matematika terapan 1

74
BAB I TEOREMA LIMIT Teorema limit di bawah ini disusun untuk acuan : I. Jika f (x) = c suatu konstanta, maka . Jika dan maka ; II , k sembarang III IV V VI c f(x) lim a x

Upload: yono-agus

Post on 24-Jul-2015

1.229 views

Category:

Documents


68 download

TRANSCRIPT

Page 1: MATEMATIKA TERAPAN 1

BAB ITEOREMA LIMIT

Teorema limit di bawah ini disusun untuk acuan :I. Jika f (x) = c suatu konstanta, maka . Jika dan maka ;

II , k sembarang konstanta

III

IV

V

VI

cf(x)limax

Page 2: MATEMATIKA TERAPAN 1

Limit Bentuk Tak Tentu

Dalam mencari Turunan fungsi f (x) yang dapat di diferensiasi dengan ketentuan bertahap.

Karena limit pembilang maupun penyebut dari pecahan adalah nol, maka (a) biasa disebut tak tentu jenis 0/0.

Dengan cara sama, adalah biasa untuk menyebut tak tentu jenis

Symbol-simbol ini, 0/0, dan lain-lain yang diperkenalkan kemudian tidak boleh dianggap secara harfiah, mereka hanyalah nama-nama mudah untuk mudah untuk membedakan jenis-jenis yang ada

Page 3: MATEMATIKA TERAPAN 1

Untuk limit bentuk tak tentu 0/0, dan berlaku ketentuan L’ Hospital yaitu :

Jika limiat = 0/0, atau

Maka harga limitnya adalah :

Catatan :

Bentuk-bentuk bilangan tertentu = k, o

)(

)(

xG

xFLim

ax

,0,)('

)('k

xG

xFLim

ax

0;0;00

;00;0

kk

kk

kk

kk

Page 4: MATEMATIKA TERAPAN 1

BAB IIDEFERENSIAL

2.1. Pendahuluan Pertambahan Pertambahan x suatu variabel x adalah perubahan dalam

x bila x membesar atau mengecil dari satu nilai x = x0 menjadi nilai lain x = x1 pada jangkauannya. Di sini, x = x1 – x0 dan dapat ditulis x1 = x0 + x.

Bila variabel x diberi pertambahan x terhadap x = x0 (artinya, jika x berubah dari x = x0 menjadi x = x0 + x) dan dengan demikian sebuah fungsi y = f(x) diberi pertambahan y = f(x0 + x) – f(x0) dari y = f(x0), hasil bagi

disebut laju perubahan rata-rata dari fungsi selang antara x = x0 dan x = x0 + x.

xdalamperubahan

ydalamperubahan

x

x

Page 5: MATEMATIKA TERAPAN 1

TURUNAN Turunan (derivative) suatu fungsi y = f(x) terhadap x = x0

didefinisikan sebagai:

Asal limitnya ada. Limit ini juga disebut laju perubahan sesaat (atau mudahnya, laju perubahan), dari y terhadap x pada x = x0.

Dalam mencari turunan indeks 0 biasanya dihilangkan dan turunan y = f(x) terhadap x diperoleh dari :

Turunan y = f(x) terhadap x dapat dinyatakan oleh salah satu

simbol

dx

dy x

xfxxf

x

yxx

00

00limlim

xfdx

dxfyyD

dx

dyy

dx

dx

atau,',',,,

Page 6: MATEMATIKA TERAPAN 1

2.2 Diferensiasi Fungsi Aljabar Suatu fungsi dikatakan dapat dideferensiasi di x =

x0 bila fungsi itu mempunyai turunan di titik tersebut. Suatu fungsi dikatakan dapat dideferensiasi pada suatu selang bila fungsi itu dapat dideferensiasi di setiap titik pada selang tersebut.

Fungsi-fungsi kalkulus dasar dapat dideferensiasi, kecuali mungkin pada titik-titik tertentu yang terisolasi, pada selang definisinya.

Page 7: MATEMATIKA TERAPAN 1

Rumus-rumus DiferensiasiDalam rumus-rumus ini u, v dan w adalah fungsi-fungsi x yang dapat dideferensiasi

Page 8: MATEMATIKA TERAPAN 1

Diferensiasi Fungsi Suatu Fungsi Jika y = f(u) dan u = g(x), maka y = f{g(x)} adalah fungsi x.

