trace route

18
Pengertian Traceroute Traceroute (Tracert) adalah perintah untuk menunjukkan rute yang dilewati paket untuk mencapai tujuan. Ini dilakukan dengan mengirim pesan Internet Control Message Protocol (ICMP) Echo Request Ke tujuan dengan nilai Time to Live yang semakin meningkat. Rute yang ditampilkan adalah daftar interface router (yang paling dekat dengan host) yang terdapat pada jalur antara host dan tujuan. Proses Traceroute Untuk mengetahui jalur yang ditempuh untuk mencapai suatu node, traceroute mengirimkan 3 buah paket probe tipe UDP dari port sumber berbeda, dengan TTL bernilai 1. Saat paket tersebut mencapai router next-hop, TTL paket akan dikurangi satu sehingga menjadi 0, dan router next-hop akan menolak paket UDP tersebut sembari mengirimkan paket ICMP Time-to-Live Exceeded ke node asal traceroute tersebut. Dengan cara ini, pengirim traceroute tahu alamat IP pertama dari jalur yang ditempuh. Kemudian, sumber traceroute mengirimkan 3 buah paket UDP lagi dengan nilai TTL yang dinaikkan 1 (TTL = 2), sehingga router pertama di jalur menuju tujuan traceroute akan melewatkan paket UDP tersebut ke router selanjutnya. Router hop kedua akan melihat bahwa paket tersebut sudah expired (TTLnya jadi 1, setelah dikurangi oleh router pertama). Maka, seperti halnya router pertama, router tersebut akan mengirimkan paket ICMP Time-to-Live Exceeded ke sumber traceroute. Sekarang, sumber traceroute telah mengetahui hop kedua dari jalur menuju tujuan traceroute. Sumber traceroute akan mengirimkan lagi paket UDP dengan TTL ditambah 1 (TTL = 3). Router hop ketiga akan membalas dengan paket ICMP Time-to-Live Exceeded ke sumber traceroute, sehingga sumber traceroute mengetahui alamat IP router hop ketiga. Proses ini akan diulang terus paket UDP yang dikirimkan mencapai alamat IP tujuan traceroute. Tiga buah paket UDP traceroute adalah

Upload: fakhrin-kharisma-adam

Post on 30-Sep-2015

16 views

Category:

Documents


7 download

DESCRIPTION

enjoy it

TRANSCRIPT

Pengertian TracerouteTraceroute (Tracert) adalah perintah untuk menunjukkan rute yang dilewati paket untuk mencapai tujuan. Ini dilakukan dengan mengirim pesan Internet Control Message Protocol (ICMP) Echo Request Ke tujuan dengan nilai Time to Live yang semakin meningkat. Rute yang ditampilkan adalah daftar interface router (yang paling dekat dengan host) yang terdapat pada jalur antara host dan tujuan.

Proses TracerouteUntuk mengetahui jalur yang ditempuh untuk mencapai suatu node, traceroute mengirimkan 3 buah paket probe tipe UDP dari port sumber berbeda, dengan TTL bernilai 1. Saat paket tersebut mencapai router next-hop, TTL paket akan dikurangi satu sehingga menjadi 0, dan router next-hop akan menolak paket UDP tersebut sembari mengirimkan paket ICMP Time-to-Live Exceeded ke node asal traceroute tersebut. Dengan cara ini, pengirim traceroute tahu alamat IP pertama dari jalur yang ditempuh.

Kemudian, sumber traceroute mengirimkan 3 buah paket UDP lagi dengan nilai TTL yang dinaikkan 1 (TTL = 2), sehingga router pertama di jalur menuju tujuan traceroute akan melewatkan paket UDP tersebut ke router selanjutnya. Router hop kedua akan melihat bahwa paket tersebut sudah expired (TTLnya jadi 1, setelah dikurangi oleh router pertama). Maka, seperti halnya router pertama, router tersebut akan mengirimkan paket ICMP Time-to-Live Exceeded ke sumber traceroute. Sekarang, sumber traceroute telah mengetahui hop kedua dari jalur menuju tujuan traceroute.

