laporan kemajuan penelitian kerjasama antar …

41
i LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR PERGURUAN TINGGI DANA ITS 2020 Teknik Mikropropagasi Tunas Mikro Stevia rebaudiana (Bertoni) aksesi Mini secara in vitro sebagai Upaya Pemuliaan dan Perbanyakan Bibit Unggul Tanaman Pemanis Sehat Alternatif bagi Penderita Diabetes Tim Peneliti : Dr. Nurul Jadid, S.Si., M.Sc/ Biologi / FSAD Wirdhatul Muslihatin, S.Si., M.Si /Biologi/ FSAD/ ITS Surabaya Dini Ermavitalini, S.Si., M.Si / Biologi/ FSAD/ ITS Surabaya Dwi Oktafitria, S.Si., M.Sc / Biologi / FMIPA /Universitas PGRI Ronggolawe Tuban Christin Risbandini, S.Si / PLP Laboran Biologi / FSAD / ITS Surabaya DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2020 Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 964/PKS/ITS/2020

Upload: others

Post on 02-Oct-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

i

LAPORAN KEMAJUAN

PENELITIAN KERJASAMA ANTAR PERGURUAN TINGGI

DANA ITS 2020

Teknik Mikropropagasi Tunas Mikro Stevia rebaudiana (Bertoni) aksesi Mini secara in vitro

sebagai Upaya Pemuliaan dan Perbanyakan Bibit Unggul Tanaman Pemanis Sehat Alternatif bagi

Penderita Diabetes

Tim Peneliti :

Dr. Nurul Jadid, S.Si., M.Sc/ Biologi / FSAD

Wirdhatul Muslihatin, S.Si., M.Si /Biologi/ FSAD/ ITS Surabaya

Dini Ermavitalini, S.Si., M.Si / Biologi/ FSAD/ ITS Surabaya

Dwi Oktafitria, S.Si., M.Sc / Biologi / FMIPA /Universitas PGRI Ronggolawe Tuban

Christin Risbandini, S.Si / PLP Laboran Biologi / FSAD / ITS Surabaya

DIREKTORAT RISET DAN PENGABDIAN KEPADA MASYARAKAT

INSTITUT TEKNOLOGI SEPULUH NOPEMBER

SURABAYA

2020

Sesuai Surat Perjanjian Pelaksanaan Penelitian No: 964/PKS/ITS/2020

Page 2: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

i

Daftar Isi

Daftar Isi .......................................................................................................................................................... i

Daftar Tabel .................................................................................................................................................... ii

Daftar Gambar ............................................................................................................................................... iii

Daftar Lampiran ............................................................................................................................................. iv

BAB I RINGKASAN ..................................................................................................................................... 1

BAB II HASIL PENELITIAN ........................................................................................................................ 2

BAB III STATUS LUARAN……………………………………………………………………………….11

BAB IV PERAN MITRA (UntukPenelitian Kerjasama Antar Perguruan Tinggi)………………………...11

BAB V KENDALA PELAKSANAAN PENELITIAN……………………………………………………11

BAB VI RENCANA TAHAPAN SELANJUTNYA………………………………………………………11

BAB VII DAFTAR PUSTAKA……………………………………………………………………………12

BAB VIII LAMPIRAN…………………………………………………………………………………….15

LAMPIRAN 1 Tabel Daftar Luaran……………………………………………………………………….15

Page 3: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

ii

Daftar Tabel

Hal

Tabel 2.1 Respon organogenesis dan kalogenesis setelah 10 minggu diinokulasikan pada kombinasi ZPT yang berbeda

3

Tabel 2.2 Respon jumlah tunas yang dihasilkan oleh eksplan nodus steril dengan perlakuan kombinasi ZPT yang berbeda

6

Tabel 2.3 Respon pembentukan akar dengan perlakuan kombinasi ZPT BA dan Kin yang berbeda

9

Page 4: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

iii

Daftar Gambar

Hal

Gambar 2.1 Respon organogenesis 5

Gambar 2.2 Respon organogenesis berupa tunas pada eksplan yang ditanam pada medium 0,5 ppm BA

5

Gambar 2.3 Pengamatan jumlah tunas 10 minggu setelah inokulasi 7

Gambar 2.4 Akar yang terbentuk setelah diberi perlakuan kombinasi ZPT konsentrasi yang berbeda selama 10 minggu

9

Page 5: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

iv

Daftar Lampiran

Hal

Lampiran 1. Tabel Daftar luaran 15

Page 6: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

1

BAB I RINGKASAN

Tanaman Stevia (Stevia rebaudiana (Bertoni)) merupakan tanaman perdu dari keluarga

Compositae. Budidaya tanaman tersebut memiliki potensi ekonomi tinggi karena memiliki

tingkat kemanisan 200-300 kali lebih tinggi dibanding gula tebu. Namun demikian, kendala

utama dalam budidaya stevia adalah tingkat perkecambahan biji yang rendah. Selain itu,

perbanyakan secara generatif juga menghasilkan mutu bibit stevia yang relatif memiliki

karakteristik fenotip yang beragam. Hal ini menyebabkan rendahnya ketersediaan bibit Stevia

unggul yang memiliki karakteristik seragam. Oleh karena itu, diperlukan teknik budidaya yang

efisien. Salah satu metode perbanyakan dalam upaya penyediaan bibit unggul adalah melalui

teknik mikropropagasi. Teknik tersebut merupakan metode perbanyakan tanaman yang efektif,

dengan penambahan zat pengatur tumbuh (ZPT) sesuai dengan tujuan yang diharapkan secara

in vitro. Teknik ini juga dapat digunakan sebagai salah satu cara dalam pemilihan dan

pemuliaan bibit unggul tanaman. ZPT adalah senyawa organik bukan nutrisi yang

mempengaruhi pertumbuhan dan perkembangan tanaman. Tujuan dari penelitian ini adalah

untuk mendapatkan metode mikropropagasi tanaman stevia aksesi Mini yang efektif dan

efisien melalui modifikasi media kultur dengan kombinasi konsentrasi Kinetin (Kin) dan

Benziladenin (BA) yang berbeda. Beberapa parameter uji yang dianalisis adalah persentase

bertunas, jumlah tunas dan jumlah akar. Penelitian ini didesain menggunakan Rancangan Acak

Lengkap (RAL) faktorial dengan jumlah ulangan sebanyak 5 kali. Hasil awal penelitian ini

menunjukkan bahwa perlakuan penambahan kombinasi BA dan Kin dengan konsentrasi yang

berbeda dapat menginduksi proses organogenesis. Hal ini ditunjukkan dengan terbentuknya

tunas dan organ akar. Selain itu, kombinasi perlakuan ZPT tersebut juga mengakibatkan

terbentuknya massa sel parenkim yang bersifat meristematic (kalus). Perlakuan dengan

penambahan 1 ppm BA menghasilkan rata-rata jumlah tunas terbanyak sebesar 36,05.

Sedangkan perlakuan tanpa pemberian ZPT menghasilkan pembentukan akar paling baik

sebesar 2,6.

Kata Kunci: aksesi Mini, bibit unggul, mikropropagasi, pemuliaan tanaman, Stevia rebaudiana

(Bertoni).

Page 7: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

2

Ringkasan penelitian berisi latar belakang penelitian,tujuan dan tahapan metode

penelitian, luaran yang ditargetkan, kata kunci

BAB II HASIL PENELITIAN

2.1. Respon Organogenesis dan Kalogenesis

Zat Pengatur Tumbuh (ZPT) adalah molekul organik selain unsur hara (unsur yang

menyediakan energi atau hara mineral), yang mempengaruhi pertumbuhan dan

perkembangan tanaman. ZPT ini bersifat aktif pada konsentrasi yang relative rendah.

Beberapa jenis ZPT memiliki fungsi untuk mempercepat, menghambat, serta

menyebabkan mutasi pada proses-proses fisiologi yang terjadi pada tanaman (Basra,

2000). Dalam kultur in vitro penggunaan ZPT dalam konsentrasi rendah diperlukan untuk

menginduksi proliferasi sel dan organogenesis (Gaba, 2005). Penggunaan zat pengatur

tumbuh didalam kultur jaringan juga tergantung pada tujuan atau arah pertumbuhan yang

diinginkan. Lestari (2008) mengungkapkan bahwa interaksi antara ZPT yang terdapat

secara alami (endogen) di dalam eksplan (sel, jaringan atau organ tanaman) dan ZPT

eksogen juga berpengaruh pada pertumbuhan dan organogenesis tanaman. Benziladenin

(BA) dan Kinetin (Kin) merupakan ZPT golongan sitokinin yang berfungsi sebagai

pemacu pembelahan sel dan pemecah doninasi apikal oleh auksin (Salisbury dan Ross,

1995).