Jika y adalah fungsi u yang dapat didiferensiasi dan jika u adalah fungsi yang dapat didiferensiasi, maka y = f{g(x)} adalah fungsi x yang dapat didiferensiasi. Dan turunan dy/dx dapat diperoleh lewat salah satu cara di bawah ini :Cara 1. Nyatakan y secara eksplisit dalam x dan diferensiasiContoh : Jika y = u2 + 3 dan u = 2x + 1, maka y = (2x + 1)2 + 3 dan

dy/dx = 8x + 4Cara 2. Diferensiasi tiap fungsi terhadap variabel bebas dan gunakan

rumus atau aturan rantaiContoh :Jika y = u2 + 3 dan u = 2x + 1, maka = 4u = 4(2x + 1) = 8x + 4

Page 9: MATEMATIKA TERAPAN 1

Turunan-turunan Lebih Tinggi

Misalkan y = f(x) adalah fungsi x yang dapat didiferensiasi, maka :

Page 10: MATEMATIKA TERAPAN 1

2.3 Diferensiasi Implisit Fungsi-fungsi Implisit Suatu persamaan f(x, y) = 0, pada jangkau terbatas

dari variabel-variabel tertentu, dikatakan mendefinisikan y sebagai fungsi x secara implisit. Turunan y’ dapat diperoleh dengan cara :

a.Jika mungkin, pecahkan y dan diferensiasi terhadap x (atau jika mungkin rubah dari bentuk implisit menjadi bentuk eksplisit). Untuk persamaan-persamaan yang sangat sederhana, cara ini dapat diabaikan.

b. Dengan memikirkan y sebagai fungsi x, diferensiasi fungsi yang diketahui terhadap x dan cari y’ dari hubungan yang diperoleh. Proses diferensiasi ini dikenal sebagai diferensiasi implisi

Page 11: MATEMATIKA TERAPAN 1

Contoh :

Cari y’, bila diketahui xy + x – 2y – 1 = 0. Cara a. Rubah dari bentuk implisit menjadi eksplisit.

Cara b. Masing-masing suku diferensiasikan ke-x

Page 12: MATEMATIKA TERAPAN 1

Turunan Tingkat Lebih Tinggi Dapat diperoleh lewat salah satu cara :a. Diferensiasi secara implisit turunan satu tingkat lebih rendah

dan ganti y’ dengan hubungan yang telah diperoleh terlebih dahulu.

b. Diferensiasi secara implisit persamaan yang diketahui sejumlah yang diperlukan untuk mendapatkan turunan yang diminta dan eliminasi semua turunan dengan tingkat lebih rendah. Cara ini dianjurkan hanya bila turunan dengan tingkat lebih tinggi pada suatu titik ditanyakan.

Page 13: MATEMATIKA TERAPAN 1

Contoh 2:Cari harga y” dari kurva x2y + 3y – 4 = 0 di titik (– 1, 1) dari kurva x2y + 3y – 4 = 0.Diferensiasi secara implisit terhadap x dua kali :x2y’ + 2xy + 3y’ = 0 dan x2y” + 2xy’ + 2xy’ + 2y + 3y” = 0Substitusikanlah x = – 1, y = 1 pada hubungan pertama, maka y’ = ½Substitusikanlah x =– 1, y = 1, y’=½ pada hubungan kedua, maka y”= 0

2.4. Diferensiasi Fungsi TrigonometrikAturan-aturan DiferensiasiMisalkan u adalah fungsi x yang dapat didiferensiasi:

Page 14: MATEMATIKA TERAPAN 1
Page 15: MATEMATIKA TERAPAN 1

2.5 Diferensiasi Fungsi Invers Trigonometrik

Misalkan u adalah fungsi x yang dapat didiferensiasi, maka :

Contoh :

Page 16: MATEMATIKA TERAPAN 1

2.6 Diferensiasi Fungsi Eksponensial dan Logaritmik

Jika u adalah fungsi x yang dapat didiferensiasi,

Contoh Soal :

Page 17: MATEMATIKA TERAPAN 1

2.7 Diferensiasi Fungsi Hiperbolik

Definisi Fungsi-fungsi Hiperbolik

Untuk u tiap bilangan riil, kecuali bila dikatakan :