Sumber traceroute akan mengirimkan lagi paket UDP dengan TTL ditambah 1 (TTL = 3). Router hop ketiga akan membalas dengan paket ICMP Time-to-Live Exceeded ke sumber traceroute, sehingga sumber traceroute mengetahui alamat IP router hop ketiga. Proses ini akan diulang terus paket UDP yang dikirimkan mencapai alamat IP tujuan traceroute. Tiga buah paket UDP traceroute adalah jumlah paket default dari aplikasi traceroute. Inilah mengapa kita melihat tiga buah tampilan latensi saat melihat hasil traceroute yang dijalankan.

Tidak semua aplikasi traceroute menggunakan UDP. Windows menggunakan paket ICMP, sedangkan sejumlah aplikasi tertentu menggunakan paket TCP.

Cara menghitung latensi tiap hop adalah dengan mengukur selisih antara timestamp paket probe yang dikirimkan dengan timestamp dari paket ICMP TTL exceeded yang diterima. Router yang berada sepanjang jalur pengiriman tidak akan melakukan pemrosesan data timestamp. Dari cara ini, yang kita ketahui hanyalah waktu total pulang-pergi dari sumber ke router hop tertentu. Delay yang terjadi sepanjang perjalanan kembali ke sumber juga akan berpengaruh.

Kemudian, alamat IP dari interface manakah yang kita lihat dari hasil traceroute?

traceroute ingress

Alamat IP yang kita lihat dari hasil traceroute adalah IP dari interface ingress router. Sebenarnya, RFC 1812 menyebutkan bahwa sumber ICMP haruslah dari interface egress. Namun, hal ini akan menyebabkan hasil traceroute menjadi kacau.

Traceroute pada WindowsCara Melakukan Traceroute :1. Klik Start > Run2. Setelah muncul pop up lalu anda tinggal ketikkan > CMD3. Lalu munculah gambar seperti di bawah ini , kemudian anda tinggal ketikkan > tracert (spasi)namadomainanda

Interpretasi DNS dari Hasil TracerouteDengan traceroute, kita dapat menganalisis informasi mengenai lokasi router, tipe dan kapasitas interface, tipe dan fungsi router, serta batas-batas network yang dilalui, berdasarkan DNS interface yang dilalui. IUntuk lebih memperjelas, berikut ini adalah contoh hasil traceroute ke www.rayhidtoanami.blogspot.com:

1. 2. 384 ms 318 ms 543 ms 1.subnet125-163-160.speedy.telkom.net.id [125.163.160.1]3. 389 ms 289 ms 371 ms 205.subnet125-160-11.speedy.telkom.net.id [125.160.11.205]4. 389 ms 414 ms 330 ms 61.94.114.1175. 290 ms 757 ms 489 ms 61.subnet118-98-61.astinet.telkom.net.id [118.98.61.61]6. 538 ms 577 ms 487 ms 62.subnet118-98-61.astinet.telkom.net.id [118.98.61.62]7. 615 ms 751 ms 658 ms 72.14.211.618. 678 ms 721 ms 712 ms 209.85.243.1569. 655 ms 782 ms 850 ms 209.85.242.23310. 489 ms 1002 ms 726 ms 209.85.242.12511. 424 ms 460 ms 413 ms ni-in-f132.1e100.net [74.125.135.132]Hasilnya, paket tersebut melewati 11 router atau 11 kali loncatan. Loncatan yang pertama sampai kelima hanya memakan waktu sekitar 300-400 mili detik adalah loncatan dari komputer penulis ke jaringan milik Telkomnet di Indonesia. Pada loncatan ke tujuh, waktu yang diperlukan meningkat banyak sekali menjadi sekitar 700 mili detik, ini dikarenakan loncatan tersebut memang jauh, yaitu dari stasiun bumi Telkomnet yang ada di Indonesia ke gateway milik Telkomnet yang ada di Hongkong. Kadang waktu yang diperlukan meningkat banyak sekali karena jarak yang jauh atau jaringan yang dilewati memang sedang padat. Anda harus mencurigai titik-titik dimana waktu yang diperlukan menjadi besar sekali. Jika hal ini terjadi, anda dapat mengeceknya dengan melakukan ping ke router tersebut beberapa kali untuk melihat apakah paket yang kita kirimkan di drop, atau apakah ada variasi waktu yang besar.

