i. gg · pada tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. tabel...

18
1 BAB I PENDAHULUAN I. gg 1.1 LATAR BELAKANG Salah satu ruas jalan yang akan di bangun/ditingkatkan adalah ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur yang terdapat di Kabupaten Boven Digoel, hal ini dimaksudkan guna menghubungkan dan mengakses jalan dari pertigaan Arimbet-Mindiptana di Kabupaten Boven Digoel ke arah Dewok/Iwur di Kabupaten Pegunungan Bintang. Agar ruas jalan dapat memiliki koordinasi antar- alinyemen yang baik dan dapat melayani arus lalu lintas sesuai dengan umur rencana, maka diperlukan perencanaan geometrik dan perkerasan yang baik. Dengan dibangunnya ruas jalan ini maka diharapkan akan menambah dan mempercepat distribusi hasil-hasil pertanian, perkebunan, kehutanan serta kebutuhan bahan- bahan pokok pada masyarakat sekitar ruas jalan serta daerah di belakangnya. 1.2 PERUMUSAN MASALAH Dari latar belakang tersebut di atas, beberapa perumusan masalah yang perlu disampaikan yaitu : 1. Bagaimana bentuk perencanaan geometrik yang sesuai untuk ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur? 2. Bagaimana perencanaan konstruksi lapisan perkerasan yang sesuai untuk ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur dengan umur rencana 10 tahun? 3. Berapa dimensi saluran tepi yang diperlukan sesuai dengan kondisi kontur yang ada? 4. Berapa jumlah anggaran biaya yang diperlukan untuk perencanaan ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur? 1.3 TUJUAN Tujuan dari penyusunan tugas akhir ini adalah : 1. Merencanakan bentuk perencanaan geometrik yang sesuai untuk ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur. 2. Merencanakan konstruksi lapisan perkerasan yang sesuai untuk ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur dengan umur rencana 10 tahun. 3. Merencanakan dimensi saluran tepi yang diperlukan sesuai dengan kondisi kontur yang ada. 4. Mengetahui anggaran biaya yang diperlukan untuk perencanaan ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur. 1.4 BATASAN MASALAH Berdasarkan kondisi tersebut di atas, maka batasan masalah yang dilakukan hanya terbatas pada : 1. Lapisan perkerasan yang digunakan adalah lapisan perkerasan lentur dengan perhitungan menggunakan metode Bina Marga. 2. Data perencanaan dalam Tugas Akhir ini menggunakan data-data sekunder yaitu data curah hujan, data tanah, dan peta rupa bumi. 3. Tidak membahas stabilitas lereng, persimpangan jalan, gorong - gorong, jembatan, biaya operasi peralatan, penggunaan alat berat dan pelaksanaan di lapangan. 1.5 LOKASI STUDI Lokasi studi ini terdapat di Distrik Arimop sebelah utara ibukota Kabupaten Boven Digoel Provinsi Papua. Detil lokasi dapat dilihat pada Gambar 1.1 dan Gambar 1.2. Gambar 1-1 Peta Papua (Sumber : www.papua.co.id) Gambar 1-2 Peta Kabupaten Boven Digoel (Sumber : Bag. Tata Pemerintahan Setda Kab. Boven Digoel) Lokasi Studi

Upload: trinhdat

Post on 18-Sep-2018

253 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

1

BAB I PENDAHULUAN

I. gg

1.1 LATAR BELAKANG Salah satu ruas jalan yang akan di bangun/ditingkatkan

adalah ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur yang terdapat di Kabupaten Boven Digoel, hal ini dimaksudkan guna menghubungkan dan mengakses jalan dari pertigaan Arimbet-Mindiptana di Kabupaten Boven Digoel ke arah Dewok/Iwur di Kabupaten Pegunungan Bintang. Agar ruas jalan dapat memiliki koordinasi antar-alinyemen yang baik dan dapat melayani arus lalu lintas sesuai dengan umur rencana, maka diperlukan perencanaan geometrik dan perkerasan yang baik.

Dengan dibangunnya ruas jalan ini maka diharapkan akan menambah dan mempercepat distribusi hasil-hasil pertanian, perkebunan, kehutanan serta kebutuhan bahan-bahan pokok pada masyarakat sekitar ruas jalan serta daerah di belakangnya.