Rumus-rumus Diferensiasi

Jika u adalah fungsi x yang dapat didiferensiasi

Page 18: MATEMATIKA TERAPAN 1

Contoh :

2.8 Diferensiasi Fungsi Bentuk ParametrikPersamaan ParametrikJika koordinat (x, y) suatu titik P pada suatu kurva diberikan sebagai fungsi-fungsi x = f(u), y = g(u) dari variabel ketiga atau parameter u, persamaan x = f(u), y = g(u) dinamakan persamaan parametrik kurva tersebut.Contoh : a). x = cos , y = 4 sin2 adalah persamaan-persamaan parametrik, dengan parameter , dari parabola 4x2 + y = 4,karena 4x2 + y = 4 cos2 + 4 sin2 = 4b). x = ½ t, y = 4 – t2 adalah pernyataan parametrik lain, dengan parameter t, dari kurva yang sama.

Page 19: MATEMATIKA TERAPAN 1

Jika x = f(u), y = g(u), maka :

Page 20: MATEMATIKA TERAPAN 1

2.9 Turunan ParsialTurunan parsial misalkan z = f(x, y) adalah fungsi variabel bebas x dan y. Karena x dan y bebas, (i) dapat dimungkinkan x yang berubah-ubah, sementara y dianggap tetap, (ii) dapat dimungkinkan y berubah-ubah sementara x dianggap tetap, (iii) dapat dibolehkan x dan y keduanya berubah bersama-sama. Pada dua keadaan pertama, z merupakan fungsi variabel tunggal dan dapat diturunkan menurut aturan-aturan yang biasa.Jika x berubah sedangkan y dianggap tetap, z adalah fungsi x dan turunannya ke x.

Jika y berubah sedangkan x dianggap tetap, z adalah fungsi y dan turunannya ke y.

Page 21: MATEMATIKA TERAPAN 1

2.10 Turunan Parsial

Misal z = f(x, y) adalah fungsi variabel bebas x dan y. karena x dan y bebas, (i) dapat dimungkinkan x yang berubah-ubah, sementara y dianggap tetap, (ii) dapat dimungkinkan y berubah-ubah, sementara x dianggap tetap, (iii) dapat dibolehkan x dan y keduanya berubah bersama-sama. Pada dua keadaan pertama, z merupakan fungsi variabel tunggal dan dapat diturunkan menurut aturan-aturan yang biasa.

Jika x berubah sedangkan y dianggap tetap, z adalah fungsi x dan turunannya ke-x.

Disebut turunan (pertama) parsial dari x = f(x, y) ke x.

Jika y berubah sedangkan x dianggap tetap, maka z adalah fungsi y dan turunannya ke-y.

Page 22: MATEMATIKA TERAPAN 1

Turunan Parsial Tingkat Tinggi

Turunan parsial dari z = f(x, y) dapat diturunkan parsial lagi ke x dan ke y, menghasilkan turunan parsial kedua

2.11. Diferensial Total dan Turunan Total

Diferensial Total

Diferensial dx dan dy untuk fungsi y = f(x) dari satu ariable bebas x didefinisikan sebagai berikut :

Page 23: MATEMATIKA TERAPAN 1

Fungsi dua ariable bebas x dan y, z = f(x, y), dan didefinisikan dx = x dan dy = y. Bila x berubah, sedangkan y tetap, z merupakan fungsi x saja dan diferensial parsial z terhadap x didefinisikan sebagai dxz = fx(x, y) dx = . Dengan cara sama, diferensial parsial z terhadap y didefinisikan oleh dyz = fy(x, y) dy = . Diferensial total dz didefinisikan sebagai jumlah diferensial parsialnya, yaitu :

Untuk fungsi w = F(x, y, z, …, t) diferensial total dw didefinisikan sebagai :

Page 24: MATEMATIKA TERAPAN 1

Aturan Rantai untuk Fungsi BersusunJika z = f(x, y) suatu fungsi kontinu dari ariable-variabel x, y, dengan turunan parsialnya z/x dan z/y, kontinu dan jika x dan y merupakan fungsi ariable t yang didefensiabel x = g(t), y = h(t), maka z adalah fungsi t dan dz/dt, disebut turunan total z ke t, dinyatakan oleh :