Dikombinasikan dengan ping, traceroute menjadi alat analisa jaringan yang baik dengan melihat loncatan mana yang memakan waktu yang besar atau paket yang di drop, kita dapat menentukan dimana titik kritisnya. Kemudian dengan melakukan ping pada titik tersebut dan satu titik sebelumnya, kita dapat menemukan masalah yang ada dalam jaringan.

Setting IP Static Pada Windows, Unix, dan LinuxWindows :Control Panel >> Network Connections >> Local Area Connection >> Properties >> TCP/IP >> PropertiesBerikut langkah langkah setting IP static di Windows :1. Buka control panel,2. Buka Network Connections,3. Klik kanan pada "Local Area Connection"4. Pilih "Properties",5. Lalu (pada "general" tab) pilih "Internet Protocol(TCP/IP)"6. Klik "Properties".7. Pilih "Use the Following IP address dan masukkan IP address yang diinginkan.Jika menggunakan IP address 192.160.17.8 , maka akan muncul seperti berikut.

Mac OS XLangkah langkah setting IP static pada Mac OS X :1. Buka System Preferences2. Pilih Network3. Pilih jenis interface yang digunakan, misalkan Ethernet,4. Kemudian klik Advanced5. Pada tab TCP/IP, pilih Configure IPv4 : Manually

LINUXDi ubuntu (dan distro turunan debian lainnya), untuk mengedit secara manual konfigurasi network agar menjadi ip static, edit file /etc/network/interfaces, dan ubah bagian eth0 misalnya menjadi:

# The primary network interfaceiface eth0 inet staticaddress 192.168.0.2netmask 255.255.255.0gateway 192.168.0.1

# agar eth0 diaktifkan secara otomatis pada saat boot:auto eth0

Kemudian restart eth0:

sudo ifdown eth0sudo ifup eth0

Classless & Classfull Routing ProtocolCLASSFUL ROUTING PROTOCOLClassful routing protocols, ialah suatu protocol dimana protokol ini tidak membawa routing mask information ketika update routing atau routing advertisements. Ia hanya membawa informasi ip-address saja, dan menggunakan informasi default mask sebagai mask-nya.

Kelemahan dari classful routing protocols ialah tak dapat men-suport VLSM (Variable Length Subnet Mask) dan SupernettingContoh dari classful routing protocols ialah:1. RIP V12. IGRP

CLASSLESS ROUTING PROTOCOLClassless routing protocols memanjangkan standard skema IP Adress Class A, B, atau C dengan menggunakan subnet mask atau mask length sebagai indikasi bahwa router harus menejemahkan IP network ID. Classless routing protocols memasukan subnet mask bersama dengan IP address ketika mencari informasi routing.Contoh dari Classless routing protocols ialah RIP v2 and OSPF, Border Gateway Protocol version 4 (BGP4) dan Intermediate System to Intermediate System (IS-IS).Command-Command1. pingPing adalah program tersederhana dari aplikasi TCP/IP. Ping mengirimkan IP datagram ke suatu host dan mengukur waktu round trip dan menerima respon. Ping merupakan singkatan dari Packet InterNet Groper.Ping menggunakan pesan ICMP echo dan echo reply.Ping dapat juga digunakan untuk memastikan installasi IP address di suatu host. Langkah-langkah yang dapat dilakukan yaitu : Ping loopback : test terhadap software TCP/IP Ping IP alamatku : test perangkat jaringan di host tersebut Ping alamat IP suatu host lain : test apakah jalur sudah benar Ping nama dari suatu host : test apakah sistem DNS sudah berjalan.TRACEROUTEAplikasi traceroute melacak jalur mana saja yang dilalui untuk menuju ke suatu host tujuan. Cara kerja traceroute dengan mengirimkan pesan dengan TTL = 1. Dimana apabila sudah mencapai suatu target jumlah TTL akan menjadi 0, dan ini akan memberikan pesan ke pengirim dengan pesan time exceeded, sehingga host akan mengirimkan lagi pesan ICMP dengan nilai TTL diperbesar. Proses ini dilakukan terus hingga mencapai host yang dituju.

