m karya

42
Asal medan listrik Rumus matematika untuk medan listrik dapat diturunkan melalui Hukum Coulomb , yaitu gaya antara dua titik muatan: Menurut persamaan ini, gaya pada salah satu titik muatan berbanding lurus dengan besar muatannya. Medan listrik didefinisikan sebagai suatu konstan perbandingan antara muatan dan gaya [1] : Maka, medan listrik bergantung pada posisi. Suatu medan, merupakan sebuah vektor yang bergantung pada vektor lainnya. Medan listrik dapat dianggap sebagai gradien dari potensial listrik . Jika beberapa muatan yang disebarkan menghasiklan potensial listrik , gradien potensial listrik dapat ditentukan. [sunting ] Konstanta k Dalam rumus listrik sering ditemui konstanta k sebagai ganti dari (dalam tulisan ini tetap digunakan yang terakhir), di mana konstanta tersebut bernilai [2] : N m 2 C -2 yang kerap disebut konstanta kesetaraan gaya listrik [3] . [sunting ] Menghitung medan listrik

Upload: roy-fandy

Post on 25-Jul-2015

52 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: m karya

Asal medan listrik

Rumus matematika untuk medan listrik dapat diturunkan melalui Hukum Coulomb, yaitu gaya antara dua titik muatan:

Menurut persamaan ini, gaya pada salah satu titik muatan berbanding lurus dengan besar muatannya. Medan listrik didefinisikan sebagai suatu konstan perbandingan antara muatan dan gaya[1]:

Maka, medan listrik bergantung pada posisi. Suatu medan, merupakan sebuah vektor yang bergantung pada vektor lainnya. Medan listrik dapat dianggap sebagai gradien dari potensial listrik. Jika beberapa muatan yang disebarkan menghasiklan potensial listrik, gradien potensial listrik dapat ditentukan.

[sunting] Konstanta k

Dalam rumus listrik sering ditemui konstanta k sebagai ganti dari (dalam tulisan ini tetap digunakan yang terakhir), di mana konstanta tersebut bernilai [2]:

N m2 C-2

yang kerap disebut konstanta kesetaraan gaya listrik [3].

[sunting] Menghitung medan listrik

Page 2: m karya

Untuk menghitung medan listrik di suatu titik akibat adanya sebuah titik muatan yang terletak

di digunakan rumus [4]

[sunting] Penyederhanaan yang kurang tepat

Umumnya untuk melakukan penyederhanaan dipilih pusat koordinat berhimpit dengan titik

muatan yang terletak di sehingga diperoleh rumus seperti telah dituliskan pada permulaan artikel ini, atau bila dituliskan kembali dalam notasi vektornya:

dengan vektor satuan

Disarankan untuk menggunakan rumusan yang melibatkan dan karena lebih umum, dan dapat diterapkan untuk kasus lebih dari satu muatan dan juga pada distribusi muatan, baik distribusi diskrit maupun kontinu. Penyederhanaan ini juga kadang membuat pemahaman dalam menghitung medan listrik menjadi agak sedikit kabur. Selain itu pula karena penyederhanaan ini

Page 3: m karya

hanya merupakan salah satu kasus khusus dalam perhitungan medan listrik (kasus oleh satu titik muatan di mana titik muatan diletakkan di pusat koordinat).

[sunting] Tanda muatan listrik

Muatan listrik dapat bernilai negatif, nol (tidak terdapat muatan atau jumlah satuan muatan positif dan negatif sama) dan negatif. Nilai muatan ini akan memengaruhi perhitungan medan listrik dalam hal tandanya, yaitu positif atau negatif (atau nol). Apabila pada setiap titik di sekitar sebuah (atau beberapa) muatan dihitung medan listriknya dan digambarkan vektor-vektornya, akan terlihat garis-garis yang saling berhubungan, yang disebut sebagai garis-garis medan listrik. Tanda muatan menentukan apakah garis-garis medan listrik yang disebabkannya berasal darinya atau menuju darinya. Telah ditentukan (berdasarkan gaya yang dialami oleh muatan uji positif), bahwa

muatan positif (+) akan menyebabkan garis-garis medan listrik berarah dari padanya menuju keluar,

muatan negatif (-) akan menyebabkan garis-garis medan listrik berarah menuju masuk padanya.

muatan nol ( ) tidak menyebabkan adanya garis-garis medan listrik.

[sunting] Gradien potensial listrik

Medan listrik dapat pula dihitung apabila suatu potensial listrik diketahui, melalui perhitungan gradiennya [5]:

dengan

untuk sistem koordinat kartesian.

[sunting] Energi medan listrik

Medan listrik menyimpan energi. Rapat energi suatu medan listrik diberikan oleh [6]

Page 4: m karya

dengan

adalah permittivitas medium di mana medan listrik terdapat, dalam vakum .adalah vektor medan listrik.

Total energi yang tersimpan pada medan listrik dalam suatu volum adalah

dengan

adalah elemen diferensial volum.