Penelitian ini menggunakan eksplan berupa nodus dari planlet tanaman stevia steril.

Eksplan steril tersebut umumnya dikenal dengan sebutan secondary explant. Pada

penelitian ini, interaksi BA dan Kin pada konsentrasi yang berbeda menyebabkan respon

organogenesis dan kalogenesis yang berbeda pula (Tabel 2.1). Chishimba (2000)

melaporkan bahwa penambahan BA, Kin dan ZPT golongan sitokinin lain pada kultur in

vitro eksplan tunas pucuk Uapaca kirkiana memberikan respon yang berbeda pula. Hal

tersebut juga dilaporkan oleh Quadri (2012) yang menyatakan bahwa penambahan BA,

Kin dan Thidiazuron pada proliferasi tunas secara in vitro Hyoscyamus niger L. juga

memberikan respon yang berbeda.

Page 8: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

3

Tabel 2.1 Respon organogenesis dan kalogenesis setelah 10 minggu diinokulasikan

pada kombinasi ZPT yang berbeda

Kombinasi ZPT Persentase

eksplan

bertunas

Persentase

eksplan

berkalus

BA

(ppm)

Kin

(ppm)

0 0 100 0

0,5 0 100 0

1 0 100 0

1,5 0 100 0

2 0 100 0

0 2 90 100

0,5 2 100 100

1 2 90 100

1,5 2 100 100

2 2 65 100

0 4 85 100

0,5 4 90 100

1 4 60 100

1,5 4 65 100

2 4 60 100

0 6 75 100

0,5 6 75 100

1 6 50 100

1,5 6 60 100

2 6 85 100

0 8 95 100

0,5 8 75 100

1 8 45 100

1,5 8 75 100

2 8 85 100

Page 9: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

4

Analisis data menggunakan Anova – two way menunjukkan bahwa interaksi BA dan

Kin tidak berpengaruh terhadap persentase eksplan bertunas (p value > 0,05). Meskipun

demikian, eksplan yang ditanam pada medium MS dengan perlakuan kombinasi ZPT

yang berbeda hampir seluruhnya seluruhnya memberikan respon pembentukan tunas.

Nilai persentase pembentukan tunas tersebut berkisar 45%-100%. Respon pembentukan

tunas terendah muncul pada medium dengan penambahan ZPT 1 ppm BA + 8 ppm Kin.

Sedangkan respon pembentukan tunas paling tinggi muncul pada medium dengan

peambahan ZPT BA secara tunggal dan kombinasi dengan Kin konsentrasi rendah (0,5

ppm BA + 2 ppm Kin (Gambar 2.1) dan 1,5 ppm BA + 2 ppm Kin). Dari data tersebut

dapat disimpulkan bahwa ZPT BA memberikan respon organogenesis berupa

pembentukan tunas yang lebih baik dibandingkan Kin pada penelitian ini. Rendahnya

persentase bertunas oleh adanya Kin dalam menginduksi tumbuhnya tunas aksilar sesuai

dengan hasil penelitian Thiyagarajan (2012), Razak (2014), Rafiq (2007).

BA memberikan respon pembentukan tunas yang lebih baik karena mempunyai

aktivitas yang lebih kuat (Zaer dan Mapes, 1982) dan menyebabkan pemanjangan yang

lebih nyata dibanding kinetin (Salisbury dan Ross,1995). BA mempunyai struktur dasar

yang sama dengan kinetin tetapi lebih efektif karena BA mempunyai gugus benzil

(George, l984). Flick (1993) menyatakan bahwa pada umumnya tanaman memiliki

respon yang lebih baik terhadap BA dibandingkan terhadap kinetin dan 2-iP sehingga BA

lebih efektif untuk produksi tunas in vitro.

Selain respon eksplan bertunas, pada penelitian ini juga dilakukan pengamatan

terhadap respon eksplan berkalus. Kalus merupakan suatu massa sel tidak berbentuk dan

tidak terorganisasi yang terbentuk pada permukaan potongan jaringan yang terluka

sebagai respon perlindungan untuk menutup jaringan yang terluka (Heryanto, 2014). Pada

penelitian ini 100% kalus terbentuk pada media yang ditambahakan Kin (Gambar 2.1).

Morfologi kalus setelah 10 minggu inokulasi, kalus kompak dan berwarna kecoklatan

sementara dipermukaan atas kalus, kalus bersifat friabele berwarna kehijauan (Ikeuchi,

2013). Gupta (2010) melaporkan bahwa penambahan Kin dengan konsentrasi 3 ppm, 4

ppm dan 5 ppm memberikan respon pembentukan kalus. Pembelahan sel yang terjadi

karena sitokinin dapat memproduksi kalus yang tidak terdiferensiasi (Gaba, 2005).

Anbazhagan (2010) melaporkan bahwa penambahan Kin pada propagasi tunas stevia

dapat menginisiasi tunas pada awal pertumbuhan saja dan hal ini telah didokumentasikan

studi yang lehih awal juga oleh Murashige (1974), Benne dan davies (1986) dan Rogers

(1998). Hasil penelitian yang berbeda dilaporkan oleh ibrahim (2008) bahwa eksplan

Page 10: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

5

ujung tunas stevia yang ditanam pada medium dengan penambahan Kin secara tunggal

menghasilkan jumlah tunas yang banyak dibanding jumlah tunas pada penelitian ini,

meskipun respon jumlah tunas yang dihasilkan oleh ZPT BA tetap lebih tinggi dibanding

ZPT Kin. Perbedaan hasil penelitian tersebut dapat disebabkan oleh genotip eksplan yang

digunakan berbeda-beda. Faktor genotip sendiri merupakan faktor yang paling penting

dalam kulur jaringan (Gaba, 2005).

Gambar 2.1 Respon organogenesis berupa tunas (1) dan kalogenesis (2). Eksplan

berumur 10 minggu. Keterangan; A. 0,5 ppm BA + 2 ppm Kin, B. 0,5 ppm BA + 4 ppm

Kin. Garis putih menunjukkan skala 0,5 cm.

Gambar 2.2 Respon organogenesis berupa tunas pada eksplan yang ditanam pada medium 0,5

ppm BA. Eksplan berumur 10 minggu. Keterangan : Garis putih menunjukkan skala 0,5 cm.

2.2 Respon Bertunas

Jumlah tunas yang terbentuk merupakan tujuan utama dalam mikropropagasi

tanaman secara komersial. Multiplikasi tunas diinduksi dengan cara pengaplikasian

sitokinin eksogen kedalam medium pertumbuhan (Gaba, 2005). Hasil analisis anova-two

way menunjukkan bahwa penambahan kombinasi Kin dan BA dengan konsentrasi yang

A B

Page 11: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

6

berbeda berpengaruh terhadap jumlah tunas (P value < 0,05). Konsentrasi ZPT yang

menghasilkan jumlah tunas paling banyak adalah 1 ppm BA dengan jumlah tunas yang

dihasilkan sebanyak 36,05 tunas (Tabel 2.2; Gambar 2.3). Sedangkan jumlah tunas

terendah dihasilkan oleh kombinasi ZPT 1 ppm BA + 8 ppm Kin dan 1 ppm BA + 6 ppm

Kin dengan jumlah tunas 0,65. Berdasarkan data tersebut dapat disimpulkan bahwa BA

lebih efektif dalam multiplikasi tunas dibanding Kin. Alhady (2011) dan Anbazhagan

(2010) juga melaporkan bahwa BA lebih efektif untuk multiplikasi tunas stevia. Hal ini

juga terjadi pada spesies yang lain seperti pada Bauhinia veriegate (Ahmed, 2007),

Balanites aegyptiace (Mathur,1992), dan Periploca angustifolia (Abd-Alhady, 2010).

Jumlah tunas yang dihasilkan oleh Alhady (2011) pada perlakuan 2 ppm BA + o,5 ppm

Kin 36,9 tunas (hasil paling tinggi) sedangkan pada perlakuan 0,5 ppm BA + 0,5 ppm

Kin 18.1 tunas (hasil paling rendah). Anbazhagan (2010) menghasilkan jumlah tunas 9,20

pada perlakuan 2 ppm BA dan 4,40 pada 2 ppm Kin.

Tabel 2.2 Respon jumlah tunas yang dihasilkan oleh eksplan nodus steril dengan

perlakuan kombinasi ZPT yang berbeda

* Nilai yang diikuti oleh huruf yang sama pada kolom menunjukkan tidak adanya beda

nyata pada uji Tukey selang kepercayaan 95%.