ARPProtokol ARP digunakan untuk merubah protokol pengalamatan pada layer yang lebih atas (IP Address) menjadi alamat fisik jaringan.Spesifikasi ARP dapat dilihat di RFC 826.Cara kerja protokol ARP :Host Y melakukan broadcast dengan mengirimkan pesan ARP Request, apabila host yang dituju berada dalam satu jaringan maka host tersebut akan mengirimkan pesat ARP Reply yang berisikan informasi MAC. Bila host yang dituju berada dalam jaringan yang berbeda maka yang akan mengirimkan ARP Reply adalah Router yang memisahkan jaringan tersebut.

CIDRClassless Inter-Domain Routing (disingkat menjadi CIDR) adalah sebuah cara alternatif untuk mengklasifikasikan alamat-alamat IP berbeda dengan sistem klasifikasi ke dalam kelas A, kelas B, kelas C, kelas D, dan kelas E. Disebut juga sebagai supernetting.CIDR merupakan mekanisme routing yang lebih efisien dibandingkan dengan cara yang asli, yakni dengan membagi alamat IP jaringan ke dalam kelas-kelas A, B, dan C. Masalah yang terjadi pada sistem yang lama adalah bahwa sistem tersebut meninggalkan banyak sekali alamat IP yang tidak digunakan. Sebagai contoh, alamat IP kelas A secara teoritis mendukung hingga 16 juta host komputer yang dapat terhubung, sebuah jumlah yang sangat besar. Dalam kenyataannya, para pengguna alamat IP kelas A ini jarang yang memiliki jumlah host sebanyak itu, sehingga menyisakan banyak sekali ruangan kosong di dalam ruang alamat IP yang telah disediakan.CIDR dikembangkan sebagai sebuah cara untuk menggunakan alamat-alamat IP yang tidak terpakai tersebut untuk digunakan di mana saja. Dengan cara yang sama, kelas C yang secara teoritis hanya mendukung 254 alamat tiap jaringan, dapat menggunakan hingga 32766 alamat IP, yang seharusnya hanya tersedia untuk alamat IP kelas B.