2.12. Turunan Parsial Fungsi Implisit1. Jika f(x, y) kontinu pada daerah yang memuat titik (x0, y0)

sehingga , Jika , kontinu di seluruh

daerah ini, dan jika di (x0, y0), maka terdapatlah sekitar (x0, y0) di mana f(x, y) = 0 dapat diselesaikan untuk y sebagai fungsi diferensial yang kontinu

2. Jika F(x, y, z) kontinu pada daerah yang memuat titik (x0, y0, z0) sehingga F(x0, y0, z0) = 0, jika kontinu di seluruh daerah itu, dan jika pada (x0, y0, z0), maka terdapatlah sekitar (x0, y0, z0) dimana F(x, y, z) = 0 dapat diselesaikan untuk z sebagai fungsi diferensial yang kontinu dari x dan y :

Page 25: MATEMATIKA TERAPAN 1

2.13. Garis Singgung dan Normal

Jika Fungsi f(x) mempunyai turunan terbatas f(x0) di x = x0, kurva y = f(x) mempunyai garis singgung di P0(x0, y0) yang tangen arahnya adalah : m = tan=f’(x0)

Dan persamaan garis singgung adalah : y – y0 = m(x-x0)

Jika m = 0, kurva mempunyai persamaan garis singgung horisontal dengan persamaan y – y0 di P0.

Normal suatu kurva pada salah satu titiknya adalah garis yang lewat titik tersebut dan tegak lurus garis singgung di titik tersebut. Persamaan normal di P0(x0, y0) adalah :

Jika garis singgung horisontal maka garis normalnya x = x0. Jika garis singgung vertikal maka garis normalnya y = y0.

Page 26: MATEMATIKA TERAPAN 1

Panjang Garis Singgung, Normal, Subgaris Singgung dan Subnormal

Panjang garis singgung suatu kurva di salah satu titiknya didefinisikan sebagai panjang bagian garis singgung di antara titik singgungnya dan sumbu-x. Panjang proyeksi segmen ini pada sumbu-x disebut panjang subgaris singgung.

Panjang normal didefinisikan sebagai panjang bagian normal antara titik singgung, garis singgung dan sumbu-x. Panjang proyeksi segmen ini pada sumbu-x disebut panjang subnormal.

Pada gambar disamping :

Panjang subgaris singgung = TS = y0/m

Panjang subnormal = SN = my0.

Panjang garis singgung

Panjang normal

Page 27: MATEMATIKA TERAPAN 1

2.14 Harga Maksimum dan Harga MinimumFungsi Naik dan Fungsi Turun. Suatu fungsi f(x) dikatakan naik di x = x0, jika

1.untuk h positif dan cukup kecil berlaku f(x0 – h)< f(x0)< f(x0 + h) 0

Fungsi y = f(x) di katakan turun di x = x0, jikauntuk h positif dan cukup kecil berlaku f(x0 – h) > f(x0) > f(x0 +

h) < 0Fungsi y = f(x) dikatakan stasioner di x = x0, jika = 0Harga-harga x yang memenuhi sehingga fungsi f(x) stasioner

disebut harga kritis fungsi tersebut.Jika y = f(x) dapat dideferensialkan pada selang a < x < b dan

jika f(x) mempunyai harga max/min relatif di x = x0, dimana a < x0 < b maka f’(x) = 0.

Untuk mencari harga max/min relatif dari fungsi f(x) dapat dilakukan dengan :

Page 28: MATEMATIKA TERAPAN 1

Pengujian turunan pertama meliputi :

1. Pecahkan f’(x0)=0 untuk mendapat harga kritis2. Gambar harga kritis pada garis bilangan, dengan demikian

terbentuk sejumlah selang3. Tentukan f’(x) tanda pada tiap selang4. Misalkan x bertambah setelah tiap harga kritis x = x0; maka f(x) mempunyai harga maksimum (=f(x)) jika f’(x) berubah dari

+ke f(x) mempunyai harga minimum (=f(x)) jika f’(x) berubah dari

ke + f(x) tidak mempunyai harga maksimum ataupun minimum di x =

x0 jika f’(x) tidak mengalami perubahan tanda.

Pengujian turunan kedua meliputi :

1. Pecahkan f’(x0)=0 untuk mendapat harga kritis2. Untuk harga kritis x = x0 :

f(x) mempunyai harga maksimum (=f(x)) jika f’(x) < 0 f(x) mempunyai harga maksimum (=f(x)) jika f’(x) > 0Dalam keadaan terakhir, metode turunan pertama harus digunakan.