Kombinasi ZPT Jumlah tunas

Kombinasi ZPT Jumlah tunas

BA (ppm)

Kin (ppm)

BA (ppm)

Kin (ppm)

0 0 1,9e 1,5 4 1,4e

0,5 0 4,95de 2 4 1e

1 0 36,05a 0 6 1,2e

1,5 0 17,2c 0,5 6 1,6e

2 0 26b 1 6 0,65e

0 2 1,9e 1,5 6 0,8e

0,5 2 8d 2 6 1,4e

1 2 3,55de 0 8 1,7e

1,5 2 7,35d 0,5 8 1,05e

2 2 1,05e 1 8 0,65e

0 4 1,55e 1,5 8 1,65e

0,5 4 1,8e 2 8 1,4e

1 4 0,85e

Page 12: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

7

Gambar 2.3 Pengamatan jumlah tunas 10 minggu setelah inokulasi. Keterangan; (A)

eksplan yang ditanam pada media MS 0 atau kontrol. (B) eksplan yang ditanam pada

media 0,5 ppm BA. (C) eksplan yang ditanam pada media 1 ppm BA. Garis putih

menunjukkan skala 0,5 cm.

Fungsi dasar sitokinin adalah memacu sitokinesis atau pembelahan sel. Kajian

terhadap pembelahan sel yang diaktifkan oleh sitokinin di meristem apikal, Houssa, dkk

(1990) memperoleh hasil yang sebagian besar sejalan dengan kajian Fosket dkk (1981).

Mereka menemukan bahwa benziladenin sangat mempersingkat waktu berlangsungnya

fase S dalam daur sel (dari G2 ke mitosis, yaitu tahap sintesis DNA dan protein

pembelahan sel). Fosket, dkk (1981) menyimpulkan bahwa sitokinin mendorong

pembelahan sel dalam biakan jaringan dengan cara meningkatkan peralihan dari G2 ke

mitosis dan hal tersebut terjadi karena sitokinin menaikkan laju sintesis protein. Beberapa

protein tersebut berupa protein pembangun atau enzim dibutuhkan untuk mitosis. Protein

bisa ditingkatkan dengan cara memacu pembentukan mRNA yang menyandikan protein

tersebut.

A

C

E

B

D

F

Page 13: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

8

Sitokinin dapat menginduksi pembentukan tunas dengan jalan terbentuknya sinyal

sitokinin kerena regulasi positif dari WIND1 yang muncul akbat adanya pelukaan.

WINDs merupakan faktor transkripsi dan mendukung dedifferensiasi (memiliki fungsi

yang sama dengan WUS). Setelah sinyal sitokinin muncul, WUS menghambat ekspresi

dari ARRs untuk mempertahankan populasi sel induk pada jaringan meristem tunas.

Setelah adanya regulasi positif dari sinyal sitokinin ke WUS, WUS meregulasi positif

CLV3. CLV3 berfungsi meregulasi proliferasi sel di SAM, adanya regulasi timbalbalik

antara CLV3 dan WUS untuk mempertahankan populasi sel induk dan ukuran jaringan

mengakibatkan differensiasi sel kemudian terbentuk penyusunan organ lateral (Ikeda,

2014).

4.3 Respon Perakaran

Pembentukan akar secara in vitro perlu dilakukan untuk mengubah tunas menjadi

menjadi plantlet utuh yang bisa dipindahkan ke greenhouse (Gaba,2005). Inisiasi

perakaran tanaman secara in vitro dapat dipacu dengan menambahkan ZPT golongan

auksin seperti Indole-3-Acetic Acid (IAA), Naphtalene Acetic Acid (NAA) dan Indole-

3-Butyric Acid (IBA) (Arlianti, 2013). Beberapa eksplan pada menelitian ini memberikan

respon pembentukan akar (Tabel 2.3).

Analisis data menggunakan Anova – two way menunjukkan bahwa interaksi BA dan

Kin berpengaruh terhadap jumlah akar (p value > 0,05). Jumlah akar paling tinggi

dihasilkan oleh perlakuan MS 0 atau tanpa tambahan ZPT. Perlakuan pemberian sitokinin

dalam konsentrasi tinggi dapat menghambat pembentukan akar. Perlakuan pelukaan saat

penanaman tunas dapat menginduksi sintesis auksin untuk pembentukan akar. Pada

beberapa kasus tertentu, akar bisa diinduksi dengan cara pemindahan tunas pada medium

tanpa ZPT sebanyak satu atau duakali untuk menurunkan konsentrasi sitokinin.

Pilihan metode yang lain adalah penambahan auksin dengan konsentrasi rendah untuk

menginduksi akar (Gaba, 2005). Arlianti (2013) melakukan percobaan induksi perakaran

Stevia, menghasikan konsentrasi ZPT terbaik untuk induksi akar adalah 0,2 ppm NAA

dengan jumlah akar 8 buah. Sedangakan Anbazhagan (2010) melaporkan ZPT 1 ppm

IAA menghasilkan akar 11 buah, Alhady (2011) dengan ZPT 2 ppm IBA menghasilkan

akar 8,4 buah dan Das (2011) dapat menghasilkan akar tanpa penambahan ZPT (MS 0)

dengan jumlah akar 15,58 buah.

Page 14: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

9

Tabel 2.3 Respon pembentukan akar dengan perlakuan kombinasi ZPT BA dan Kin yang

berbeda.

Gambar 2.4 Akar yang terbentuk setelah diberi perlakuan kombinasi ZPT konsentrasi yang

berbeda selama 10 minggu. Keterangan; A: Akar yang terbentuk pada media MS 0, B: Akar

yang terbentuk pada media 0,5 ppm BA. Tanda panah menunjuk bagian akar. Garis putih

menunjukkan skala 0,5 cm.

A1 B

Kombinasi ZPT Jumlah

akar

Kombinasi ZPT Jumlah

akar BA

(ppm) Kin

(ppm) BA

(ppm) Kin

(ppm)

0 0 2,6a 1,5 4 0,0b

0,5 0 0,15b 2 4 0,0b

1 0 0,0b 0 6 0,0b

1,5 0 0,0b 0,5 6 0,0b

2 0 0,0b 1 6 0,0b

0 2 0,05b 1,5 6 0,0b

0,5 2 0,0b 2 6 0,0b

1 2 0,0b 0 8 0,0b

1,5 2 0,0b 0,5 8 0,0b

2 2 0,0b 1 8 0,0b

0 4 0,0b 1,5 8 0,0b

0,5 4 0,0b 2 8 0,0b

1 4 0,0b * Nilai yang diikuti oleh huruf yang sama pada kolom menunjukkan

tidak adanya beda nyata pada uji Tukey selang kepercayaan 95%.

Page 15: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

10

Auksin sendiri memiliki banyak peran dalam kultur jaringan, tergantung dari struktur kimia,

konsentrasi dan respon jaringan tanaman itu sendiri. Auksin menyebabkan pembentukan kalus

dan akar serta pertumbuhan ekstensi batang. Auksin secara umum memiliki fungsi menstimulasi

pemanjangan sel, pembelahan sel pada jaringan kambium dan bersama sitokinin menstimulasi

differensiasi xilem dan floem. Penambahan auksin eksogen yang cukup tinggi dapat

menginduksi somatik embrio genesis. Perbandingan rasio auksin lebih tinggi dibanding sitokinin

akan menginduksi pembentukan akar pada tunas, inisiasi kalus pada tanaman monokotil, dan

inisiasi embriogenesis somatik. Perbandingan rasio auksin dan sitokinin yang hampir seimbang

akan menginduksi terbentuknya akar tambahan dari kalus dan inisiasi kalus pada tanaman

dikotil. Perbandingan rasio auksin yang lebih rendah dibanding sitokinin akan menginduksi

tunas tambahan dan produsksi tunas aksiler. Untuk itu interaksi antara auksin dan sitokinin

sangat penting untuk mengontrol banyak proses pertumbuhan dan perkembangan secara in vitro

(Gaba, 2005).

Page 16: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

11

BAB III STATUS LUARAN

Luaran wajib dari penelitian ini berupa jurnal ilmiah internasional terindeks scopus. Saat ini tim peneliti

sedang mempersiapkan manuskrip untuk di submit ke jurnal. Manuskrip tersebut rencananya akan

disubmit ke jurnal peerJ (terindeks scopus Q1) atau jurnal Heliyon (terindeks scopus Q2). Adapun draft

manuskrip jurnal tersebut terlampir.

BAB IV PERAN MITRA (UntukPenelitian Kerjasama Antar Perguruan Tinggi)

Mitra penelitian ini adalah Universitas PGRI Ronggolawe, Tuban, Jawa Timur. Mitra berperan dalam

membantu dalam proses drafting manuskrip jurnal ilmiah dan memberikan masukan terkait pilihan

jurnalnya. Selain itu, mitra juga berperan penting dalam memberikan jejering dalam mendapatkan

sumber atau material tanaman yang digunakan dalam penelitian ini (Stevia rebaudiana aksesi Mini).