1.2 PERUMUSAN MASALAH Dari latar belakang tersebut di atas, beberapa

perumusan masalah yang perlu disampaikan yaitu : 1. Bagaimana bentuk perencanaan geometrik yang

sesuai untuk ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur?

2. Bagaimana perencanaan konstruksi lapisan perkerasan yang sesuai untuk ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur dengan umur rencana 10 tahun?

3. Berapa dimensi saluran tepi yang diperlukan sesuai dengan kondisi kontur yang ada?

4. Berapa jumlah anggaran biaya yang diperlukan untuk perencanaan ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur?

1.3 TUJUAN Tujuan dari penyusunan tugas akhir ini adalah : 1. Merencanakan bentuk perencanaan geometrik

yang sesuai untuk ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur.

2. Merencanakan konstruksi lapisan perkerasan yang sesuai untuk ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur dengan umur rencana 10 tahun.

3. Merencanakan dimensi saluran tepi yang diperlukan sesuai dengan kondisi kontur yang ada.

4. Mengetahui anggaran biaya yang diperlukan untuk perencanaan ruas jalan Arimbet - Maju - Ujung - Bukit - Iwur.

1.4 BATASAN MASALAH Berdasarkan kondisi tersebut di atas, maka batasan

masalah yang dilakukan hanya terbatas pada : 1. Lapisan perkerasan yang digunakan adalah lapisan

perkerasan lentur dengan perhitungan menggunakan metode Bina Marga.

2. Data perencanaan dalam Tugas Akhir ini menggunakan data-data sekunder yaitu data curah hujan, data tanah, dan peta rupa bumi.

3. Tidak membahas stabilitas lereng, persimpangan jalan, gorong - gorong, jembatan, biaya operasi peralatan, penggunaan alat berat dan pelaksanaan di lapangan.

1.5 LOKASI STUDI Lokasi studi ini terdapat di Distrik Arimop sebelah

utara ibukota Kabupaten Boven Digoel Provinsi Papua. Detil lokasi dapat dilihat pada Gambar 1.1 dan

Gambar 1.2.

Gambar 1-1 Peta Papua

(Sumber : www.papua.co.id)

Gambar 1-2 Peta Kabupaten Boven Digoel

(Sumber : Bag. Tata Pemerintahan Setda Kab. Boven Digoel)

Lokasi Studi

Page 2: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

2

BAB II DASAR PERENCANAAN

II.

2.1 UMUM Perencanaan geometrik secara umum terdiri atas dua

bagian yaitu alinyemen horizontal dan alinyemen vertikal, dimana menyangkut aspek-aspek perencanaan elemen jalan, tikungan, kelandaian jalan, dan jarak pandangan serta kombinasi dari bagian-bagian tersebut, baik untuk suatu ruas jalan, maupun untuk perlintasan diantara dua atau lebih ruas-ruas jalan.

2.2 PARAMETER PERANCANGAN GEOMETRIK JALAN RAYA

2.2.1 Kecepatan rencana Besarnya kecepatan rencana tergantung pada kelas

jalan dan kondisi medan sebagaimana ditunjukkan pada Tabel 2-4.

Tabel 2-1 Kecepatan Rencana (Vr) Fungsi

Kecepatan Rencana, Vr (Km/jam) Datar Bukit Pegunungan

Arteri 70 - 120 60 - 80 40 - 70 Kolektor 60 - 90 50 - 60 30 - 50

Lokal 40 - 70 30 - 50 20 - 30 Catatan : Untuk kondisi medan yang sulit, Vr suatu segmen jalan dapat diturunkan, dengan syarat bahwa penurunan tersebut tidak lebih dari 20 Km/jam.

Sumber : Tata Cara Perencanaan Geometrik Jalan Antar Kota, No. 038/TBM/1997

2.2.2 Jarak Pandang Jarak pandang terbagi menjadi dua bagian, yaitu Jarak

Pandang Henti (JPH) dan Jarak Pandang Mendahului (JPM).