Page 29: MATEMATIKA TERAPAN 1

BAB IIIINTEGRAL

3.1. Rumus-rumus Integrasi DasarSejumlah rumus-rumus di bawah segera timbul dari rumus-rumus diferensiasi standar dalam bab-bab sebelum ini.

Page 30: MATEMATIKA TERAPAN 1

3.2. Integrasi BagianJika u dan v adalah fungsi x yang dapat didiferensiasid(uv) = u dv + v duu dv = d(uv) – v du(i)(i) Untuk menggunakan (i) dalam menghitung suatu integrasi yang dinyatakan, integral yang diberikan harus dipisahkan menjadi dua bagian, satu bagian adalah u dan bagian lain, bersama dengan dx, adalah dv. (Untuk alasan ini, integrasi dengan menggunakan (i) disebut integrasi bagian). Dua aturan umum dapat ditulis :(a) Bagian yang dipilih sebagai dv harus dapat segera diintegrasi(b) tidak boleh lebih sulit daripada .

duvuvdvu

Page 31: MATEMATIKA TERAPAN 1

3.3. Integral TrigonometrikHubungan-hubungan berikut digunakan untuk mencari integral trigonometrik1. sin3 x + cos+2 x = 12. 1 + tan2 x = sec2 x3. 1 + cot2 x = csc2 x4. sin2 x = ½(1 – cos 2x)5. cos2 x = ½(1 + cos 2x)6. sin x cos x = ½ sin 2x7. sin x cos y = ½[sin (x – y) + sin (x + y)]8. sin x sin y = ½[cos (x – y) – cos (x + y)]9. cos x cos y = ½[cos (x – y) + cos (x + y)]10. 1 – cos x = 2 sin2 ½ x11. 1 + cos x = 2 cos2 ½ x12. 1 + sin x = 1 + cos (½ x – x)

Page 32: MATEMATIKA TERAPAN 1

3.4. Substitusi Trigonometrik

Suatu Integran, yang terdiri dari salah satu bentuk dan tetapi bukan faktor irrasional lain, dapat diubah ke dalam bentuk lain yang menyangkut fungsi trigonometrik peubah baru sebagai berikut :

222222 , ubauba 222 aub

Page 33: MATEMATIKA TERAPAN 1

3.5. Integrasi dengan Pecahan Parsial

Sebuah polinomial dalam x adalah fungsi dalam bentuk a0xn + a1 xn – 1 + … + a n – 1 x + an, di mana semua a adalah konstanta, a0 0, dan n adalah bilangan bulat positif termasuk nol.Jika dua polinomial dengan derajat sama adalah sama untuk semua nilai peubah, koefisien peubah dengan pangkat sama dalam kedua polinomial tersebut adalah sama.Tiap polinomial dengan koefisien riil dapat dinyatakan (paling sedikit, secara teoretis) sebagai hasil kali faktor linear riil dengan bentuk ax + b dan faktor kuadratik riil yang tak dapat direduksi dengan bentuk ax2 + bx + c Sebuah Fungsi F(x) = , di mana f(x) dan g(x) adalah polinomial, disebut pecahan rasional.Jika derajat f(x) lebih kecil dari derajat g(x), F(x) disebut baik ;bila tidak, F(x) disebut tidak baik

xgxf

Page 34: MATEMATIKA TERAPAN 1

Faktor linier berbedaUntuk tiap faktor linear ax + b yang muncul sekali dalam penyebut suatu pecahan rasional yang baik, terdapat sebuah pecahan parsial tunggal berbentuk , di mana A adalah konstanta yang harus ditentukan.

Faktor linear berulangUntuk tiap faktor linear ax + b yang muncul n kali dalam penyebut suatu pecahan rasional yang baik, terdapat suatu penjumlahan n buah pecahan parsial berbentuk , di mana semua A adalah

konstanta-konstanta yang harus ditentukan.