Public IP dan Private IP AddressAlamat UnicastSetiap antarmuka jaringan yang menggunakan protokol TCP/IP harus diidentifikasikan dengan menggunakan sebuah alamat logis yang unik, yang disebut dengan alamat unicast (unicast address). Alamat unicast disebut sebagai alamat logis karena alamat ini merupakan alamat yang diterapkan pada lapisan jaringan dalam DARPA Reference Model dan tidak memiliki relasi yang langsung dengan alamat yang digunakan pada lapisan antarmuka jaringan dalam DARPA Reference Model. Sebagai contoh, alamat unicast dapat ditetapkan ke sebuah host dengan antarmuka jaringan dengan teknologi Ethernet, yang memiliki alamat MAC sepanjang 48-bit.Alamat unicast inilah yang harus digunakan oleh semua host TCP/IP agar dapat saling terhubung. Komponen alamat ini terbagi menjadi dua jenis, yakni alamat host (host identifier) dan alamat jaringan (network identifier).Alamat unicast menggunakan kelas A, B, dan C dari kelas-kelas alamat IP yang telah disebutkan sebelumnya, sehingga ruang alamatnya adalah dari 1.x.y.z hingga 223.x.y.z. Sebuah alamat unicast dibedakan dengan alamat lainnya dengan mengunakan skema subnet mask.Jenis-jenis alamat unicastJika ada sebuah intranet tidak yang terkoneksi ke Internet, semua alamat IP dalam ruangan kelas alamat unicast dapat digunakan. Jika koneksi dilakukan secara langsung (dengan menggunakan teknik routing) atau secara tidak langsung (dengan menggunakan proxy server), maka ada dua jenis alamat yang dapat digunakan di dalam Internet, yaitu public address (alamat publik) dan private address (alamat pribadi). Alamat publicalamat publik adalah alamat-alamat yang telah ditetapkan oleh InterNIC dan berisi beberapa buah network identifier yang telah dijamin unik (artinya, tidak ada dua host yang menggunakan alamat yang sama) jika intranet tersebut telah terhubung ke Internet.Ketika beberapa alamat publik telah ditetapkan, maka beberapa rute dapat diprogram ke dalam sebuah router sehingga lalu lintas data yang menuju alamat publik tersebut dapat mencapai lokasinya. Di internet, lalu lintas ke sebuah alamat publik tujuan dapat dicapai, selama masih terkoneksi dengan internet. Alamat PrivatSetiap node IP membutuhkan sebuah alamat IP yang secara global unik terhadap internetwork IP. Pada kasus internet, setiap node di dalam sebuah jaringan yang terhubung ke internet akan membutuhkan sebuah alamat yang unik secara global terhadap internet. Karena perkembangan internet yang sangat amat pesat, organisasi-organisasi yang menghubungkan intranet miliknya ke internet membutuhkan sebuah alamat publik untuk setiap node di dalam intranet miliknya tersebut. Tentu saja, hal ini akan membutuhkan sebuah alamat publik yang unik secara global.Ketika menganalisis kebutuhan pengalamatan yang dibutuhkan oleh sebuah organisasi, para desainer internet memiliki pemikiran yaitu bagi kebanyakan organisasi, kebanyakan host di dalam intranet organisasi tersebut tidak harus terhubung secara langsung ke internet. Host-host yang membutuhkan sekumpulan layanan internet, seperti halnya akses terhadap web atau e-mail, biasanya mengakses layanan internet tersebut melalui gateway yang berjalan di atas lapisan aplikasi seperti proxy server atau e-mail server. Hasilnya, kebanyakan organisasi hanya membutuhkan alamat publik dalam jumlah sedikit saja yang nantinya digunakan oleh node-node tersebut (hanya untuk proxy, router, firewall, atau translator alamat jaringan) yang terhubung secara langsung ke internet.Untuk host-host di dalam sebuah organisasi yang tidak membutuhkan akses langsung ke internet, alamat-alamat IP yang bukan duplikat dari alamat publik yang telah ditetapkan mutlak dibutuhkan. Untuk mengatasi masalah pengalamatan ini, para desainer internet mereservasikan sebagian ruangan alamat IP dan menyebut bagian tersebut sebagai ruangan alamat pribadi. Sebuah alamat IP yang berada di dalam ruangan alamat pribadi tidak akan digunakan sebagai sebuah alamat publik. Alamat IP yang berada di dalam ruangan alamat pribadi dikenal juga dengan alamat pribadi atau Private Address. Karena di antara ruangan alamat publik dan ruangan alamat pribadi tidak saling melakukan overlapping, maka alamat pribadi tidak akan menduplikasi alamat publik, dan tidak pula sebaliknya. Sebuah jaringan yang menggunakan alamat IP privat disebut juga dengan jaringan privat atau private network.Ruangan alamat pribadi yang ditentukan di dalam RFC 1918 didefinisikan di dalam tiga blok alamat berikut: 10.0.0.0/8 - 10.2 172.16.0.0/12 192.168.0.0/16