BAB V KENDALA PELAKSANAAN PENELITIAN

Kendala utama dalam pelaksanaan penelitian ini adalah akses yang terbatas pada laboratorium yang

saat ini menjalankan protocol covid. Namun demikian, sebagian besar penelitian dapat diselesaikan

dengan baik.

BAB VI RENCANA TAHAPAN SELANJUTNYA

Sebagian besar penelitian eksperimental di laboratorium telah selesai dilaksanakan. Beberapa rencana

aktivitas selanjutnya lebih pada persiapan manuskrip seperti Analisa hasil, editing gambar, dan

proofreading manuskrip.

Page 17: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

12

BAB VII DAFTAR PUSTAKA

Geuns J. M. C., 2003. Molecules of Interest – Stevioside. Phytochem. 64, 913-921.

Jeppesen PB, Gregersen S, Alstrup KK. 2002. Stevioside induces antihyperglycaemic,

insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki

(GK) rats. Phytomed. 9:9-14.

Gregersen S, Jeppesen PB, Holst JJ, Hermansen K. 2004. Antihyperglycemic effects of

stevioside in type 2 diabetic subjects. Metabolism. 53:73-76.

Brandle JE, Starrtt AN, Gijzen M. 1998. Stevia rebaudiana: international agriculturalf,

biological chemical properties. Can J Plant Su 78:527-536.

Megeji NW, Kumar JK, Singh V, Kaul VK and Ahuja PS. 2005. Introducing Stevia

rebaudiana, a natural zero-calorie sweetener. Curr Sci. 88:801-805.

Rodiansah, Asep. 2007. Induksi Mutasi Kromosom dengan Koklisin pada Tanaman Stevia

(Stevia rebaudiana Bertoni) Klon Zweeteners Secara In Vitro. Skripsi. Bogor : Progam

Studi Hortikultura Fakultas Pertanian Institut Pertanian Bogor.

Hendaryono, Daisy P. Dan Wijayani, A. 1994. Teknik Kultur Jaringan. Kanisus

:Yogyakarta.

Ibrahim, I. A., M. I. Nasr, B. R. Mohammed, M. M. El-Zefzafi. 2008. Plant Growth

regulators affecting in vitro Cultivation of Stevia rebaudiana. Sugar Tech. 10(3) : 254-

259.

Anbazhagan, M., M. Kalpana, R. Rajendran, V. Natarajan dan D. Dhanavel. 2010. In Vitro

Production of Stevia rebaudiana Bertoni. Emir J. Food Agric. 22(3) : 216-222.

Sami, W., Ansari, T., Butt, N. S., & Hamid, M. (2017). Effect of diet on type 2 diabetes

mellitus: A review. International journal of health sciences, 11(2), 65–71.

Ramírez-Mosqueda M.A., Iglesias-Andreu L.G.Direct organogenesis of Stevia

rebaudiana Bertoni using Thin Cell Layer (TCL) method. Sugar Tech, 18 (2016), pp.

424-428.

Sharma, Saurabh, Swati W., Bikram S., dan Rakesh K.. 2016. Comprehensive review on

gro technologies of low-calorie natural sweetener stevia (Stevia rebaudiana Bertoni) : a

boon to diabetic patients. J Sci Food Agric. 96: 1867-1879.

Shaffert, E.E. and Chebotar, A.A. (1994) Development of the female gametophyte in

Stevia rebaudiana, after introduction in the south coast of the Crimea. Buletinul

Academiei de Stiinte a Republicii Moldova Stiinte Biologice Si Chimice. 2, 3–9.

Yadav, A. K., S. Singh, D. Dhyani dan S. Ahuja. 2011. A Review on The Improvement of

Stevia (Stevia rebaudiana (Bertoni)). Can. J. Plant Sci. 91: 1-27.

Page 18: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

13

Lemus-Mondaca, R., A. Vega-Galves, L. Zurabravo dan K. Ah-Hen. 2012. Stevia

rebaudiana Bertoni, source of a high-potency natural sweetener: A comprehensive review

on the biochemical, nutrional and functional aspect. Food Chemistry. 132:11211132.

Singh, H. P., Seema D., dan Sarwan K. Dhir. 2008. Stevia Compendium of Transgenic

Crop Plants: Transgenic Sugar, Tuber and Fiber Crops. Blackwell Publishing Ltd.

ISBN 978-1-405-16924-0.

Sumaryono dan Masna Maya Sinta. Petunjuk Teknis Budidaya Tanaman Stevia. Bogor

: Pusat Penelitian Bioteknologi dan Bioindustri (PPBBI).

Merindasya, M., T. Nurhidayati dan Parnidi. 2013. Induksi Tunas Tiga Aksesi Stevia

rebaudiana Bertoni pada Media MS dengan Penambahan BAP dan IAA secara In Vitro.

Skripsi. Institut Teknologi Sepuluh Nopember.

Gasmalla, M., A., A., Yang., R., Amadou dan Hua X. 2014. Nutritional Composition of

Stevia rebaudiana Bertoni Leaf: Effect of Drying Method. Trop J Pharm Res,;13 (1).

Afandi, A., Sarijan, S., dan Shaha, R., K.2013. Optimization of Rebaudioside a Extraction

from Stevia Rebaudiana (Bertoni) and Quantification by High Perfomance Liquid

Chromatography Analysis. Journal of Tropical Resources and Sustainable Science.

Vol. 1 (1):62-70.

Sirshendu D, Mondal S, Banerjee S. 2012. Stevioside : Technology, Applications and

Health. John Wiley & Sons Inc.

Rukmana, R. 2003. Budi Daya Stevia Bahan Pembuatan Pemanis Alami. Yogyakarta

: Penerbit Kanisius.

Departemen Pertanian. 1984. Mengenal pemanis alami Stevia rebaudiana Bertoni M.

Bogor : BPP Ciawi.

Karjadi, Asih K. 2016. Kultur Jaringan dan Mikropropagasi Tanaman Kentang (Solanum

tuberosum L). Iptek Tanaman Sayuran.

Rahardja, P.C. dan W. Wiryanto. 2004. Aneka Cara Memperbanyak Tanaman.

Agromedia Pustaka, Jakarta.

Campbell, Neil A., J. B. Reece, and L.G. Mitchell. 2003. Biologi. Edisi Kelima Jilid 2

(diterjemahkan oleh Wasmen Manalu). Erlangga, Jakarta.

Salisbury, Frank B. Dan Cleon W Roos. 1995. Fisiologi Tumbuhan Jilid 3- Edisi

keempat. Bandung : Penerbit ITB.

Lestari, Endang G., 2008. Kultur Jaringan. Akademia : Bogor.

Gupta, Pratibha, Satyawati Sharma, dan Sanjay Saxena. 2010. Callusing in Stevia

rebaudiana (Natural Sweetener) for Steviol Glycoside Production. World Academy of

Science, Engineering and Technology.

Page 19: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

14

Fatmawati, T.A, T. Nurhidayati, dan N. Jadid. Pengaruh Kombinasi Zat Pengatur

Tumbuh IAA dan BAP pada Kultur Jaringan Tembakau Nicotiana tobacum L.

VAR. Prancak 95. Pogam Studi Biologi Fakultas Matematika dan Ilmu Pengetahuan

Alam Institut Teknologi Sepuluh Nopember, Surabaya.

Nurul Jadid, priyono, Tutik Nurhidayati. Pengaruh Indole Acetic Acid (IAA) dan

Kinetin pada Kultur in vitro Nodus Tunas Mikro Vanili (Vanilla planifolia). Pogam

Studi Biologi Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi

Sepuluh Nopember, Surabaya.

Nower, A.A. In Vitro Propagation and Synthetic Seeds Production: An Efficient Methods

for Stevia rebaudiana Bertoni. Sugar Tech 16, 100–108 (2014).

Muslihatin M, Jadid N, Puspitasari IK, Safitri CE. Growth of vegetative explant

Moringa oleifera on different composition of auxin and cytokinin and its synthetic

seed germination. AIP Conference Proceedings 1854, 020024 (2017).

Das, Arpita, Saikat G. dan Nirmal M., 2011. Micropropagation of an Elite Medical Plants:

Stevia rebaudiana Bert.. International Journal of Agricultural Research. 6(1): 40-48.

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassay with

tobacco tissue cultures. Physiol. Plant 15:473–497.