1. Jarak Pandang Henti (JPH) Adalah jarak minimum yang diperlukan oleh pengemudi untuk menghentikan kendaraannya dengan aman, begitu melihat adanya halangan di depan. Rumus umum Jarak Pandang Henti Minimum (JPH) (Sukirman, 1994) untuk jalan datar, adalah sebagai berikut :

254fm

V0.278V.td

2

+=

Dimana : d : jarak pandang henti minimum (m) fm : koefisien gesekan antara ban dan muka jalan dalam arah memanjang jalan V : kecepatan kendaraan (km/jam) t : waktu reaksi = 2,5 detik

Rumus umum Jarak Pandang Henti Minimum (JPH) (Sukirman, 1994) untuk jalan dengan kelandaian tertentu, adalah sebagai berikut :

L)254(f

V0.278V.td

2

±+=

Besarnya jarak pandangan henti berdasarkan beberapa kecepatan rencana ditunjukkan pada Tabel 2-6.

Tabel 2-2 Jarak Pandangan Henti Minimum Kecepatan Rencana

Vr (km/jam)

Kecepatan Jalan Vj (km/jam)

Koefisien Gesek

Jalan fm

d perhitungan untuk Vr

(m)

d perhitungan

untuk Vj (m)

d desain (m)

30 40 50 60 70 80 100 120

27 36 45 54 63 72 90 108

0,400 0,375 0,350 0,330 0,313 0,300 0,285 0,280

29,71 44,60 62,87 84,65 110,28 139,59 207,64 285,87

25,94 38,63 54,05 72,32 93,71 118,07 174,44 239,06

25 - 30 40 - 45 55 - 65 75 - 85 95 - 110 120 - 140 175 - 210 240 - 285

Sumber : Dasar-Dasar Perencanaan Geometrik Jalan, Sukirman 1994

2. Jarak Pandangan Menyiap (JPM)

Jarak Pandangan Menyiap hanya perlu dilihat pada jalan 2/2 UD.

4321 ddddd +++=

Rumus yang digunakan adalah :

+−=2

atmV0.278td 1

11

22 0.278Vtd =

100m s.d 30d3 =

24 d3

2d ×=

Besarnya jarak pandangan menyiap berdasarkan beberapa kecepatan rencana ditunjukkan pada Tabel 2-7.

Tabel 2-7 Jarak Pandangan Menyiap Minimum

Kecepatan Rencana

Vr (km/jam)

Jarak Pandangan Menyiap Standar

Perhitungan (m)

Jarak Pandangan Menyiap Standar Desain

(m)

Jarak Pandangan Menyiap Minimum

Perhitungan (m)

Jarak Pandangan Menyiap

Minimum Desain (m)

30 40 50 60 70 80

100 120

146 207 274 353 437 527 720 937

150 200 275 350 450 550 750 950

109 151 196 250 307 368 496 638

100 150 200 250 300 400 500 650

Sumber : Dasar-Dasar Perencanaan Geometrik Jalan, Sukirman 1994

2.3 KLASIFIKASI JALAN

2.3.1 Klasifikasi Menurut Fungsi Jalan Menurut fungsi jalan, terdiri atas : 1. Jalan Arteri : yaitu jalan yang melayani angkutan

utama dengan ciri-ciri perjalanan jarak jauh, kecepatan rata-rata tinggi, dan jumlah jalan masuk dibatasi secara efisien.

2. Jalan Kolektor : yaitu jalan yang melayani angkutan pengumpul/pembagi dengan ciri-ciri

Page 3: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

3

perjalanan jarak sedang, kecepatan rata-rata sedang dan jumlah jalan masuk dibatasi.

3. Jalan Lokal : yaitu jalan yang melayani angkutan setempat dengan ciri-ciri perjalanan jarak dekat, kecepatan rata-rata rendah, dan jumlah jalan masuk tidak dibatasi.

2.3.2 Klasifkasi Menurut Medan Jalan 1. Medan jalan diklasifikasikan berdasarkan kondisi

sebagian besar kemiringan medan yang diukur tegak lurus garis kontur.

2. Klasifikasi menurut medan jalan untuk perencanaan geometrik dapat dilihat dalam Tabel 2-9.

Tabel 2-9 Klasifikasi Menurut Medan Jalan

No. Jenis Medan Notasi Kemiringan Medan

(%)

1. 2. 3.