[sunting] Distribusi muatan listrik

Medan listrik tidak perlu hanya ditimbulkan oleh satu muatan listrik, melainkan dapat pula ditimbulkan oleh lebih dari satu muatan listrik, bahkan oleh distribusi muatan listrik baik yang diskrit maupun kontinu. Contoh-contoh distribusi muatan listrik misalnya:

kumpulan titik-titik muatan kawat panjang lurus berhingga dan tak-berhingga lingkaran kawat pelat lebar berhingga atau tak-berhingga cakram tipis dan cincin bentuk-bentuk lain

[sunting] Kumpulan titik-titik muatan

Untuk titik-titik muatan yang tersebar dan berjumlah tidak terlalu banyak, medan listrik pada suatu titik (dan bukan pada salah satu titik muatan) dapat dihitung dengan menjumlahkan vektor medan listrik di titik tersebut akibat oleh masing-masing muatan. Dalam kasus ini lebih baik dituliskan

yang dibaca, medan listrik di titik akibat adanya muatan yang terletak di . Dengan demikian medan listrik di titik akibat seluruh muatan yang tersebar dituliskan sebagai

Page 5: m karya

di mana adalah jumlah titik muatan. Sebagai ilustrasi, misalnya ingin ditentukan besarnya medan listrik pada titik yang merupakan perpotongan kedua diagonal suatu bujursangkar bersisi , di mana terdapat oleh empat buat muatan titik yang terletak pada titik sudut-titik sudut bujursangkar tersebut. Untuk kasus ini misalkan bahwa dan

dan ambil pusat koordinat di titik untuk memudahkan. Untuk kasus dua dimensi seperti ini, bisa dituliskan pula

yang akan memberikan

sehingga

Page 6: m karya

yang menghasilkan bahwa medan listrik pada titik tersebut adalah nol.

[sunting] Kawat panjang lurus

Kawat panjang lurus merupakan salah satu bentuk distribusi muatan yang menarik karena bila panjangnya diambil tak-hingga, perhitungan muatan di suatu jarak dari kawat dan terletak di tengah-tengah panjangnya, menjadi amat mudah.

Untuk suatu kawat yang merentang lurus pada sumbu , pada jarak di atasnya, dengan kawat merentang dari sampai dari titik proyeksi pada kawat, medan listrik di titik tersebut dapat dihitung besarnya, yaitu:

Seperti telah disebutkan di atas, apabila dan maka dengan menggunakan dalil L'Hospital diperoleh

Atau bila kawat diletakkan sejajar dengan sumbu-z dan bidang x-y ditembus kawat secara tegak lurus, maka medan listrik di suatu titik berjarak dari kawat, dapat dituliskan medan listriknya adalah

dengan adalah vektor satuan radial dalam koordinat silinder:

di mana adalah sudut yang dibentuk dengan sumbu-x positif.

Page 7: m karya

Persamaan linear dapat dinyatakan sebagai matriks. Misalnya persamaan:

3x1 + 4x2 − 2 x3 = 5

x1 − 5x2 + 2x3 = 7

2x1 + x2 − 3x3 = 9

dapat dinyatakan dalam matriks teraugmentasi sebagai berikut

Penyelesaian persamaan linier dalam bentuk matriks dapat dilakukan melalui beberapa cara, yaitu dengan eliminasi Gauss atau dapat juga dengan cara eliminasi Gauss-Jordan. Namun, suatu sistem persamaan linier dapat diselesaikan dengan eliminasi Gauss untuk mengubah bentuk matriks teraugmentasi ke dalam bentuk eselon-baris tanpa menyederhanakannya. Cara ini disebut dengan substitusi balik.

Sebuah sisitem persamaan linier dapat dikatakan homogen apabila mempunyai bentuk :

a11x1 + a12x2 + ... + a1nxn = 0

a21x1 + a22x2 + ... + a2nxn = 0

am1x1 + am2x2 + ... + amnxn = 0

Setiap sistem persamaan linier yang homogen bersifat adalah tetap apabila semua sistem mepunyai x1 = 0 , x2 = 0 , ... , xn = 0 sebagai penyelesaian. Penyelesaian ini disebut solusi trivial. Apabila mempunyai penyelesaian yang lain maka disebut solusi nontrivial.

[sunting] Penyelesaian Persamaan Linear dengan Matriks

[sunting] Bentuk Eselon-baris

Matriks dapat dikatakan Eselon-baris apabila memenuhi persyaratan berikut :

1.) Di setiap baris, angka pertama selain 0 harus 1 (leading 1).

2.) Jika ada baris yang semua elemennya nol, maka harus dikelompokkan di baris akhir dari matriks.

Page 8: m karya

3.) Jika ada baris yang leading 1 maka leading 1 di bawahnya, angka 1-nya harus berada lebih kanan dari leading 1 di atasnya.