Sementara itu ada juga sebuah ruang alamat yang digunakan untuk alamat IP privat dalam beberapa sistem operasi: 169.254.0.0/16

10.0.0.0/8Jaringan pribadi (private network) 10.0.0.0/8 merupakan sebuah network identifier kelas A yang mengizinkan alamat IP yang valid dari 10.0.0.1 hingga 10.255.255.254. Jaringan pribadi 10.0.0.0/8 memiliki 24 bit host yang dapat digunakan untuk skema subnetting di dalam sebuah organisasi privat.172.16.0.0/12Jaringan pribadi 172.16.0.0/12 dapat diinterpretasikan sebagai sebuah block dari 16 network identifier kelas B atau sebagai sebuah ruangan alamat yang memiliki 20 bit yang dapat ditetapkan sebagai host identifier, yang dapat digunakan dengan menggunakan skema subnetting di dalam sebuah organisasi privat. Alamat jaringan privat 17.16.0.0/12 mengizinkan alamat-alamat IP yang valid dari 172.16.0.1 hingga 172.31.255.254.192.168.0.0/16Jaringan pribadi 192.168.0.0/16 dapat diinterpretasikan sebagai sebuah block dari 256 network identifier kelas C atau sebagai sebuah ruangan alamat yang memiliki 16 bit yang dapat ditetapkan sebagai host identifier yang dapat digunakan dengan menggunakan skema subnetting apapun di dalam sebuah organisasi privat. Alamat jaringan privat 192.168.0.0/16 dapat mendukung alamat-alamat IP yang valid dari 192.168.0.1 hingga 192.168.255.254.169.254.0.0/16Alamat jaringan ini dapat digunakan sebagai alamat privat karena memang IANA mengalokasikan untuk tidak menggunakannya. Alamat IP yang mungkin dalam ruang alamat ini adalah 169.254.0.1 hingga 169.254.255.254, dengan alamat subnet mask 255.255.0.0. Alamat ini digunakan sebagai alamat IP privat otomatis (dalam Windows, disebut dengan Automatic Private Internet Protocol Addressing (APIPA)).Ruang alamatDari alamatSampai alamatKeterangan

010.000.000.000/8010.000.000.001010.255.255.254Ruang alamat privat yang sangat besar (mereservaskan kelas A untuk digunakan)

172.016.000.000/12172.016.000.001172.031.255.254Ruang alamat privat yang besar (digunakan untuk jaringan menengah hingga besar)

192.168.000.000/16192.168.000.001192.168.255.254Ruang alamat privat yang cukup besar (digunakan untuk jaringan kecil hingga besar)

169.254.000.000/16169.254.000.001169.254.255.254Digunakan oleh fitur Automatic Private Internet Protocol Addressing (APIPA) dalam beberapa sistem operasi.

Karena alamat-alamat IP di dalam ruangan alamat pribadi tidak akan ditetapkan oleh Internet Network Information Center (InterNIC) (atau badan lainnya yang memiliki otoritas) sebagai alamat publik, maka tidak akan pernah ada rute yang menuju ke alamat-alamat pribadi tersebut di dalam router internet. Kompensasinya, alamat pribadi tidak dapat dijangkau dari internet. Oleh karena itu, semua lalu lintas dari sebuah host yang menggunakan sebuah alamat pribadi harus mengirim request tersebut ke sebuah gateway (seperti halnya proxy server), yang memiliki sebuah alamat publik yang valid, atau memiliki alamat pribadi yang telah ditranslasikan ke dalam sebuah alamat IP publik yang valid dengan menggunakan Network Address Translator (NAT) sebelum dikirimkan ke Internet.