Page 20: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

15

BAB VIII LAMPIRAN

LAMPIRAN 1 Tabel Daftar Luaran

Program : Penelitian Kerjasama Antar Perguruan Tinggi

Nama Ketua Tim : Dr. Nurul Jadid, M.Sc

Judul : Teknik Mikropropagasi Tunas Mikro Stevia rebaudiana

(Bertoni) aksesi Mini secara in vitro sebagai Upaya

Pemuliaan dan Perbanyakan Bibit Unggul Tanaman Pemanis

Sehat Alternatif bagi Penderita Diabetes

1.Artikel Jurnal

No Judul Artikel Nama Jurnal Status Kemajuan*)

1 In Vitro Propagation of Stevia

rebaudiana (Bertoni) using Axenic

Auxillary Nodes

PeerJ draft

*) Status kemajuan: Persiapan, submitted, under review, accepted, published

Page 21: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

In Vitro Propagation of Stevia rebaudiana (Bertoni) 1

using Axenic Auxillary Nodes 2

3

4

Nurul Jadid1*, Suci Anggraeni1, Wirdhatul Muslihatin1, Dini Ermavitalini1, Dwi Oktafitria2, 5

Supiana Dian Nurtjahyani2, Christin Risbandini1 6 7 1 Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia 8 2 Department of Biology Universits PGRI Ronggolawe, Tuban, Indonesia 9

10

11

Corresponding Author: 12

Nurul Jadid* 13

Kampus ITS Sukolilo, Surabaya, 60111 Indonesia 14

Email address: [email protected] 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Page 22: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

Abstract 42

Stevia cultivation (Stevia rebaudiana) has high economic potential because of its sweetness level 43

200-300 times, which is higher than sugar cane. However, the main obstacles in the stevia 44

cultivation is the low seed germination rate. Therefore, an efficient cultivation technique is 45

required. Micropropagation is an effective method of plant propagation, with the addition of plant 46

growth regulator (PGR) in accordance with the expected objectives. PGR is an organic compound 47

not a nutrient that affects plant growth and development. This research aims to analyse the effect 48

of different combination of Kinetin (Kin) and Benzyladenine (BA) on stevia micropropagation. Data 49

were analyzed by Anova at 95% confidence level followed by Tukey test. Different responses on 50

organogenesis (shoot and root formation) and callogenesis of stevia were observed. Intrestingly, 51

all treatment with Kin alone demonstrated callogenesis response. Treatment with the addition of 52

1 ppm BA resulted the best average of shoot number (36,05). While the treatment without PGR 53

resulted the best root formation (2,6). 54

55

Introduction 56

Stevia (Stevia rebaudiana) is a shrub in the Compositae family from Paraguay. Stevia 57

leaves produce a sweet taste caused by the presence of glycosides with a sweetness level of 200-58

300 times higher than sugar cane or sucrose (Geuns, 2003). Stevia leaf glycosides do not contain 59

calories and have a glycemite index of almost zero so it is suitable for diabetics and someone who 60

is losing weight (Jeppesen et al., 2002; Gregersen et al., 2004). Stevia sugar is widely used in the 61

food, soft drink, toothpaste, antibacterial and antioxidant industries. The sweet taste derived from 62

Steviosida is not digested in the body's metabolism so it is highly recommended for people with 63

diabetes, hypertension, obesity and fungal infections (Brandle et al., 1998; Megeji et al., 2005). 64

The use of stevia as a sweetener has developed in developed countries such as America and Japan. 65

A

b

s

t

r

a

c

t

G

u

i

Page 23: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

In Japan, 5.6% of the sugar marketed is stevia sugar or what is known as sutebia (Rodiansah, 66

2007). 67

The number of industries that have applied stevia plants as sweeteners, makes stevia plant 68

cultivation have promising opportunities and has the potential to have quite high economic value. 69

However, stevia cultivation has a weakness in the propagation of stevia plants itself. This is due 70

to the percentage of seed germination of only 10%. Propagation of stevia by stem cuttings also 71

requires a lot of parent plants, so cultivation is largely less efficient. Due to the low rate of seed 72

germination and less efficient propagation through stem cuttings, a more effective propagation 73

method is needed. One method that can be applied for the propagation of stevia is through 74

micropropagation. 75

Micropropagation or also called plant tissue culture is the propagation of plants in sterile 76

conditions with take advantage of the totipotential properties of plant cells. The type and 77

concentration of growth regulators (ZPT) added to the culture media have an effect on the ability 78

of shoot regeneration. For shoot formation, the most commonly used ZPT is cytokinins such as 6-79

Benzyladenine (BA), kinetin, isopentenyl adenine (2-ip), zeatin and thidiazuron (TDZ) (Lestari, 80

2008). Apart from growth regulators, another important thing that influences the response of plant 81

explants is depending on the plant species, variety, accession or plant from which the explants 82

come from. Species, varieties, accessions and plant origins of the explants encode different genes, 83

so that when interacting with the environment, they will have different effects. The influence of 84

genes is closely related to the factors that influence explant growth, such as nutritional 85

requirements, growth regulators, and the culture environment (Hendaryono and Wijayani, 1994). 86

Ibrahim, et al (2008) and Anbazhagan, et al (2010) have succeeded in conducting 87

micropropagation experiments of stevia shoots with ZPT 6-Benzyladenine (BA) and Kinetin 88

Page 24: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

(Kin). Based on this research, the utilization of 6-Benzyladenine (BA) and kinetin (Kin) produced 89

quite a lot of shoots, so it is necessary to experiment with the application of these hormones with 90

a lower limit concentration of BA 0 mg / L and an upper limit of 2 mg / L while the lower limit of 91

Kin 0 concentration. mg / L and an upper limit of 8 mg / L for Kin in the hope of producing more 92

shoots because the needs and types of ZPT used for each genotype are not the same (Lestari, 2008). 93

In Indonesia, there are several accessions, namely green accessions, jumbo accessions, 94

purple accessions, yellow accessions and mini accessions. In this study, mini accessions were used. 95

Therefore, this research was carried out by developing several previous studies in order to obtain 96

the optimum combination of ZPT for the micropropagation of miniature Stevia rebaudiana shoots. 97

98

Materials & Methods 99

Plant Material 100

Stevia acc. Mini was obtained from Malang's Sweetener and Fiber Crops Research Institute. The 101

explants used were in the form of nodes or segments of uniform size, located in the order of 1-4, 102

counted from the shoots and not yet flowering. 103

Preparation and Sterilization of Media 104

Preparation of the media begins with dissolving sucrose with a concentration of 30 g / L in distilled 105

water with a volume of half the volume of media to be made. After dissolving, MS instant was 106

added with a concentration of 4.43 g / L then dissolved in the sugar solution that had been made 107

previously until it was homogeneous. Once homogeneous, add distilled water to reach the volume 108

of media you want to make. The combination of the growth regulator Kinetin (concentration range 109

0 ppm to 8 ppm) and Benzyladenine (concentration range 0 ppm to 2 ppm) is added according to 110

the type of medium to be made. The pH of the media was measured and conditioned in the range 111

Page 25: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

of 5.6-5.8 (1N NaOH or 1N HCl added to reach this pH) with a pH meter. To be added with a 112

concentration of 8.2 g / L after the pH has reached 5.6-5.8. In order to be dissolved on a magnetic 113

stirrer with a hot plate, after dissolving the media it is poured into a culture bottle of 25-30 ml. The 114

culture bottle containing the medium was covered with aluminum foil. Media is sterilized at a 115

temperature of 121˚C with a pressure of 1 atm for 20 minutes by autoclave. The media is allowed 116

to stand at room temperature for 2-3 days to see whether the media made is sterile or not. 117

Sterilization of Equipment and Materials 118

Sterilization of the equipment begins by sterilizing the culture bottles by immersing them in 0.3% 119

sodium hypolorite (NaOCl) for 24 hours, then washing them with soap and drying them in the sun. 120

Scalpels, spatulas and tweezers are sterilized by spraying with 70% alcohol. The materials that 121

need to be sterilized are tissue, distilled water and black cloth. Material sterilization is carried out 122

by heating the diauoclave at a temperature of 121˚C at a pressure of 1 atm for 20 minutes. 123

Sterilization of the Inoculation Room 124

Before doing explant inoculation, the inoculation room needs to be sterilized first. First, spray the 125

glass walls of Laminar Air Flow (LAF) with 70% alcohol and then wipe them with a tissue. Media, 126

sterile tissue, tweezers, scalpels, spatulas and LAF distilled water. The UV lamp is turned on for 127

5 minutes, then the blower is turned on and left for 3 minutes. LAF is ready to use. 128

Explant Sterilization 129

This research was conducted using explant nodes or segments in the order of 1-4 counted from the 130

shoots. Sterilization of nodes from parent plants to produce sterile plantlets that will be used for 131

shoot micropropagation. Stems containing 1-4 nodes of the parent plant are cut into pieces per 132

node. Sterilization begins by rinsing the explants under running water for 1 minute. Drain the node 133

so that no water drips. The nodes are soaked and shaken with 70% alcohol for 1 minute. 134