4.) Jika kolom yang memiliki leading 1 angka selain 1 adalah nol maka matriks tersebut disebut Eselon-baris tereduksi

Contoh: syarat 1: baris pertama disebut dengan leading 1

syarat 2: baris ke-3 dan ke-4 memenuhi syarat 2

syarat 3: baris pertama dan ke-2 memenuhi syarat 3

syarat 4: matriks dibawah ini memenuhi syarat ke 4 dan disebut Eselon-baris tereduksi

[sunting] Operasi Eliminasi Gauss

Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang Eselon-baris. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan

Page 9: m karya

matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.

Contoh: Diketahui persamaan linear

x + 2y + z = 6

x + 3y + 2z = 9

2x + y + 2z = 12

Tentukan Nilai x, y dan z

Jawab:

Bentuk persamaan tersebut ke dalam matriks:

Operasikan Matriks tersebut

Baris ke 2 dikurangi baris ke 1

Baris ke 3 dikurangi 2 kali baris ke 1

Baris ke 3 ditambah 3 kali baris ke 2

Baris ke 3 dibagi dengan 3 (Matriks menjadi Eselon-baris)

Page 10: m karya

Maka mendapatkan 3 persamaan linier baru yaitu

x + 2y + z = 6

y + z = 3

z = 3

Kemudian lakukan substitusi balik maka didapatkan:

y + z = 3

y + 3 = 3

y = 0

x + 2y + z = 6

x + 0 + 3 = 6

x = 3

Jadi nilai dari x = 3 , y = 0 ,dan z = 3

[sunting] Operasi Eliminasi Gauss-Jordan

Eliminasi Gauss-Jordan adalah pengembangan dari eliminasi Gauss yang hasilnya lebih sederhana. Caranya adalah dengan meneruskan operasi baris dari eliminasi Gauss sehingga menghasilkan matriks yang Eselon-baris tereduksi. Ini juga dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris tereduksi, maka langsung dapat ditentukan nilai dari variabel-variabelnya tanpa substitusi balik.

Contoh: Diketahui persamaan linear

x + 2y + 3z = 3

2x + 3y + 2z = 3

2x + y + 2z = 5

Tentukan Nilai x, y dan z

Jawab:

Bentuk persamaan tersebut ke dalam matriks:

Page 11: m karya

Operasikan Matriks tersebut

Baris ke 2 dikurangi 2 kali baris ke 1

Baris ke 3 dikurangi 2 kali baris ke 1

Baris ke 3 dikurangi 3 kali baris ke 2

Baris ke 3 dibagi 8 dan baris ke 2 dibagi -1

Baris ke 2 dikurangi 4 kali baris ke 3

Baris ke 1 dikurangi 3 kali baris ke 3

Baris ke 1 dikurangi 2 kali baris ke 2 (Matriks menjadi Eselon-baris tereduksi)

Maka didapatkan nilai dari x = 2 , y = − 1 ,dan z = 1

Page 12: m karya

[sunting] Operasi Dalam Matriks

Dua buah matriks dikatakan sama apabila matriks-matriks tersebut mempunyai ordo yang sama dan setiap elemen yang seletak sama.

Jika A dan B adalah matriks yang mempunyai ordo sama, maka penjumlahan dari A + B adalah matriks hasil dari penjumlahan elemen A dan B yang seletak. Begitu pula dengan hasil selisihnya. Matriks yang mempunyai ordo berbeda tidak dapat dijumlahkan atau dikurangkan.

Jumlah dari k buah matriks A adalah suatu matriks yang berordo sama dengan A dan besar tiap elemennya adalah k kali elemen A yang seletak. Didefinisikan: Jika k sebarang skalar maka kA = A k adalah matriks yang diperoleh dari A dengan cara mengalikan setiap elemennya dengan k. Negatif dari A atau -A adalah matriks yang diperoleh dari A dengan cara mengalikan semua elemennya dengan -1. Untuk setiap A berlaku A + (-A) = 0. Hukum yang berlaku dalam penjumlahan dan pengurangan matriks :

a.) A + B = B + A

b.) A + ( B + C ) = ( A + B ) + C

c.) k ( A + B ) = kA + kB = ( A + B ) k , k = skalar

Hasil kali matriks A yang ber-ordo m x p dengan matriks B yang berordo p x n dapat dituliskan sebagi matriks C = [ cij ] berordo m x n dimana cij = ai1 b1j + ai2 b2j + ... + aip bpj

[sunting] Matriks Balikan (Invers)

JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau invers dari A dan dapat dituliskan B = A − 1 ( B sama dengan invers A ). Matriks B juga mempunyai invers yaitu A maka dapat dituliskan A = B − 1. Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C.