Faktor kuadratik berbedaUntuk tiap faktor kuadratik yang tak dapat direduksi ax2 + bx + c yang muncul sekali dalam penyebut pecahan rasional yang baik, terdapat pecahan parsial tunggal berbentuk , di mana A dan B adalah

konstanta-konstanta yang harus ditentukan.

bax

A

nn

bax

A

bax

A

bax

A

...2

21

cbxax

BAx

2

Page 35: MATEMATIKA TERAPAN 1

Faktor kuadratik berulang

Untuk tiap faktor kuadratik yang tak dapat direduksi ax2 + bx + c yang muncul n kali dalam penyebut suatu pecahan rasional yang baik, terdapat suatu penjumlahan dari n pecahan parsial tunggal berbentuk

di mana A dan B adalah konstanta yang harus ditentukan

3.6. Macam-macam Substitusi

Bila integran adalah rasional kecuali untuk bentuk akar:

nnn

cbxax

BxA

cbxax

BxA

cbxax

BxA

222

222

11 ...

Page 36: MATEMATIKA TERAPAN 1

Substitusi u = 2 arc tan z akan menggantikan tiap fungsi rasional dari sin u dan cos u dengan fungsi rasional z, karena

Page 37: MATEMATIKA TERAPAN 1

3.7. Pemakaian Integral Tak Tentu Suatu Pesamaan s = f (t), di mana s adalah jarak suatu benda pada saat t terhadap suatu titik tetap pada lintasannya (garis lurus), dengan lengkap mendefinisikan gerakan benda. Kecepatan dan percepatan pada saat t diberikan oleh :

Sebaliknya bila kecepatan (percepatan) pada saat t diketahui, bersama dengan posisi (posisi dan kecepatan) pada suatu saat yang diketahui, biasanya pada t = 0, persamaan gerakan dapat diperoleh.

3.8. Integral TertentuDefinisi : Simbol dibaca “integral tertentu dari f(x), terhdap x, dari x = a

sampai x = b”. Fungsi f(x) disebut integran, sedang a dan b masing-masing disebut batas bawah dan batas atas (batas-batas) integrasi.

Definisi : Simbol dibaca “integral tertentu dari f(x), terhdap x, dari x = a

sampai x = b”. Fungsi f(x) disebut integran, sedang a dan b masing-masing disebut batas bawah dan batas atas (batas-batas) integrasi.

Page 38: MATEMATIKA TERAPAN 1

3.9. LUAS BIDANG DENGAN INTEGRASI

Jika f(x) kontinu dan tidak negatif dalam selang α ≤ x ≤ b integral tertentu

=

Limit jumlah ini, (x) dx, bila jumlah pita menuju tak terhingga seperti dijelaskan adalah luas bagian bidang yang digambarkan di atas, atau secara singkat, luas dibawah kurva dari x = a hingga x = b

Dengan cara yang sama, bila x = g(y) adalah kontinu dan tidak negatif dalam selang c ≤ y ≤ d, maka integral tertentu dari definisi adalah luas yang dibatasi kurva x = g(x), sumbu – y dan absis y = c serta y = d

n

kkk

nxxf

1

)(lim

Page 39: MATEMATIKA TERAPAN 1

Langkah-langkah yang perlu untuk membentuk integral tertentu yang menghasilkan luas yang diminta adalah:

•Buat suatu gambar yang menunjukkan (a) luas yang dicari (b) wakil pita, dan (c) persegi panjang yang didekati. Sebagai suatu kebijaksanaan, akan ditujukan wakil sub selang yang lebarnya x (atau y) dan titik xk (atau yk) pada sub selang ini sebagai titik tengah.

•Tulis luas persegi penjang yang didekati dan jumlahnya untuk n buah persegi panjang.

•Misalkan jumlah persegi panjang menuju tak terhingga dan gunakan Teorema Dasar pada bab sebelum ini

Page 40: MATEMATIKA TERAPAN 1

3.10. VOLUME BENDA PUTAR

Benda Putar dibentuk dengan memutar suatu bidang datar sekeliling sebuah garis, disebut sumbu putar pada bidang datar. Volume benda putar dapat ditemukan melalui salah satu cara di bawah ini.

Metode Cakram

Langkah-langkahnya :•Buatlah sketsa daerah yang dimaksud, suatu pita wakil tegak lurus sumbu putar dan persegi panjang yang didekati pita itu seperti telah disebutkan pada bab terdahulu.•Tulislah volume dari cakram (tabung) yang terbentuk, jika persegi panjang yang didekati itu diputar dan hitung jumlah volume n buah persegi panjang yang didekati.•Andaikan banyaknya persegi yang didekati, menuju tak terhingga dan gunakan teorema dasar (Foundamental Theorem).