Datar Perbukitan

Pegunungan

D B G

< 3 3 – 25 > 25

Sumber : Tata Cara Perencanaan Geometrik Jalan Antar Kota, No. 038/TBM/1997

2.4 ELEMEN GEOMETRIK

2.4.1 Alinyemen Horizontal

2.4.1.1 Gaya Sentrifugal

Gaya sentrifugal (F) yang terjadi : amF ×= Maka besaran gaya sentrifugal dapat ditulis sebagai berikut :

Rg

VWF

2

⋅⋅=

2.4.1.2 Ketentuan Panjang Bagian Lurus Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal.

Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m)

Fungsi Datar Perbukitan Pegunungan

Arteri Kolektor

3.000 2.000

2.500 1.750

2.000 1.500

Sumber : Tata Cara Perencanaan Geometrik Jalan Antar Kota, No. 038/TBM/1997

2.4.1.3 Ketentuan Komponen Tikungan 1. Lengkung Peralihan ,Ls (Length of Spiral)

Bina Marga menetapkan, panjang lengkung peralihan mulai dari penampang melintang berbentuk mahkota (crown) sampai dengan kemiringan sebesar superelevasi. Secara detil, kelandaian relatif minimum ditunjukkan pada Tabel 2-12. Perhitungan lengkung peralihan, Ls adalah sebagai berikut :

Berdasarkan waktu tempuh di lengkung peralihan.

3,6

tVLs R ⋅=

Berdasarkan landai relatif. ( ) maksn mBeeLs ⋅⋅+≥

Berdasarkan rumus Modifikasi Shortt.

C

eV2.727

CR

V0.022Ls R

3R −=

Berdasarkan tingkat pencapaian perubahan kelandaian. ( )

e

Rnmaks

r3.6

VeeLs

∗−= (2.15)

Dari ke empat persamaan tersebut, panjang lengkung peralihan, Ls yang digunakan untuk perencanaan adalah Ls dengan nilai yang terbesar.

2.4.1.4 Bentuk Lengkung Horizontal Ada 3 bentuk lengkung horisontal, antara lain : 1. Lengkung busur lingkaran sederhana (full circle)

Lengkung full circle digunakan untuk Rrencana yang besar dan nilai superelevasi (e) lebih kecil atau sama dengan 3%.

Gambar 2-1 Lengkung Busur lingkaran Sederhana (full

circle) (Sumber : Modul Rekayasa Jalan Raya)

Parameter lengkung full circle :

⋅= ∆2

1tgRTc

R∆

21

cos

RE −

=

R180

π∆Lc ⋅

=

Gambar 2-2 Diagram Superelevasi Lengkung Busur Lingkaran Sederhana (full circle)

(Sumber : Modul Rekayasa Jalan Raya)

PI

0.5∆

E

TC CT

TC

R R

Lc

0.5∆

B IN A M A R G A

3 /4 Ls1 /4 LsL c

1 /4 Ls

e

3 /4 L s

e n = 2 %

T C T C

e

S C C S

e n = 2 %

Page 4: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

4

2. Lengkung busur lingkaran dengan lengkung

peralihan (spiral – circle – spiral) Secara umum lengkung spiral – circle – spiral digunakan jika nilai superelevasi e ≥ 3% dan panjang Ls > 20 meter.

Gambar 2-3 Lengkung busur lingkaran dengan

lengkung peralihan (spiral – circle – spiral) (Sumber : Modul Rekayasa Jalan Raya)

Parameter lengkung spiral – circle – spiral :

Ls90θs =

( )180

Rπθs2∆Lc

−=

( )θscos1RR6

Lsp

2

−−=

sinθiRR40

LsLsk

2

3

⋅−−=

( ) k∆2

1tgpRTs +

⋅+= )

R∆

21

cos

p)(RE −

+

⋅−=

2

2

R40

Ls1LsXs .............. (2.26)

R6

LsYs

2

⋅= .................................. (2.27)

Bentuk diagram superelevasi dapat dilihat pada Gambar 2-9.

BINA MARGA

Ls Lc Ls

2% 2%e

TS SC CS ST

e

Gambar 2-4 Diagram Superelevasi Lengkung Busur

Lingkaran dengan Lengkung Peralihan (spiral – circle – spiral) (Sumber : Modul Rekayasa Jalan Raya)

3. Lengkung peralihan (spiral - spiral)

Secara umum lengkung spiral – spiral digunakan jika nilai superelevasi e ≥ 3% dan panjang Ls ≤ 20 meter. Bentuk lengkung dapat dilihat pada Gambar 2-10.