Matriks A = dapat di-invers apabila ad - bc ≠ 0

Dengan Rumus =

Page 13: m karya

Apabila A dan B adalah matriks seordo dan memiliki balikan maka AB dapat di-invers dan (AB) − 1 = B − 1A − 1

Contoh 1:

Matriks

A = dan B =

AB = = = I (matriks identitas)

BA = = = I (matriks identitas)

Maka dapat dituliskan bahwa B = A − 1 (B Merupakan invers dari A)

Contoh 2:

Matriks

A = dan B =

AB = =

BA = =

Karena AB ≠ BA ≠ I maka matriks A dan matriks B disebut matriks tunggal.

Contoh 3:

Matriks

Page 14: m karya

A =

Tentukan Nilai dari A-1

Jawab:

Contoh 4:

Matriks

A = , B = , AB =

Dengan menggunakan rumus, maka didapatkan

, ,

Maka

=

Ini membuktikan bahwa (AB) − 1 = B − 1A − 1

[sunting] Transpose Matriks

Yang dimaksud dengan Transpose dari suatu matriks adalah mengubah komponen-komponen dalam matriks, dari yang baris menjadi kolom, dan yang kolom di ubah menjadi baris.

Contoh:

Matriks

Page 15: m karya

A = ditranspose menjadi AT =

Matriks

B = ditranspose menjadi BT =

Rumus-rumus operasi Transpose sebagai berikut:

1. ((A)T)T = A

2. (A + B)T = AT + BT dan (A − B)T = AT − BT

3. (kA)T = kAT dimana k adalah skalar

4. (AB)T = BTAT

[sunting] Matriks Diagonal, Segitiga, dan Matriks Simetris

[sunting] Matriks Diagonal

Sebuah matriks bujursangkar yang unsur-unsurnya berada di garis diagonal utama dari matriks bukan nol dan unsur lainnya adalah nol disebut dengan matriks diagonal. Contoh :

Page 16: m karya

secara umum matriks n x n bisa ditulis sebagai

Matriks diagonal dapat dibalik dengan menggunakan rumus berikut :

D − 1=

DD − 1 = D − 1D = I

jika D adalah matriks diagonal dan k adalah angka yang positif maka

Dk=

Contoh :

A=

maka

Page 17: m karya

A5=

[sunting] Matriks Segitiga

Matriks segitiga adalah matriks persegi yang di bawah atau di atas garis diagonal utama nol. Matriks segitiga bawah adalah matriks persegi yang di bawah garis diagonal utama nol. Matriks segitiga atas adalah matriks persegi yang di atas garis diagonal utama nol.

Matriks segitiga

Matriks segitiga bawah

Teorema

Transpos pada matriks segitiga bawah adalah matriks segitiga atas, dan transpose pada matriks segitiga atas adalah segitiga bawah.

Produk pada matriks segitiga bawah adalah matriks segitiga bawah, dan produk pada matriks segitiga atas adalah matriks segitiga atas.

Matriks segitiga bisa di-inverse jika hanya jika diagonalnya tidak ada yang nol. Inverse pada matriks segitiga bawah adalah matriks segitiga bawah, dan inverse pada matriks

segitiga atas adalah matriks segitiga atas.

Contoh :

Matriks segitiga yang bisa di invers

Page 18: m karya

A =

Inversnya adalah

A − 1=

Matriks yang tidak bisa di invers

B =

[sunting] Matriks Simetris

Matriks kotak A disebut simetris jika A = AT

Contoh matriks simetris

Teorema

Jika A dan B adalah matriks simetris dengan ukuran yang sama, dan jika k adalah skalar maka

AT adalah simetris A + B dan A - B adalah simetris kA adalah simetris (AB)T = BTAT = BA

Jika A adalah matriks simetris yang bisa di inverse, maka A − 1 adalah matriks simetris.

Asumsikan bahwa A adalah matriks simetris dan bisa di inverse, bahwa A = AT maka :

Page 19: m karya

(A − 1)T = (AT) − 1 = A − 1

Yang mana membuktikan bahwa A − 1 adalah simetris.

Produk AAT dan ATA

(AAT)T = (AT)TAT = AAT dan (ATA)T = AT(AT)T = ATA

Contoh

A adalah matriks 2 X 3

A =

lalu

ATA = =

AAT = =

Jika A adalah Matriks yang bisa di inverse, maka AAT dan ATA juga bisa di inverse

[sunting] Determinan

Determinan adalah suatu fungsi tertentu yang menghubungkan suatu bilangan real dengan suatu matriks bujursangkar.