Page 41: MATEMATIKA TERAPAN 1

Metode Rumah Siput

Langkah-langkahnya : Buatlah sketsa daerah yang dimaksud, suatu pita

wakil sejajar sumbu putar dan persegi panjang. Tulislah Volume (= keliling rata-rata x tinggi x tebal)

rumah siput yang terbentuk tabung yang terjadi apabila persegi panjang yang didekati itu diputar sekeliling sumbu putar dan hitung jumlah volume n buah persegi panjang yang didekati.

Andaikan benyaknya persegi panjang yang didekati, menuju tak terhingga dan gunakan teorema dasar.

Page 42: MATEMATIKA TERAPAN 1

3.11. Titik Berat

Momen (Pertama) ML suatu lulusan bidang, terhadap suatu garis L ialah hasil kali luas dengan jarak langsung titik berat ke garis itu. Momen luasan gabungan terhadap suatu garis merupakan jumlah momen masing–masing luasan terhadap garis itu.

Momen suatu luasan bidang terhadap sumbu koordinat didapatkan sebagai berikut:

Gambarlah daerah yang dimaksud, tunjukkan pita wakil dan persegi panjang yang didekati.

Bentuklah hasil kali luas persegi panjang dan jarak titik berat dari sumbu koordinat, dan jumlahkan untuk semua persegi panjang.

Andaikan banyaknya persegi panjang menuju tak terhingga dan gunakan teorema Dasar. (Lihat Soal 2).

Untuk suatu luasan bidang A yang mempunyai titik berat

(dan momen-momenya Mx dan My terhadap sumbu – x dan sumbu – y,

A = My dan A = Mx

Page 43: MATEMATIKA TERAPAN 1

Momen (Pertama) Suatu Benda yang bervolume V, termasuk oleh perputaran suatu daerah sekeliling sumbu koordinat, terhadap bidang yang melalui titikasal dan tegak lurus pada sumbu itu, didapatkan sebagai berikut:

Gambarlah daerahnya, tunjukan pita wakil dan persegi panjang yang didekati

Bentuklah hasil kali, volume, cakram atau rumah siput, yang terbentuk oleh perputaran persegi penjang sekeliling sumbu koordinat dan jarak titik berat persegi penjang dari bidang itu, dan jumlahkan untuk semua persegi panjang.

Andaikan banyaknya persegi panjang menuju tak terhingga gunakan teorema Dasar.

Jika daerah diputar sekeliling sumbu – x, titik berat (

(terletak pada sumbu putar. Jika Myz ialah momen benda terhadap bidang yang melalui asal dan tergak lurus sumbu – x.

0 = ydan Myz, = x V

Page 44: MATEMATIKA TERAPAN 1

Dengan cara yang sama. Jika daerah diputar sekeliling sumbu – y, titik berat ( terletak pada sumbu putar. Jika Mxz ialah momen benda terhadap bidang yang melalui titik asal dan tegak lurus sumbu – y.

Teorema Papus yang pertama. Jika suatu daerah diputar sekeliling sumbu putar dan tidak memotong daerahnya, Volume benda yang terjadi sama dengan hasil kali luas daerah itu dengan panjang lintasan titik berat daerah itu.

0 = xdan Myz, = y V

Page 45: MATEMATIKA TERAPAN 1

Jari-jari Girasi. Bilangan positif R dalam persamaan lL

= AR2 untuk suatu luasan bidang A, dan lL = VR2 untuk benda putar, disebut jari-jari girasi dari luas atau volume itu terhadap garis L.

Teorema Garis Sejajar, Momen inersia suatu luas, pajang busur, atau volume terhadap setiap sumbu sama dengan momen inersia terhadap garis yang sejajar sumbu, melalaui titik berat ditambah hasil kali luas, panjang busur, atau volume dengan kuadrat jarak kedua garis sejajar itu.

Page 46: MATEMATIKA TERAPAN 1

3.12. Momen Inersia

Momen inersia IL suatu luasan bidang A terhadap garis L pada bidangnya didapatkan sebagai berikut:

Buatlah sketsa daerahnya, tunjukkan pita wakil sejajar dengan garis dan persegi panjang yang didekati.

Bentuklah hasil luas persegi panjang dan kuadrat jarak titik beratnya dari garis dan jumlahkan untuk semua persegi panjang.

