan ketidaksamaan (pertaksamaan).

Kalimat terbuka 2x -1 < 7 adalah benar untuk beberapa bilangan real tertentu, dan tidak benar untuk bilangan -bilangan real lainnya. Misalnya, apabila bilangan real 3 disubtitusikan untuk x maka kalimat tersebut menjadi benar yaitu 6 1 < 7 adalah benar, akan tetapi jika bilangan real 6 disubtitusikan untuk x, maka kalimat tersebut menjadi 12 1 < 7 yang tidak benar.

Himpunan semua bilangan real x yang memenuhi pertaksamaan (yaitu yang membuat kalimat pernyataan itu benar) dinamakan himpunan penyelesaian (solusi) pertaksamaan.

Bentuk umum pertaksamaan aljabar satu peubah real adalah

, M, N, R, S adalah suku banyak (polinom).

Catatan : Tanda < dapat diganti oleh >, atau

Prosedur/langkah-langkah baku menyelesaikan pertaksamaan ini adalah sebagai berikut :

(i). Dengan menggunakan rumus aljabar elementer dan urutan, ubahlah bentuknya menjadi , dengan P, Q suku banyak.

(ii). Uraikan P dan Q atas faktor-faktor linier dan/atau kuadrat definit positif.

(iii). Tentukan tanda pertidaksamaan pada garis bilangan.

(iv). Tentukan himpunan penyelesaiannya, dan tampilkan dalam bentuk selang.

Catatan : Jika uraian P dan Q atas faktor-faktornya sukar dikerjakan, langkah kedua dapat saja dilewati, asalkan tanda pertaksamaannya pada garis bilangan untuk P dan Q dapat ditentukan. Dalam beberapa kasus khusus, prosedur baku ini tidak perlu harus digunakan.

Contoh. 1.

Tentukan himpunan penyelesaian pertaksamaan

Solusi

, titik-titik nolnya adalah x = -1 dan x = 3

# dalam hal ini, garis bilangan terbagi atas tiga daerah yaitu daerah I, II dan III.

# uji tanda pertaksamaan, dapat dipilih sembarang nilai x pada tiap daerah (asalkan tidak memilih titik-titik nolnya).

Misalkan kita pilih x=0 pada daerah II, maka diperoleh tanda pertaksamaan adalah negatif, karena (0+1) (0-3) = -3