Sebagai contoh, kita ambil matriks A2x2

A = tentukan determinan A

untuk mencari determinan matrik A maka,

Page 20: m karya

detA = ad - bc

[sunting] Determinan dengan Ekspansi Kofaktor

[sunting] Determinan dengan Minor dan kofaktor

A = tentukan determinan A

Pertama buat minor dari a11

M11 = = detM = a22a33 x a23a32

Kemudian kofaktor dari a11 adalah

c11 = (-1)1+1M11 = (-1)1+1a22a33 x a23a32

kofaktor dan minor hanya berbeda tanda Cij=±Mij untuk membedakan apakah kofaktor pada ij adalah + atau - maka kita bisa melihat matrik dibawah ini

Begitu juga dengan minor dari a32

M32 = = detM = a11a23 x a13a21

Maka kofaktor dari a32 adalah

c32 = (-1)3+2M32 = (-1)3+2 x a11a23 x a13a21

Secara keseluruhan, definisi determinan ordo 3x3 adalah

Page 21: m karya

det(A) = a11C11+a12C12+a13C13

[sunting] Determinan dengan Ekspansi Kofaktor Pada Baris Pertama

Misalkan ada sebuah matriks A3x3

A =

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11 - a12 + a13

= a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)

= a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32

Contoh Soal:

A = tentukan determinan A dengan metode ekspansi kofaktor baris pertama

Jawab:

det(A) = = 1 - 2 + 3 = 1(-3) - 2(-8) + 3(-7) = -8

[sunting] Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama

Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.

Misalkan ada sebuah matriks A3x3

Page 22: m karya

A =

maka determinan dari matriks tersebut dengan ekspansi kofaktor adalah,

det(A) = a11 - a21 + a31

= a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)

= a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32

Contoh Soal:

A = tentukan determinan A dengan metode ekspansi kofaktor kolom pertama

Jawab:

det(A) = = 1 - 4 + 3 = 1(-3) - 4(-8) + 3(-7) = 8

[sunting] Adjoin Matriks 3 x 3

Bila ada sebuah matriks A3x3

A =

Kofaktor dari matriks A adalah

C11 = -12 C12 = 6 C13 = -16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = -10 C33 = 16

Page 23: m karya

maka matriks yang terbentuk dari kofaktor tersebut adalah

untuk mencari adjoint sebuah matriks, kita cukup mengganti kolom menjadi baris dan baris menjadi kolom

adj(A) =

[sunting] Determinan Matriks Segitiga Atas

Jika A adalah matriks segitiga nxn (segitiga atas, segitiga bawah atau segitiga diagonal) maka det(A) adalah hasil kali diagonal matriks tersebut

Contoh

= (2)(-3)(6)(9)(4) = -1296

[sunting] Metode Cramer

jika Ax = b adalah sebuah sistem linear n yang tidak di ketahui dan det(A)≠ 0 maka persamaan tersebut mempunyai penyelesaian yang unik

dimana A j adalah matrik yang didapat dengan mengganti kolom j dengan matrik b

Contoh soal:

Gunakan metode cramer untuk menyelesaikan persoalan di bawah ini

Page 24: m karya

x1 + 2x3 = 6

-3x1 + 4x2 + 6x3 = 30

-x1 - 2x2 + 3x3 = 8

Jawab:

bentuk matrik A dan b

A = b =

kemudian ganti kolom j dengan matrik b

A1 = A2 = A3 =

dengan metode sarrus kita dapat dengan mudah mencari determinan dari matrik-matrik di atas

maka,

[sunting] Tes Determinan untuk Invertibilitas

Pembuktian: Jika R di reduksi secara baris dari Ä. Sebagai langkah awal, kita akan menunjukkan bahwa det(A) dan det(R) keduanya adalah nol atau tidak nol: E1,E2,...,Er menjadi matrix element yang berhubungan dengan operasi baris yang menghasilkan Rdari A. Maka,

R=Er...E2 E1 A

Page 25: m karya

dan,

det(R)=det(Er)...det(E2)det(E1)det(EA)

Jika A dapat di-invers, maka sesuai dengan teorema equivalent statements , maka R = I, jadi det(R) = 1 ≠ 0 dan det(A) ≠ 0. Sebaliknya, jika det(A) ≠ 0, maka det(R) ≠ 0, jadi R tidak memiliki baris yang nol. Sesuai dengan teorema R = I, maka A adalah dapat di-invers. Tapi jika matrix bujur sangkar dengan 2 baris/kolom yang proposional adalah tidak dapat diinvers.

Contoh Soal :

A=

karena det(A) = 0. Maka A adalah dapat diinvers.

[sunting] Mencari determinan dengan cara Sarrus

A = tentukan determinan A

untuk mencari determinan matrik A maka,

detA = (aei + bfg + cdh) - (bdi + afh + ceg)

[sunting] Metode Sarrus hanya untuk matrix berdimensi 3x3

[sunting] Menghitung Inverse dari Matrix 3 x 3

A =

kemudian hitung kofaktor dari matrix AC11 = 12 C12 = 6 C13 = -16

C21 = 4 C22 = 2 C23 = 16

C31 = 12 C32 = -10 C33 = 16

Page 26: m karya

menjadi matrix kofaktor

cari adjoint dari matrix kofaktor tadi dengan mentranspose matrix kofaktor diatas, sehingga menjadi

adj(A) =

dengan metode Sarrus, kita dapat menghitung determinan dari matrix A

det(A) = 64

[sunting] Sistem Linear Dalam Bentuk Ax = λx

dalam sistem aljabar linear sering ditemukan

Ax = λx ; dimana λ adalah skalar

sistem linear tersebut dapat juga ditulis dengan λx-Ax=0, atau dengan memasukkan matrix identitas menjadi