Gambar 2-5 Lengkung Peralihan (spiral – spiral)

(Sumber : Modul Rekayasa Jalan Raya) Parameter lengkung spiral – spiral :

∆2

1θs =

( )θscos1RR6

Lsp

2

−−=

ssinRR40

LsLsk

2

2

θ−−=

( ) ( ) kθstgpRTs +⋅+=

( )R

scos

pRE −+=

θ

Besarnya Ls pada tipe lengkung ini adalah didasarkan pada landai relatif minimum.

( ) maksn mBeeLs ⋅⋅+≥ ............ (2.13)

Gambar 2-6 Diagram Superelevasi Lengkung Peralihan (spiral– spiral)

(Sumber : Modul Rekayasa Jalan Raya)

2.4.1.8 Jarak Kebebasan Samping Pandangan pengemudi kendaraan yang bergerak pada lajur tepi dalam rentan terhalang oleh gedung, tebing dan lainnya. 1. Jika jarak pandangan, S lebih kecil daripada

panjang total lengkung (lihat Gambar 2-12)

BINA MARGA

TS SC=CS ST

Ls Ls

e n = 2% e n = 2%

e

e

θ s

p

E

TS

SC=CS

ST

Ts

k

R R Ls

θ s

Ls

θ s θ s

p Ys

E

Ts

SC CS

ST

Ts

Xs

k

R R Ls

Lc

Ls

Page 5: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

5

E

LtS

R R

PenghalangPandangan

Lajur Dalam

Lajur Luar

R'

Garis Pandang

Gambar 2-7 Jarak Pandangan S < Lt

(Sumber : Modul Rekayasa Jalan Raya)

−=R'

S28.65cos1R'E ...............................(2.33)

2. Jika jarak pandangan, S lebih besar daripada

panjang total lengkung (lihat Gambar 2-13), Lt

R

Lajur Luar

Penghalang

Garis Pandang

Pandangan

E

LtS

R'

R

Lajur Dalam

Gambar 2-8 Jarak Pandangan S > Lt

(Sumber : Modul Rekayasa Jalan Raya)

×−+

−=R'

S28.65sin

2

LtS

R'

S28.65cos1R'E .....(2.34)

2.4.1.9 Pelebaran Pada Tikungan Besarnya pelebaran untuk sebuah tikungan dapat dicari dengan persamaan matematis berikut.

WnWcω −= ( ) ( ) ZFa1NCUNWc +−++=

22 LRRµU −−+=

( ) RA2LARFa 2 −++=

R

VZ =

2.4.2 Alinyemen Vertikal Alinyemen vertikal adalah perpotongan bidang vertikal

dengan bidang permukaan perkerasan jalan melalui sumbu jalan, yang umumnya biasa disebut dengan profil atau penampang memanjang jalan.

2.4.2.1 Kelandaian Alinyemen Vertikal 1. Landai Minimum

Kelandaian yang baik yaitu kelandaian 0% (datar), tapi tidak demikian untuk keperluan drainase jalan melainkan yang bukan 0% (tidak datar). 2. Landai Maksimum

Kelandaian maksimum dimaksudkan untuk menjaga agar kendaraan dapat bergerak terus tanpa kehilangan kecepatan yang berarti.

Secara detil, batasan kelandaian maksimum menurut Bina Marga ditunjukkan pada Tabel 2-16.

Tabel 2-16 Kelandaian Jalan Jalan Luar Kota (Bina Marga)

Kecepatan Rencana (km/jam) Kelandaian Maks

Standar (%) Kelandaian Maks Mutlak (%)

40 7 11 50 6 10 64 60 5 9 80 4 8 96 113

Sumber : Dasar-Dasar Perencanaan Geometrik Jalan, Sukirman 1994

3. Panjang Kritis Kelandaian

Besarnya panjang kritis dapat dilihat pada Tabel 2.17. Tabel 2-17 Panjang Kritis

Kecepatan Rencana (km/jam) 80 60 50 40 30 20

5% 500m 6% 500m 7% 500m 8% 420m 9% 340m 10% 6% 500m 7% 500m 8% 420m 9% 340m 10% 250m 11% 7% 500m 8% 420m 9% 340m 10% 250m 11% 250m 12% 8% 420m 9% 340m 10% 250m 11% 250m 12% 250m 13%

Sumber : Dasar-Dasar Perencanaan Geometrik Jalan, Sukirman 1994

2.4.2.2 Lengkung Vertikal 1. Lengkung Vertikal Cekung

Beberapa persyaratan untuk menentukan panjang lengkung vertikal cekung, antara lain : a) Berdasarkan jarak penyinaran lampu

kendaraan � Jarak pandangan akibat penyinaran lampu depan < L

S<L3,5S120

SALv

2

+⋅= (2.40)

� Jarak pandangan akibat penyinaran lampu depan > L

S>LA

3,5S1202SLv

+−= (2.41)

b) Berdasarkan jarak pandangan bebas di bawah jembatan

Asumsi: titik PPV berada tepat berada di bawah jembatan.