Page 26: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

Sterilization was followed by soaking in 1.5% NaOCl for 5 minutes while shaking. The final step 135

is to rinse the expanant with sterile aquadest 4 times, each rinse for 4 minutes in LAF. 136

137

Explant Inoculation 138

Node explants from sterilized broodstock plants are cut at each end on sterile tissue. The explants 139

were inoculated into MS 0 media, with a total of 5 explants 140

every bottle. Before opening and closing the culture bottle, the lip of the bottle is heated through a 141

bunsen fire. The explant is inoculated with the bud facing upwards. After planting, the culture 142

bottles were closed using aluminum foil which was previously passed through the fire. After the 143

culture bottle is covered with aluminum foil, the tip of the bottle is heated in a bunsen area. 144

Growth of Inoculation Result Explants 145

Culture bottles containing media and explants were placed in a culture room with a temperature of 146

approximately 25˚C on culture racks lit with 40 watts per square meter of TL lamps, approximately 147

1000 lux with 16 hours of light and 8 hours of darkness. . Maintenance is carried out by checking 148

the contamination level of the observed material every 2x a week. 149

Observation Variables 150

The observation variables of this study are: 151

a. Percentage of explants sprouting, which is calculated by the formula: 152

153

154

b. Percentage of callous explants: 155

𝛴 𝐸𝑘𝑠𝑝𝑙𝑎𝑛 𝑦𝑎𝑛𝑔 𝑏𝑒𝑟𝑡𝑢𝑛𝑎𝑠

𝛴 𝐸𝑘𝑠𝑝𝑙𝑎𝑛 𝑦𝑎𝑛𝑔 𝑡𝑒𝑟𝑠𝑒𝑑𝑖𝑎 𝑝𝑎𝑑𝑎 𝑠𝑒𝑡𝑖𝑎𝑝 𝑝𝑒𝑟𝑙𝑎𝑘𝑢𝑎𝑛 x 100%

𝛴 𝐸𝑘𝑠𝑝𝑙𝑎𝑛 𝑦𝑎𝑛𝑔 𝑏𝑒𝑟𝑘𝑎𝑙𝑢𝑠

𝛴 𝐸𝑘𝑠𝑝𝑙𝑎𝑛 𝑦𝑎𝑛𝑔 𝑡𝑒𝑟𝑠𝑒𝑑𝑖𝑎 𝑝𝑎𝑑𝑎 𝑠𝑒𝑡𝑖𝑎𝑝 𝑝𝑒𝑟𝑙𝑎𝑘𝑢𝑎𝑛 x 100%

Page 27: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

156

c. Number of shoots and roots. 157

Calculation of the number of shoots, roots and callus formed was carried out after 10 weeks from 158

planting time. 159

Research Design and Data Analysis 160

This research was conducted using a completely randomized design (CRD) with 5 repetitions. 161

Data analysis was performed using the Minitab 17 - Anova two way program. If there is a 162

significant difference, then proceed with the Tukey test with a confidence level of 95%. The data 163

analyzed included the percentage of sprouting parameters, 164

number of shoots, and number of roots. 165

Results and Discussion 166

Organogenesis and Callogenesis Responses 167

Plant growth regulators (PGRs) are organic molecules other than nutrients (elements that provide 168

energy or mineral nutrients), which affect plant growth and development. PGRs is active at 169

relatively low concentrations. Several types of PGRs have functions to accelerate, inhibit, and 170

cause mutations in physiological processes that occur in plants (Basra, 2000). In in vitro culture 171

the use of PGRs in low concentrations is required to induce cell proliferation and organogenesis 172

(Gaba, 2005). The use of growth regulators in tissue culture also depends on the goal or direction 173

of growth desired. Lestari (2008) revealed that the interaction between PGRs that occurs naturally 174

(endogenously) in explants (cells, tissue or plant organs) and exogenous PGRs also affects plant 175

growth and organogenesis. Benzyladenine (BA) and Kinetin (Kin) are PGRs cytokinins that 176

function as a stimulant for cell division and breakdown of apical donations by auxins (Salisbury 177

Page 28: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

and Ross, 1995). This study used explants in the form of nodes from sterile stevia plantlets. This 178

sterile explant is generally known as a secondary explant. In this study, the interaction of BA and 179

Kin at different concentrations caused different responses to organogenesis and callogenesis 180

(Table 1). Chishimba (2000) reported that the addition of BA, Kin and PGRs other cytokinins to 181

the in vitro culture of shoot explants of Uapaca kirkiana shoots gave a different response. This 182

was also reported by Quadri (2012) who stated that the addition of BA, Kin and Thidiazuron to 183

the in vitro shoot proliferation of Hyoscyamus niger L. also gave a different response. 184

Data analysis using Anova - two way showed that the interaction between BA and Kin had 185

no effect on the percentage of explants sprouting (p value> 0.05). However, explants grown on 186

MS medium with different combination treatment of ZPT almost entirely responded to shoot 187

formation. The value of the percentage of shoot formation ranged from 45% -100%. The lowest 188

shoot formation response appeared in the medium with the addition of ZPT 1 ppm BA + 8 ppm 189

Kin. While the highest response to shoot formation appeared in the medium with the addition of 190

ZPT BA singly and in combination with low concentrations of Kin (0.5 ppm BA + 2 ppm Kin 191

(Figure 2.1) and 1.5 ppm BA + 2 ppm Kin). From these data it can be concluded that BAZ ZPT 192

provides an organogenetic response in the form of better shoot formation than Kin in this study. 193

The low percentage of sprouting due to the presence of Kin in inducing the growth of axillary 194

shoots is in accordance with the results of research by Thiyagarajan (2012), Razak (2014), Rafiq 195

(2007). 196

BA provides a better response to shoot formation because it has stronger activity (Zaer and 197

Mapes, 1982) and causes more significant elongation than kinetin (Salisbury and Ross, 1995). BA 198

has the same basic structure as kinetin but is more effective because BA has a benzyl group 199

(George, l984). Flick (1993) stated that in general, plants have a better response to BA than to 200

Page 29: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

kinetin and 2-iP so that BA is more effective for in vitro shoot production. 201

In addition to the response of sprouted explants, this study also observed the response of callous 202

explants. Callus is an amorphous and unorganized mass of cells that is formed on the surface of 203

the injured tissue piece as a protective response to cover the injured tissue (Heryanto, 2014). In 204

this study, 100% callus was formed on media supplemented with Kin (Figure 2.1). The 205

morphology of the callus after 10 weeks of inoculation, the callus is compact and brownish while 206

on the top surface of the callus, the callus is friabele greenish in color (Ikeuchi, 2013). Gupta 207

(2010) reported that the addition of Kin with a concentration of 3 ppm, 4 ppm and 5 ppm gave a 208

response to callus formation. 209

Cell division that occurs due to cytokinins can produce undifferentiated callus (Gaba, 210

2005). Anbazhagan (2010) reported that addition of Kin to stevia shoot propagation can initiate 211

shoots at the beginning of growth only and this has documented earlier studies also by Murashige 212

(1974), Benne and Davies (1986) and Rogers (1998). Different research results were reported by 213

ibrahim (2008) that the shoot tip explants of stevia planted on the medium with the addition of Kin 214

alone produced a higher number of shoots compared to the number of shoots in this study, although 215

the response to the number of shoots produced by BA ZPT was still higher than ZPT. Kin. The 216

differences in the results of these studies could be caused by different explants' genotypes. The 217

genotype factor itself is the most important factor in tissue culture (Gaba, 2005). 218

Shoot Formation 219

The number of shoots formed is the main purpose in commercial micropropagation of plants. 220

Multiplication of shoots is induced by the application of exogenous cytokines to the growth 221

medium (Gaba, 2005). The results of the two-way anova-analysis showed that the addition of the 222

combination of Kin and BA with different concentrations had an effect on the number of shoots 223

Page 30: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

(P value <0.05). The concentration of ZPT that produced the highest number of shoots was 1 ppm 224

BA with the number of shoots produced as many as 36.05 shoots (Table 2.2; Figure 2.3). While 225

the lowest number of shoots was produced by a combination of ZPT 1 ppm BA + 8 ppm Kin and 226

1 ppm BA + 6 ppm Kin with a number of shoots of 0.65. Based on these data, it can be concluded 227

that BA is more effective in shoot multiplication than Kin. Alhady (2011) and Anbazhagan (2010) 228

also reported that BA was more effective for stevia shoot multiplication. This also occurs in other 229

species such as Bauhinia veriegate (Ahmed, 2007), Balanites aegyptiace (Mathur, 1992), and 230