(λI - A) x = 0

contoh:

diketahui persamaan linear

x1 + 3x2 = λx1

4x1 + 2x2 = λx2

Page 27: m karya

dapat ditulis dalam bentuk

= λ

yang kemudian dapat diubah

A = dan x =

yang kemudian dapat ditulis ulang menjadi

λ

λ

sehingga didapat bentuk

λ I - A =

namun untuk menemukan besar dari λ perlu dilakukan operasi

det (λ I - A) = 0 ;λ adalah eigenvalue dari A

dan dari contoh diperoleh

det (λ I - A) = = 0

atau λ^2 - 3λ - 10 = 0

dan dari hasil faktorisasi di dapat λ1 = -2 dan λ2 = 5

dengan memasukkan nilai λ pada persamaan (λ I - A) x = 0, maka eigenvector bisa didapat bila λ = -2 maka diperoleh

Page 28: m karya

dengan mengasumsikan x2 = t maka didapat x1 = t

x =

[sunting] Vektor dalam Ruang Euklide

[sunting] Euklidian dalam n-Ruang

Vektor di dalam n-Ruang Definisi : Jika n adalah sebuah integer positif, sebuah n- grup topel adalah sekuens dari n bilangan real (a1.a2.....an). Set dari semua grup yang terdiri dari n- grup topel dinamakan n-ruangdan dituliskan sebagai Rn.

Jika n = 2 atau 3, sudah menjadi kebiasaan untuk menggunakan istilah grup pasangan dan grup dari tiga secara respektif, daripada 2-grup topel atau 3- grup topel. Keitka n = 1, setiap n – grup topel terdiri dari satu bilangan real, sehingga R1 bisa dilihat sebagai set dari bilangan real. Kita akan menuliskan R daripada R1 pada set ini.

Mungkin kita telah mmepelajari dalam bahan 3-ruang symbol dari (a1, a2, a3) mempunyai dua interpretasi geometris yang berbeda : ini bisa diinterpretasikan sebagai titik, yang dalam kasus ini a2, a2, a3 merupakan koordinat, atau ini bisa diinterpretasikan sebagai vector, dimana a1, a2, a3 merupakan komponen vector. Selanjutnya kita bisa melihat bahwa n – grup topel (a1, a2, ...., an) bisa dilihat sebagai antara sebuah “poin umum” atau “vector umum”- perbedaan antara keduanya tidak penting secara matematis. Dan juga kita bisa menjelaskan 5- topel (-2, 4, 0 ,1 ,6) antara poin dalam R5 atau vector pada R5.

u1 = v1 u2 = v2 un = vn

Penjumlahan u + v didefinisikan oleh

u + v = (u1 + v2, u2 + v2, ...., un + vn)

Dan jika k adalah konstanta scalar, maka perkalian scalar ku didefinisikan oleh

Page 29: m karya

ku = (k u1, k u2,...,k un)

Operasi dari pertambahan dan perkalian scalar dalam definisi ini disebut operasi standar untuk Rn Vektor nol dalam Rn didenotasikan oleh 0 dan difenisikan ke vektor

0 = (0, 0,...., 0)

Jika u = (u1, u2, ...., un) dalam setiap vector dalam Rn, maka negative (atau invers aditif) dari u dituliskan oleh –u dan dijelaskan oleh

-u = (-u1, -u2, ...., -un)

Perbedaan dari vector dalam Rn dijelaskan oleh

v – u = v + (-u)

atau, dalam istilah komponen,

v – u = (v1-u1, v2-u2, ...., vn-un)

Sifat-sifat dari vektor dalam Rn

jika , , dan adalah vektor dalam Rn sedangkan k dan m adalah skalar, maka :

(a) u + v = v + u

(b) u + 0 = 0 + u = u

(c) u + (v + w) = (u + v) + w

(d) u + (-u) = 0 ; berarti, u - u = 0

(e) k (m u) = (k m) u

Page 30: m karya

(f) k (u + v) = k u + k v

(g) (k + m) u = k u + m u

(h) 1u = u

Perkalian dot product didefinisikan sebagai

[sunting] Contoh Penggunaan Vektor dalam Ruang Dimensi Tinggi

Data Eksperimen – Ilmuwan melakukan experimen dan membuat n pengukuran numeris setiap eksperimen dilakukan. Hasil dari setiap experiment bisa disebut sebagai vector y = (y1,y2,...,yn) dalam Rn dalam setiap y1,y2,....,yn adalah nilai yang terukur.