Andaikan banyaknya persegi panjang menuju tak terhingga dan gunakan teorema Dasar.

Momen interasia IL benda yang bervolume V, terbentuk oleh perputaran suatu daerah sekeliling garis L pada bidangya, terhadap garis tu (sumbu putar benda) didapatkan sebagai berikut:

Buatlah sketsa yang menunjukkan pita wakil sejajar sumbu putar dan persegi panjang yang didekati.

Bentuklah hasil kali volume, yang terbentuk oleh perputaran persegi panjang sekeliling sumbu putar (rumah siput) dan kuadat jarak titik berat persegi panjang dari sumbu putar, dan jumlahkan untuk semua persegi panjang.

Andaikan banyaknya persegi panjang menuju tak terhingga dan gunakan teorema Dasar.

Page 47: MATEMATIKA TERAPAN 1

BAB IVPERSAMAAN DIFERENSIAL

Cara-cara penyelesaian persamaan Diferensial orde satu :

Metode 1: Dengan integrasi secara langsungJika persamaan dapat disusun dalam bentuk , maka persamaan tersebut dapat diselesaikan dengan integrasi sederhana.Contoh : Maka

Yaitu Konstanta harus disertakan. Di sini muncul suatu

konstanta sembarang yang akan selalu kita peroleh apabila kita menyelesaikan suatu persamaan diferensial orde-pertama.

xfdx

dy

563 2 xxdx

dy

Cxxxdxxxy 53563 232

Cxxxy 53 23

Page 48: MATEMATIKA TERAPAN 1

Metode 2: Dengan pemisahan variabelJika persamaan yang diberikan berbentuk , variabel y di sisi kanan menyebabkan persamaan tersebut tidak dapat diselesaikan dengan integrasi langsung. Sehingga kita harus menggunakan metode lain untuk menyelesaikan.Contoh : Kita dapat menulisnya kembali sebagai Sekarang integrasikan kedua sisi terhadap x :

yxfdx

dy,

1

2

y

x

dx

dy

xdx

dyy 21

Page 49: MATEMATIKA TERAPAN 1

Metode 3: Persamaan homogen – dengan substitusi y = vxBerikut adalah sebuah persamaan : Ini nampaknya cukup sederhana, tetapi kita tahu bahwa kita tidak dapat menyatakan sisi kanan dalam bentuk “faktor-x” dan “faktor-y”, jadi kita tidak dapat menyelesaikannya dengan metode pemisahan variabel.Dalam kasus ini kita menggunakan substitusi y = vx, di mana v adalah fungsi dari x. Sehingga y = vx. Diferensiasikan terhadap x (dengan menggunakan aturan hasilkali).

x

yx

dx

dy

2

3

Page 50: MATEMATIKA TERAPAN 1
Page 51: MATEMATIKA TERAPAN 1
Page 52: MATEMATIKA TERAPAN 1
Page 53: MATEMATIKA TERAPAN 1
Page 54: MATEMATIKA TERAPAN 1
Page 55: MATEMATIKA TERAPAN 1
Page 56: MATEMATIKA TERAPAN 1
Page 57: MATEMATIKA TERAPAN 1
Page 58: MATEMATIKA TERAPAN 1
Page 59: MATEMATIKA TERAPAN 1
Page 60: MATEMATIKA TERAPAN 1

BAB VTRANSFORMASI LAPLACE

Definisi transformasi laplace

Page 61: MATEMATIKA TERAPAN 1
Page 62: MATEMATIKA TERAPAN 1

Beberapa Sifat Penting Transformasi Laplace

Page 63: MATEMATIKA TERAPAN 1
Page 64: MATEMATIKA TERAPAN 1
Page 65: MATEMATIKA TERAPAN 1
Page 66: MATEMATIKA TERAPAN 1

Metode untuk mendapatkan transformasi Laplace

Page 67: MATEMATIKA TERAPAN 1
Page 68: MATEMATIKA TERAPAN 1

Transformasi Laplace Invers

Page 69: MATEMATIKA TERAPAN 1

Sifat-sifat Transformasi Laplace Invers

Page 70: MATEMATIKA TERAPAN 1
Page 71: MATEMATIKA TERAPAN 1
Page 72: MATEMATIKA TERAPAN 1
Page 73: MATEMATIKA TERAPAN 1
Page 74: MATEMATIKA TERAPAN 1