Periploca angustifolia (Abd-Alhady, 2010). The number of shoots produced by Alhady (2011) in 231

the treatment of 2 ppm BA + o, 5 ppm Kin 36.9 shoots (highest yield) while in treatment 0.5 ppm 232

BA + 0.5 ppm Kin 18.1 shoots (lowest yield) . Anbazhagan (2010) produced the number of shoots 233

9.20 at 2 ppm BA treatment and 4.40 at 2 ppm Kin. 234

The basic function of cytokinins is to stimulate cytokinesis or cell division. A study of 235

cytokinin-activated cell division in the apical meristem, Houssa et al. (1990) obtained results 236

largely consistent with the study of Fosket et al. (1981). They found that benzyladenine greatly 237

shortened the time that the S phase took place in the cell cycle (from G2 to mitosis, the DNA and 238

protein synthesis stage of cell division). Fosket, et al (1981) concluded that cytokinins promote 239

cell division in tissue cultures by increasing the transition from G2 to mitosis and this occurs 240

because cytokinins increase the rate of protein synthesis. Some of these proteins are in the form of 241

building proteins or enzymes needed for mitosis. Protein can be increased by stimulating the 242

formation of mRNA that encodes these proteins. 243

Cytokinins can induce shoot formation by generating cytokinin signals due to positive 244

regulation of WIND1 that occurs due to injury. WINDs are transcription factors and support 245

dedifferentiation (have the same function as WUS). After the cytokinin signal appeared, WUS 246

Page 31: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

inhibited the expression of ARRs to maintain the stem cell population in the shoot meristem tissue. 247

After positive regulation of cytokinin signals to WUS, WUS positively regulates CLV3. CLV3 248

functions to regulate cell proliferation in SAM, the presence of reciprocal regulation between 249

CLV3 and WUS to maintain stem cell population and tissue size resulting in cell differentiation 250

and forming lateral organ arrangement (Ikeda, 2014). 251

Root Formation 252

In vitro root formation is necessary to convert shoots into whole plantlets that can be 253

transplanted into a greenhouse (Gaba, 2005). In vitro plant root initiation can be stimulated by 254

adding ZPT auxin groups such as Indole-3-Acetic Acid (IAA), Naphtalene Acetic Acid (NAA) 255

and Indole-3-Butyric Acid (IBA) (Arlianti, 2013). Several explants in this study responded to root 256

formation (Table 2.3). Data analysis using Anova - two way shows that the interaction between 257

BA and Kin affects the number of roots (p value> 0.05). The highest number of roots was produced 258

by MS 0 treatment or without the addition of ZPT. Treatment of cytokinins in high concentrations 259

can inhibit root formation. The wound treatment during shoot planting can induce auxin synthesis 260

for root formation. In certain cases, roots can be induced by transplanting the shoots to the medium 261

without ZPT once or twice to reduce the cytokinin concentration. 262

Another method option is the addition of auxin at low concentrations to induce roots (Gaba, 263

2005). Arlianti (2013) conducted an experiment on root induction of Stevia, which resulted in the 264

best ZPT concentration for root induction of 0.2 ppm NAA with 8 roots. While Anbazhagan (2010) 265

reported ZPT 1 ppm IAA produced 11 roots, Alhady (2011) with 2 ppm IBA ZPT produced 8.4 266

fruits and Das (2011) was able to produce roots without the addition of ZPT (MS 0) with 15 roots. 267

58 pieces. 268

Page 32: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

Auxin itself has many roles in tissue culture, depending on the chemical structure, 269

concentration and response of the plant tissue itself. Auxins cause callus and root formation as 270

well as the growth of stem extensions. Auxins in general have the function of stimulating cell 271

elongation, cell division in the cambium tissue and together with cytokinins stimulating xylem and 272

phloem differentiation. The addition of high enough exogenous auxin can induce somatic embryo 273

genesis. A higher ratio of auxin to cytokinins will induce root formation in shoots, callus initiation 274

in monocot plants, and initiation of somatic embryogenesis. A nearly balanced ratio of auxin to 275

cytokinin will induce the formation of additional roots from callus and callus initiation in dicot 276

plants. A lower ratio of auxin to cytokinin will induce additional shoots and axillary shoot 277

production. For this reason, the interaction between auxin and cytokinins is very important to 278

control many growth and development processes in vitro (Gaba, 2005). 279

Conclusions 280

We report the use of secondary explants derived from axenic auxillary nodes of stevia accession 281

Mini. Different organogenesis and callogenesis responses resulted from the use of different 282

combination of cytokinins (Kin and BA) concentration. The percentage of shoot formation ranged 283

from 45-100%. The lowest shoot formation was obtained from the MS media with 1 ppm BA and 284

8 ppm Kin. Whereas, the highest percentage of shoot formation appeared in the MS with BA only 285

and in combination with low concentration of Kin. Meanwhile, callogenesis responses were mostly 286

obtained from the MS media containing Kin. Explant placed in the MS medium with 1 ppm BA 287

alone showed highest shoot proliferation (36,05 shoots). Overall, these results indicate that the 288

comprehensive selection of PGRs types and concentration contribute to better organogenesis 289

responses. Also, these findings might be used for accelerating breeding and genetic improvement 290

of stevia cultivars. 291

Page 33: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

Acknowledgements 292

The authors would like to thank all members of the laboratory of plant bioscience and technology 293

for all technical supports. We also acknowledge Indonesian Sweetener and Fiber Crops Research 294

Institute for providing plant materials. 295

References 296

Geuns J. M. C., “Molecules of Interest – Stevioside,” Phytochem. 64, (2003) 913-921. 297

Jeppesen PB, Gregersen S, Alstrup KK., “Stevioside induces antihyperglycaemic, insulinotropic 298

and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats,” 299

Phytomed. (2002) 9:9- 14. 300

Gregersen S, Jeppesen PB, Holst JJ, Hermansen K., “Antihyperglycemic effects of stevioside in 301

type 2 diabetic subjects,” Metabolism, (2004) 53:73-76. 302

Brandle JE, Starrtt AN, Gijzen M., “Stevia rebaudiana: international agriculturalf, biological 303

chemical properties,” Can J Plant Su, (1998) 78:527-536. 304

Megeji NW, Kumar JK, Singh V, Kaul VK and Ahuja PS., “Introducing Stevia rebaudiana, a 305

natural zero-calorie sweetener,” Curr Sci, (2005) 88:801-805. 306

Rodiansah, Asep., “Induksi Mutasi Kromosom dengan Koklisin pada Tanaman Stevia 307

(Stevia rebaudiana Bertoni) Klon Zweeteners Secara In Vitro,” Skripsi, Bogor : Progam 308

Studi Hortikultura Fakultas Pertanian Institut Pertanian Bogor (2007). 309

Lestari, Endang G., “Kultur Jaringan,” Akademia : Bogor (2008). 310

Hendaryono, Daisy P. Dan Wijayani, A., “Teknik Kultur Jaringan,” Kanisus :Yogyakarta (1994). 311

Ibrahim, I. A., M. I. Nasr, B. R. Mohammed, M. M. El-Zefzafi. “Plant Growth regulators 312

affecting in vitro Cultivation of Stevia rebaudiana,” Sugar Tech, (2008) 10(3) : 254-259. 313

Anbazhagan, M., M. Kalpana, R. Rajendran, V. Natarajan dan D. Dhanavel, “In Vitro Production 314

of Stevia rebaudiana Bertoni,” Emir J. Food Agric, (2010) 22(3) : 216-222. 315

Basra, A. S., Plant Growth Regulators in Agriculture and Horticulture: Their Role and 316

Commercial Uses, Haworth Press : New York (2000). 317

Gaba, V. P., “Plant Growth Regulators,” Plant Tissue Culture and Development. CRC Press : 318

London. (2005) p. 87-99. 319

Salisbury, Frank B. Dan Cleon W Roos, Fisiologi Tumbuhan Jilid 3- Edisi keempat, Bandung : 320

Penerbit ITB (1995). 321

Kolb, N., J. L. Herrera, D. J. Ferreyra dan R. F. Uliana. 2001. Analysis of Sweet Diterpene 322

Glycosides from Upaca kirkrana Improved HPLC Method. J. Agric Food Chem, (2000) 323

49, 4538-4541. 324

Quadri, R. R., Jaime A. T. S., Azra N. K. dan Ali M, “Effect of 6- Benzyladenine, Kinetin and 325

Thidiazuron on in Vitro Shoot Proliferation of Hyoscyamus niger L.,” Medical and 326

Aromatic Plant Science and Biotechnology, (2012) 6(1), 81-83. 327

Thiyagarajan, M dan P. Venkatachalam, “Large Scale In vitro Propagation of Stevia rebaudiana 328