Penyimpanan dan Gudang – Sebuah perusahaan transportasi mempunyai 15 depot untuk menyimpan dan mereparasi truknya. Pada setiap poin dalam waktu distribusi dari truk dalam depot bisa disebut sebagai 15-topel x = (x1,x2,...,x15) dalam setiap x1 adalah jumlah truk dalam depot pertama dan x2 adalah jumlah pada depot kedua., dan seterusnya.

Rangkaian listrik – Chip prosesor didesain untuk menerima 4 tegangan input dan mengeluarkan 3 tegangan output. Tegangan input bisa ditulis sebagai vector dalam R4 dan tegangan output bisa ditulis sebagaiR3. Lalu, chip bisa dilihat sebgai alat yang mengubah setiap vektor input v = (v1,v2,v3,v4) dalam R4 ke vector keluaran w = (w1,w2,w3) dalamR3.

Analisis citra – Satu hal dalam gambaran warna dibuat oleh layar komputer dibuat oleh layar komputer dengan menyiapkan setiap [pixel] (sebuah titik yang mempunyai alamat dalam layar) 3 angka yang menjelaskan hue, saturasi, dan kecerahan dari pixel. Lalu sebuah gambaran warna yang komplit bisa diliahat sebgai 5-topel dari bentuk v = (x,y,h,s,b) dalam x dan y adalah kordinat layar dari pixel dan h,s,b adalah hue, saturation, dan brightness.

Ekonomi – Pendekatan kita dalam analisa ekonomi adalah untuk membagi ekonomidalam sector (manufaktur, pelayanan, utilitas, dan seterusnya ) dan untuk mengukur output dari setiap sector dengan nilai mata uang. Dalam ekonomi dengan 10 sektor output ekonomi dari semua ekonomi bisa direpresentasikan dngan 10-topel s = (s1,s2,s3,...,s10) dalam setiap angka s1,s2,...,s10 adalah output dari sektor individual.

Sistem Mekanis – Anggaplah ada 6 partikel yang bergerak dalam garis kordinat yang sama sehingga pada waktu t koordinat mereka adalahx1,x2,...,x6 dan kecepatan mereka adalah v1,v2,...,v6. Informasi ini bisa direpresentasikan sebagai vector

V = (x1,x2,x3,x4,x5,x6,v1,v2,v3,v4,v5,v6,t) Dalam R13. Vektor ini disebut kondisi dari sistem partikel pada waktu t.

Fisika - Pada teori benang komponen paling kecil dan tidak bisa dipecah dari Jagat raya bukanlah partikel tetapi loop yang berlaku seperti benang yang bergetar. Dimana jagat waktu Einstein adalah 4 dimensi, sedangkan benang ada dalam dunia 11-dimensi

Page 31: m karya

[sunting] Menemukan norm dan jarak

Menghitung Panjang vektor u dalam ruang Rn

jika u = (u1,u2,u3,...,un)

Maka Panjang vektor u

dan Menghitung jarak antara vektor u dengan vektor v

[sunting] Bentuk Newton

interpolasi polinominal p(x)=anxn+an-1xn-1+...+a1x+a0 adalah bentuk standar. Tetapi ada juga yang menggunakan bentuk lain . Contohnya , kita mencari interpolasi titik dari data (x0,y0),(x1,y1),(x2,y2),(x3,y3).

Jika kita tuliskan P(x)=a3x3+a2x2+a1x+a0

bentuk equivalentnya : p(x)=a3(x-x0)3+p(x)=a2(x-x0)2+p(x)=a1(x-x0)+a0

dari kondisi interpolasi p(x0)=yo maka didapatkan a0=yo , sehingga dapat kita tuliskan menjadi

p(x)=b3(x-x0)(x-x1)(x-x2)+b2(x-x0)(x-x1)+b1(x-x0)+b0 inilah yang disebut newton form dari interpolasi , sehingga kita dapatkan :

p(x0)=b0

p(x1)=b1h1+b0

p(x2)=b2(h1+h2)h2+b1(h1+h2)+b0

p(x3)=b3(h1+h2+h3)(h2+h3)h3+b2(h1+h2+h3)(h2+h3)+b1(h1+h2+h3)+b0

Page 32: m karya

sehingga jika kita tuliskan dalam bentuk matrix:

[sunting] Operator Refleksi

Berdasarkan operator T:R2 -> R2 yang memetakan tiap vektor dalam gambaran simetris terhadap sumbu y, dimisalkan w=T(x), maka persamaan yang berhubungan dengan x dan w adalah:

x1 = -x = -x + 0y

x2 = y = 0x + y

atau dalam bentuk matrik :

Secara umum, operator pada R2 dan R3 yang memetakan tiap vektor pada gambaran simetrinya terhadap beberapa garis atau bidang datar dinamakan operator refleksi. Operator ini bersifat linier.