S<L3480

SALv

2⋅=

S>LA

34802SLv −=

c) Berdasarkan syarat perjalanan 3 detik

3600

10003Lv ⋅⋅= Vd

d) Berdasarkan syarat penyerapan guncangan

Page 6: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

6

360

AVLv 2=

e) Berdasarkan keluwesan bentuk 0,6VLv =

f) Berdasarkan ketentuan drainase 50ALv = g) Berdasarkan kenyamanan mengemudi

380Lv

2VA ⋅=

2. Lengkung Vertikal Cembung a) Jarak Pandangan berada di dalam daerah

lengkung (S<L) � Jika JPH yang dipakai;

h1=120cm, h2=10cm, maka : 399

ASL

2

=

� Jika JPM yang dipakai;

h1=120cm, h2=120cm, maka : 960

ASL

2

=

b) Lengkung berada di dalam jarak pandangan (S>.L) � Jika JPH yang dipakai; h1=120cm, h2=10cm, maka :

A399

2SL −=

� Jika JPM yang dipakai; h1=120cm, h2=120cm, maka :

A960

2SL −=

c) Keluwesan bentuk 0,6VLv =

d) Syarat waktu perjalanan 3 detik 3,6

DV3Lv

⋅⋅=

e) Syarat penyerapan guncangan 360

AVLv 2=

f) Ketentuan drainase 50ALv =

g) Syarat kenyamanan mengemudi 380

Lv2VA ⋅=

2.5 KONSTRUKSI PERKERASAN LENTUR (FLEXIBLE PAVEMENT)

2.5.1 Karakteristik Perkerasan Lentur Alasan pemilihan perkerasan lentur adalah : � tanah dasarnya relatif bagus (CBR min 5%) � biayanya lebih murah � banyak dilewati kendaraan kecil

2.5.2 Susunan Lapisan Konstruksi Perkerasan Lentur

Konstruksi perkerasan terdiri dari (lihat Gambar 2-25) : � lapisan permukaan (surface course) � lapisan pondasi atas (base course) � lapisan pondasi bawah (sub base course)

� lapisan tanah dasar (subgrade)

Gambar 2-9 Susunan Lapisan Konstruksi Perkerasan

Lentur (Sumber : Petunjuk Perencanaan Lentur Jalan Raya

dengan Metode Analisa Komponen)

2.5.3 Lalu Lintas Rencana Untuk Perkerasan Lentur Lalu lintas rencana dihitung untuk memperkirakan beban kendaraan yang akan melewati suatu ruas jalan selama umur rencana.

2.5.3.1 Lalu Lintas Harian Rata-Rata (LHR) LHR dihitung pada awal umur rencana dan pada akhir umur rencana dengan menggunakan rumus :

( )nrencanaumurawal i1kendaraan V LHR +×=

( )nrencanaumurawalrencanaumurakhir i1 LHR LHR +×=

2.5.3.2 Angka Ekivalen (E) Beban Sumbu Kendaraan Untuk menghitung Angka Ekivalen (E) masing-masing golongan beban sumbu untuk setiap kendaraan ditentukan menurut rumus berikut ini :

E sumbu tunggal =

4

40,5

P

E sumbu ganda =

4

16,8

P

Sumber : SNI 07-2416-1991

2.5.3.3 Perhitungan Lalu Lintas � Lintas Ekivalen Permulaan (LEP) dihitung dengan

rumus:

jj

n

1jj ECLHRLEP ××=∑

=

� Lintas Ekivalen Akhir (LEA) dihitung dengan rumus

( ) jjur

n

1jj ECi1LHRLEA ××+=∑

=

� Lintas Ekivalen Tengah (LET) dihitung dengan rumus

2

LEALEPLET

+=

� Lintas Ekivalen Rencana (LER) dihitung dengan rumus :