NAT & PATNATKeterbatasan alamat IPv.4 merupakan masalah pada jaringan global atau Internet. Untuk memaksimalkan penggunakan alamat IP yang diberikan oleh Internet Service Provider (ISP) dapat digunakan Network Address Translation atau NAT.Cisco mengimplementasikan dengan menggunakan RFC 1631. NAT membuat jaringan yang menggunakan alamat lokal (private), alamat yang tidak boleh ada dalam tabel routing Internet dan dikhususkan untuk jaringan lokal/intranet, dapat berkomunikasi ke Internet dengan jalan 'meminjam alamat IP Internet yang dialokasikan oleh ISP.Dua Tipe NATDua tipe NAT adalah Static dan Dinamik yang keduanya dapat digunakan secara terpisah maupun bersamaan.StatikTranslasi Static terjadi ketika sebuah alamat lokal (inside) di petakan ke sebuah alamat global/internet (outside). Alamat lokal dan global dipetakan satu lawan satu secara Statik.DinamikNAT dengan Pool (kelompok)Translasi Dinamik terjadi ketika router NAT diset untuk memahami alamat lokal yang harus ditranslasikan, dan kelompok (pool) alamat global yang akan digunakan untuk terhubung ke internet. Proses NAT Dinamik ini dapat memetakan bebarapa kelompok alamat lokal ke beberapa kelompok alamat global.

NAT OverloadSejumlah IP lokal/internal dapat ditranslasikan ke satu alamat IP global/outside. Hal ini sangat menghemat penggunakan alokasi IP dari ISP. Sharing/pemakaian bersama satu alamat IP ini menggunakan metoda port multiplexing, atau perubahan port ke packet outbound.

PATPort Address Translation (PAT) ialah suatu feature dari divais suatu jaringan yang men-translates (menerjemahkan) komunikasi TCP atau UDP yang terjadi antara hosts pada private network dan hosts pada public network. PAT membolehkan single public IP address untuk digunakan oleh banyak host pada private network, dimana biasanya digunakan pada Local Area Network atau LAN.PAT device memodifikasi paket IP secara langsung selagi paket tersebut melewatinya. Modifikasi ini menyebabkan seluruh paket yang dikirim ke public network dari multiple hosts pada private network terlihat seperti hanya berasal dari single host saja (the PAT device) pada public network.