[sunting] Operator Proyeksi

Berdasarkan operator T:R2 -> R2 yang memetakan tiap vektor dalam proyeksi tegak lurus terhadap sumbu x, dimisalkan w=T(x), maka persamaan yang berhubungan dengan x dan w adalah:

x1 = x = x + 0y

x2 = 0 = 0x + y

atau dalam bentuk matrik :

Persamaan tersebut bersifat linier, maka T merupakan operator linier dan matrikx T adalah:

Secara umum, sebuah operator proyeksi pada R2 dan R3 merupakan operator yang memetakan tiap vektor dalam proyeksi ortogonal pada sebuah garis atau bidang melalui asalnya.

[sunting] Operator Rotasi

Page 33: m karya

Sebuah operator yang merotasi tiap vektor dalam R2 melalui sudut ɵ disebut operator rotasi pada R2. Untuk melihat bagaimana asalnya adalah dengan melihat operator rotasi yang memutar tiap vektor searah jarum jam melalui sudut ɵ positif yang tetap. Unutk menemukan persamaan hubungan x dan w=T(x), dimisalkan ɵ adalah sudut dari sumbu x positif ke x dan r adalah jarak x dan w. Lalu, dari rumus trigonometri dasar x = r cos Θ ; y = r cos Θ dan w1 = r cos (ɵ + ɸ) ; w2= r sin (ɵ + ɸ)

Menggunakan identitas trigonometri didapat:

w1 = r cos ɵ cos ɸ - r sin ɵ sin ɸ

w2 = r sin ɵ cos ɸ + r cos ɵ sin ɸ

kemudian disubtitusi sehingga:

w1 = x cos Θ - y sin Θ

w2 = x sin Θ + y cos Θ

Persamaan diatas merupakan persamaan linier, maka T merupakan operator linier sehingga

bentuk matrik dari persamaan diatas adalah:

[sunting] Interpolasi Polinomial

Dengan menganggap masalah pada interpolasi polinomial untuk deret n + 1 di titik (x0,y0)...., (xn,yn). Maka, kita diminta untuk menemukan kurva p(x) = amxm + am-1xm − 1 + ... + a1x + a0 dari sudut minimum yang melewati setiap dari titik data. Kurva ini harus memenuhi

karena xi diketahui, ini akan menuju pada sistem matrik di bawah ini

Page 34: m karya

=

Ingat bahwa ini merupakan sistem persegi dimana n = m. Dengan menganggap n = m memberikan sistem di bawah ini untuk koefisien interpolasi polinomial p(x):

= (1)

Matrix di atas diketahui sebagai Matrix Vandermonde; kolom j merupakan elemen pangkat j-1. Sistem linier pada (1) disebut menjadi Sistem Vandermonde.

Contoh soal:

Cari interpolasi polinomial pada data (-1,0),(0,0),(1,0),(2,6) menggunakan Sistem Vandermonde.

Jawab:

Bentuk Sistem Vandermonde(1):

=

Untuk data di atas, kita mempunyai

Page 35: m karya

=

Untuk mendapatkan solusinya, digunakan Gaussian Elimination

Baris ke-2, ke-3, dan ke-4 dikurangi baris pertama

Baris ke-3 dibagi dengan 2, sedangkan baris ke-4 dibagi dengan 3

Baris ke-3 dikurangi baris ke-2

Baris ke-4 dikurangi baris ke-2

Page 36: m karya

Baris ke-4 dibagi dengan 2

Baris ke-4 dikurangi baris ke-3

Didapatkan persamaan linier dari persamaan matrix di atas

Jadi, interpolasinya adalah

Crowell, B., (2003). "Calculus" Light and Matter, Fullerton. Retrieved 6th May 2007 from http://www.lightandmatter.com/calc/calc.pdf

Garrett, P., (2006). "Notes on first year calculus" University of Minnesota. Retrieved 6th May 2007 from http://www.math.umn.edu/~garrett/calculus/first_year/notes.pdf

Faraz, H., (2006). "Understanding Calculus" Retrieved Retrieved 6th May 2007 from Understanding Calculus, URL http://www.understandingcalculus.com/ (HTML only)

Keisler, H. J., (2000). "Elementary Calculus: An Approach Using Infinitesimals" Retrieved 6th May 2007 from http://www.math.wisc.edu/~keisler/keislercalc1.pdf

Mauch, S. (2004). "Sean's Applied Math Book" California Institute of Technology. Retrieved 6th May 2007 from http://www.cacr.caltech.edu/~sean/applied_math.pdf

Sloughter, Dan., (2000) "Difference Equations to Differential Equations: An introduction to calculus". Retrieved 6th May 2007 from http://math.furman.edu/~dcs/book/

Stroyan, K.D., (2004). "A brief introduction to infinitesimal calculus" University of Iowa. Retrieved 6th May 2007 from http://www.math.uiowa.edu/~stroyan/InfsmlCalculus/InfsmlCalc.htm (HTML only)

Strang, G. (1991) "Calculus" Massachusetts Institute of Technology. Retrieved 6th May 2007 from http://ocw.mit.edu/ans7870/resources/Strang/strangtext.htm.

Page 37: m karya