FPLETLER +=

10

URFP=

lapisan permukaan (surface course)

lapisan pondasi atas (base course)

lapisan pondasi bawah (sub base course)

lapisan tanah dasar (subgrade)

Page 7: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

7

Tabel 2-18 Koefisien Distribusi Kendaraan Kendaraan Ringan (Berat total < 5 ton)

Kendaraan Berat (Berat total > 5 ton)

Jumlah lajur

1 Arah 2 Arah 1 Arah

2 Arah

1 lajur 2 lajur 3 lajur 4 lajur 5 lajur 6 lajur

1,00 0,60 0,40 - - -

1,00 0,50 0,40 0,30 0,25 0,20

1,00 0,75 0,50 - - -

1,00 0,50 0,475 0,450 0,425 0,400

Sumber : Petunjuk Perencanaan Lentur Jalan Raya dengan Metode Analisa Komponen

2.5.4 Daya Dukung Tanah Dasar (DDT) Daya dukung tanah dasar (subgrade) pada perkerasan lentur dinyatakan dengan nilai CBR (california bearing ratio). Nilai DDT dapat dicari dengan menggunakan rumus dari Bina Marga:

( ) 1,7%CBRlog4,3DDT +=

2.5.5 Indeks Tebal Perkerasan (ITP) Dalam menentukan tebal perkerasan digunakan perumusan sebagai berikut:

332211 DaDaDaITP ++=

2.6 SALURAN TEPI JALAN Tujuan pekerjaan drainase permukaan jalan raya adalah : h) Mengalirkan air hujan dari permukaan jalan agar

tidak terjadi genangan. i) Mengalirkan air permukaan yang terhambat oleh

adanya jalan raya ke alur-alur alam, sungai atau badan air lainnya.

j) Mengalirkan air irigasi atau air buangan melintasi jalan raya, sehingga fungsinya tidak terganggu.

Hujan rata-rata n

xX ∑=

Standar deviasi ( )

1n

xXxSx

2

−−

= ∑ ∑

Frek. Hujan pada periode ulang T :

SxKXRT ⋅+=

Faktor frek. nS

nT YYK

−=

2.6.1 Intensitas Hujan Rencana (I) Adapun persamaannya menggunakan Rumus Mononobe :

32

24

24

24

=

ct

RI

2.6.2 Waktu Konsentrasi (tc) Perhitungan harga I tergantung dari besarnya tc, yaitu waktu yang diperlukan oleh titik air yang berada di tempat terjauh menuju saluran tepi. Besarnya dihitung dengan rumus :

foc ttt +=

v

Lt f =

2.6.3 Koefisien Pengaliran (C)

( )∑∑=

i

iigab A

.ACC .............................................(2.90)

2.6.4 Debit Saluran Untuk perhitungan air hujan yang perlu dibuang, menggunakan rumus Rasional:

AIC ⋅⋅⋅=6,3

1Q .............................................(2.93)

2.6.5 Dimensi Saluran Bentuk penampang saluran dipilih berdasarkan jenis tanah dasar, kedalaman saluran, kecepatan aliran dan lahan yang tersedia. Dalam Tugas Akhir ini direncanakan saluran berpenampang trapesium.

2.7 GALIAN DAN TIMBUNAN Perhitungan volume tanah pada pekerjaan galian dan

timbunan dilakukan dengan metode Double End Areas (luas ujung rangkap).

( )L

2

AAVolume 21 ⋅⋅= ..................................(2.100)

2.8 ANGGARAN BIAYA Anggaran biaya tiap-tiap pekerjaan didapatkan dengan

mengalikan masing-masing volume pekerjaan dengan masing-masing harga satuan pekerjaan. Harga satuan pekerjaan ini dapat dilihat pada Lampiran.

Page 8: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

8

BAB III METODOLOGI

1.1 LANGKAH PENGERJAAN Di dalam penulisan tugas akhir ini diperlukan langkah

kerja yang dimulai dari studi literatur dan bahan sampai dengan perhitungan.

Langkah kerja adalah sebagai berikut: 1. Studi literatur dan bahan

2. Pengumpulan data a) Data-data sekunder yang dibutuhkan adalah

sebagai berikut : � Peta rupa bumi didapatkan dari Bakosurtanal

dengan skala 1:250000. Dikarenakan pada daerah yang dimaksud tidak terdapat data kontur yang jelas, maka daerah perencanaan diambil dari daerah Ceremlem menuju ke daerah Kwirok.