IPv4 dan IPV6Alamat IP versi 4 (sering disebut dengan Alamat IPv4) adalah sebuah jenis pengalamatan jaringan yang digunakan di dalam protokol jaringan TCP/IP yang menggunakan protokol IP versi 4. Panjang totalnya adalah 32-bit, dan secara teoritis dapat mengalamati hingga 4 miliar host komputer di seluruh dunia. Contoh alamat IP versi 4 adalah 192.168.0.3.Alamat IP versi 4 umumnya diekspresikan dalam notasi desimal bertitik (dotted-decimal notation), yang dibagi ke dalam empat buah oktet berukuran 8-bit. Dalam beberapa buku referensi, format bentuknya adalah w.x.y.z. Karena setiap oktet berukuran 8-bit, maka nilainya berkisar antara 0 hingga 255 (meskipun begitu, terdapat beberapa pengecualian nilai).Alamat IP yang dimiliki oleh sebuah host dapat dibagi dengan menggunakan subnet mask jaringan ke dalam dua buah bagian, yakni: Network Identifier/NetID atau Network Address (alamat jaringan) yang digunakan khusus untuk mengidentifikasikan alamat jaringan di mana host berada. Dalam banyak kasus, sebuah alamat network identifier adalah sama dengan segmen jaringan fisik dengan batasan yang dibuat dan didefinisikan oleh router IP. Meskipun demikian, ada beberapa kasus di mana beberapa jaringan logis terdapat di dalam sebuah segmen jaringan fisik yang sama dengan menggunakan sebuah praktek yang disebut sebagai multinetting. Semua sistem di dalam sebuah jaringan fisik yang sama harus memiliki alamat network identifier yang sama. Network identifier juga harus bersifat unik dalam sebuah internetwork. Jika semua node di dalam jaringan logis yang sama tidak dikonfigurasikan dengan menggunakan network identifier yang sama, maka terjadilah masalah yang disebut dengan routing error. Host Identifier/HostID atau Host address (alamat host) yang digunakan khusus untuk mengidentifikasikan alamat host (dapat berupa workstation, server atau sistem lainnya yang berbasis teknologi TCP/IP) di dalam jaringan. Nilai host identifier tidak boleh bernilai 0 atau 255 dan harus bersifat unik di dalam network identifier/segmen jaringan di mana ia berada.Alamat IP versi 6 (sering disebut sebagai alamat IPv6) adalah sebuah jenis pengalamatan jaringan yang digunakan di dalam protokol jaringan TCP/IP yang menggunakan protokol IP versi 6. Panjang totalnya adalah 128-bit, dan secara teoritis dapat mengalamati hingga 2^128=3,4 x 10^38 host komputer di seluruh dunia. Contoh alamat IP versi 6 adalah 21DA:00D3:0000:2F3B:02AA:00FF:FE28:9C5A.Berbeda dengan IPv4 yang hanya memiliki panjang 32-bit (jumlah total alamat yang dapat dicapainya mencapai 4,294,967,296 alamat), alamat IPv6 memiliki panjang 128-bit. IPv4, meskipun total alamatnya mencapai 4 miliar, pada kenyataannya tidak sampai 4 miliar alamat, karena ada beberapa limitasi, sehingga implementasinya saat ini hanya mencapai beberapa ratus juta saja. IPv6, yang memiliki panjang 128-bit, memiliki total alamat yang mungkin hingga 2^128=3,4 x 10^38 alamat. Total alamat yang sangat besar ini bertujuan untuk menyediakan ruang alamat yang tidak akan habis (hingga beberapa masa ke depan), dan membentuk infrastruktur routing yang disusun secara hierarkis, sehingga mengurangi kompleksitas proses routing dan tabel routing.Sama seperti halnya IPv4, IPv6 juga mengizinkan adanya DHCP Server sebagai pengatur alamat otomatis. Jika dalam IPv4 terdapat dynamic address dan static address, maka dalam IPv6, konfigurasi alamat dengan menggunakan DHCP Server dinamakan dengan stateful address configuration, sementara jika konfigurasi alamat IPv6 tanpa DHCP Server dinamakan dengan stateless address configuration.Seperti halnya IPv4 yang menggunakan bit-bit pada tingkat tinggi (high-order bit) sebagai alamat jaringan sementara bit-bit pada tingkat rendah (low-order bit) sebagai alamat host, dalam IPv6 juga terjadi hal serupa. Dalam IPv6, bit-bit pada tingkat tinggi akan digunakan sebagai tanda pengenal jenis alamat IPv6, yang disebut dengan Format Prefix (FP). Dalam IPv6, tidak ada subnet mask, yang ada hanyalah Format Prefix.

SubnetingDiberikan sebuah block IP 202.200.38.0/24Buat Subnet dari alamat tersebut jika1. dibutuhkan 7 network2. Bagian keuangan 62 host, Manajemen 30 host, Karyawan 126 host, antar router 2 host-2host

7 NetworkSubnet 0 202.200.38.0/27Subnet 1 202.200.38.32/27Subnet 2 202.200.38.64/27Subnet 3 202.200.38.96/27Subnet 4 202.200.38.128/27Subnet 5 202.200.38.160/27Subnet 6 202.200.38.192/27Subnet 7 202.200.38.224/27Berdasar HostKaryawan (126 host)Network/prefix : 202.200.38.0/25Address range : 1 126Broadcast Address : 127Keuangan (62 host)Network/prefix : 202.200.38.128/26Address range : 129 190Broadcast Address : 191

Manajemen (30 host)Network/prefix : 202.200.38.192/27Address range : 193 222Broadcast Address : 223Router 1 (2 host)Network/prefix : 202.200.38.224/30Address range : 225 226Broadcast Address : 227Router 2 (2 host)Network/prefix : 202.200.38.228/30Address range : 229 230Broadcast Address : 231