(bert) for Commercial Application : Pharmaceutically Important and Antidiabetic Medical 329

Herb,” Industrial Crops and Products, (2012) P. 111-117. 330

Razak, U. N. A. A., Chong B. O., Tiew S. Y. Dan Li Kiaw L., “ In vitro Micropropagation of 331

Page 34: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

Stevia rebaudiana Bertoni in Malaysia,” Brazilian Archives of Biology and Technology – 332

An Interntional Journal. Vol. 57, n.1. (2014) pp. 23-28. 333

Rafiq, Muhammad, M. Umar D., Sher M., Mangrio, Habib A. N. Dan Iqbal A. Qarshi, “In vitro 334

Clonal Propagation and Biochemical Analysis of Field Establishment Stevia rebaudiana 335

Bertoni,” Pak. J. Bot.,(2007) 39(7): 2467-2474. 336

Zaer dan Mapes, Action of Growth Regeneration in Bonga and Durzan (eds.) Tissue Culture in 337

Forestry. Martinus Nijhoff : London. (1982) P. 231-235. 338

George, E. F. Dan P. D. Sherington, Plant Propagation by Tissue Culture. Handbook and 339

Directory of Commercial Laboratories. Exegetic : England. (1984) P. 709. 340

Flick, C. E., D. A. Evans dan W.R. Sharp, Organogenesis. Handbook of Plant Cell Culture and 341

Development, CRC Press : London. (1993) P. 87-100. 342

Heryanto, Aditya F., C. J. Soegihardjo, L.M. Ekawati, “Optimasi Produksi Steviosida dari Kalus 343

Daun Stevia rebaudiana Bertoni dengan Variasi Kombinasi Zat Pengatur Tumbuh,” Jurnal 344

Teknobiologi, (2014) P. 1-13. 345

Ikeuchi, Momoko, Keiko S. dan Akira I., “REVIEW – Plant Callus: Mechanisms of Induction and 346

Repression,” The Plant Cell. Vol. 25 (2013) 3159-3173. 347

Gupta, Pratibha, Satyawati Sharma, dan Sanjay Saxena, “Callusing in Stevia rebaudiana (Natural 348

Sweetener) for Steviol Glycoside Production,”World Academy of Science, Engineering 349

and Technology (2010). 350

Murashige, T. and F. Skoog, “ A revised medium for rapid growth and bioassay with tobacco 351

tissue cultures,” Physiol. Plant, (1962)15:473– 497. 352

Benne, L. K. and F. T. Davies, “In vitro propagation of Quercus shumardii seedling,” Hort. Sci, 353

(1998) 21:1045–1047. 354

Rogers, D. S., J. Beech, and K. S. Sharma, “Shoot regeneration and plant acclimatization of the 355

wetland monocot Cattail (Typha latifolia),” Plant Cell Rep. (1998) 18:71–75. 356

Abd-Alhady, M.R., M.M Abd Alla, G. A. Hegazi dan M. F. Gabr, “Rapid Propagation of 357

Periploca angustifolia Labill. By Tissue Culture,” International J. Plant Development 358

Biol. 4(1 (2010):15-18. 359

Ahmed, M.R. dan M. H. Bekhit, “In vitro Propagation of Balanites aeygptical (L) Del. An 360

Endangered Medical Plant,” J. Agri. Sci. Mansoura Univ.. 32(4) (2007) :2907-2915 361

Mathur, J. Dan Mukunthakumar, “Micropripagation of Bauhinin variagate dan Parkinsoma 362

aceuleaa from nodal explant of mature trees,” Plant Cell Tiss. Organ Cult. 28 (1992) 363

:199-121. 364

Ikeda, Miho, dan Masaru Ohme-Takagi, “TCPs, WUSs, and WINDs: Families of Transcription 365

Factors that Regulate Shoot Formation, Stem Cell Maintenence, and Somatic Cell 366

Differentiation,” Frontiers in PLANT SCIENCE – Mini Review Article. Vol. 5 (2014). 367

Arlianti, Tias, Aitti F. S., NN Kristina, dan Otih R, “Pengaruh Auksin IAA, IBA dan NAA 368

Terhadap Induksi Perakaran Tanaman Stevia (Stevia rebaudiana) Secara In vitro,” Bul. 369

Littro. Vol. 24, No. 2 (2013). 370

Das, Arpita, Saikat G. dan Nirmal M., “Micropropagation of an Elite Medical Plants: Stevia 371

rebaudiana Bert.,” International Journal of Agricultural Research. 6(1) (2011): 40-48. 372

373

374

375

Page 35: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

Tabel 2.1 Organogenesis and callogenesis responses of stevia in MS containing different 376

concentration of PGRs 377

PGRs Combination Explants

forming

shoot (%)

Callogenesis

(%) BA

(ppm)

Kin

(ppm)

0 0 100 0

0,5 0 100 0

1 0 100 0

1,5 0 100 0

2 0 100 0

0 2 90 100

0,5 2 100 100

1 2 90 100

1,5 2 100 100

2 2 65 100

0 4 85 100

0,5 4 90 100

1 4 60 100

1,5 4 65 100

2 4 60 100

0 6 75 100

0,5 6 75 100

1 6 50 100

1,5 6 60 100

2 6 85 100

0 8 95 100

0,5 8 75 100

1 8 45 100

1,5 8 75 100

2 8 85 100

378

Page 36: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

Tabel 2.2 The response to the number of shoots produced by sterile node explants was 379

treated with different combinations of PGRs 380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

Kombinasi ZPT Jumlah tunas

Kombinasi ZPT Jumlah tunas

BA (ppm)

Kin (ppm)

BA (ppm)

Kin (ppm)

0 0 1,9e 1,5 4 1,4e

0,5 0 4,95de 2 4 1e

1 0 36,05a 0 6 1,2e

1,5 0 17,2c 0,5 6 1,6e

2 0 26b 1 6 0,65e

0 2 1,9e 1,5 6 0,8e

0,5 2 8d 2 6 1,4e

1 2 3,55de 0 8 1,7e

1,5 2 7,35d 0,5 8 1,05e

2 2 1,05e 1 8 0,65e

0 4 1,55e 1,5 8 1,65e

0,5 4 1,8e 2 8 1,4e

1 4 0,85e

Page 37: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

Table 2.3 Response to root formation with different combinations of ZPT BA and Kin treatment 420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

Kombinasi ZPT Jumlah

akar

Kombinasi ZPT Jumlah

akar BA

(ppm) Kin

(ppm) BA

(ppm) Kin

(ppm)

0 0 2,6a 1,5 4 0,0b

0,5 0 0,15b 2 4 0,0b

1 0 0,0b 0 6 0,0b

1,5 0 0,0b 0,5 6 0,0b

2 0 0,0b 1 6 0,0b

0 2 0,05b 1,5 6 0,0b

0,5 2 0,0b 2 6 0,0b

1 2 0,0b 0 8 0,0b

1,5 2 0,0b 0,5 8 0,0b

2 2 0,0b 1 8 0,0b

0 4 0,0b 1,5 8 0,0b

0,5 4 0,0b 2 8 0,0b

1 4 0,0b * Nilai yang diikuti oleh huruf yang sama pada kolom menunjukkan

tidak adanya beda nyata pada uji Tukey selang kepercayaan 95%.

Page 38: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

460

461

462

463

464

465

466

467

468

469

Figure 2.1 Organogenesis responses are in the form of shoots (1) and callogenesis (2). 470

The explant is 10 weeks old. Information; A. 0.5 ppm BA + 2 ppm Kin, B. 0.5 ppm BA 471

+ 4 ppm Kin. The white line shows the 0.5 cm scale. 472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

A1 B1

Page 39: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

Figure 2.2 Organogenetic response in the form of shoots on explants planted on 0.5 ppm BA 517

medium. The explant is 10 weeks old. Note: The white line indicates the 0.5 cm scale. 518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

Page 40: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

Figure 2.3 Observation of the number of shoots 10 weeks after inoculation. Information; (A) 570

explants grown on MS 0 medium or control. (B) explants grown on 0.5 ppm BA media. (C) 571

explants grown on 1 ppm BA medium. The white line shows the 0.5 cm scale. 572

573

574

575

576

A1

C

E

B1

D1

F1

Page 41: LAPORAN KEMAJUAN PENELITIAN KERJASAMA ANTAR …

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

Figure 4.4 Roots formed after being treated with a combination of ZPT with different 598

concentrations for 10 weeks. Information; A: Roots formed on MS media 0, B: Roots formed on 599

0.5 ppm BA media. The arrows point to the roots. The white line shows the 0.5 cm scale. 600

601

A1 B