� Data lalu lintas didapatkan dari data hasil survey pada jalan eksisting pada daerah Distrik Kuken. Ruas jalan yang diambil adalah Jl. Yos Sudarso.

� Data CBR didapatkan dari Konsultan Perencana CV. Mega Cipta Konsultan.

� Data curah hujan didapatkan dari Konsultan Perencana CV. Mega Cipta Konsultan.

3. Perhitungan perencanaan a) Volume lalu lintas

b) Perencanaan geometrik jalan, meliputi : Perhitungan alinyemen horizontal :

� Jari - jari minimum � Panjang lengkung peralihan � Bentuk lengkung horizontal � Jarak kebebasan samping � Pelebaran pada tikungan Perhitungan alinyemen vertikal : � Lengkung vertikal cekung � Lengkung vertikal cembung

c) Perencanaan tebal perkerasan, direncanakan sesuai dengan Petunjuk Perencanaan Tebal Perkerasan Lentur Jalan Raya dengan Metode Analisa Komponen, Bina Marga.

� Perhitungan lalu lintas � Perhitungan daya dukung tanah dasar � Indeks tebal perkerasan

d) Perencanaan saluran tepi, mengolah data curah hujan hingga merencanakan dimensi saluran.

� Hujan rencana � Intensintas hujan rencana � Waktu konsentrasi � Koefisien pengaliran � Debit saluran � Dimensi saluran

e) Perencanaan biaya, didapatkan dari harga pekerjaan tiap volume galian dan timbunan.

Secara lebih jelas, dapat dilihat pada bagan alir berikut ini:

Gambar 3-10 Bagan Alir Pengerjaan

BAB IV PERENCANAAN

4.1 PERENCANAAN TEBAL PERKERASAN

4.1.1 Analisa Data Lalu Lintas Data lalu lintas menggunakan data hasil survey pada

jalan eksisting pada daerah Distrik Kuken. Ruas jalan yang diambil adalah Jl. Yos Sudarso.

Tingkat pertumbuhan lalu lintas dianalisa dari data proyeksi penduduk daerah Kab. Boven Digoel.

Tabel 4-1 Jumlah Dan Jenis Kendaraan Tahun 2006 Jenis Kendaraan Jumlah

Kendaraan/arah Mobil Penumpang 2 ton (1.1) Truk Sedang 8,3 ton (1.2L)

15 16

Sumber : Hasil Survey Tahun 2006 Tabel 4-2 Proyeksi Penduduk Kab. Boven Digoel

Tahun Jumlah Penduduk (jiwa) 2001 2002 2003 2004 2005

36391 37408 38452 39526 40629

Sumber : http://www.bps.go.id/~irja

Page 9: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

9

Dari hasil perhitungan tingkat pertumbuhan penduduk

didapatkan nilai 2,72%. Tabel 4-4 Lalu Lintas Harian Rencana Pada Awal Umur Rencana 2009

Jenis Kendaraan 2009 Mobil Penumpang 2 ton (1.1) Truk Sedang 8,3 ton (1.2L)

15 (1+0,0272)^3 16 (1+0,0272)^3

16 17

Tabel 4-5 Lalu Lintas Harian Rencana Pada Akhir Umur Rencana 2019

Jenis Kendaraan 2019 Mobil Penumpang 2 ton (1.1) Truk Sedang 8,3 ton (1.2L)

16 (1+0,0272)^10 17 (1+0,0272)^10

21 23

4.1.2 Perhitungan Lalu Lintas 1. Angka Ekivalen

Berikut diberikan hasil perhitungan Angka Ekivalen (E) pada Tabel 4-6.

Tabel 4-6 Perhitungan Angka Ekivalen (E) Jenis Kendaraan Angka Ekivalen

Mobil Penumpang 2 ton (1.1) Truk Sedang 8,3 ton (1.2L)

0,0024 0,2777

2. Perhitungan Lintas Ekivalen Permulaan

Ruas jalan Arimbet-Maju-Ujung-Bukit-Iwur direncanakan 2 lajur 2 arah. Koefisien distribusi kendaraan (c) dapat dilihat pada Tabel 2-17, dimana untuk tipe jalan 2 lajur 2 arah dengan data LHR per arah maka ruas jalan ini memiliki nilai koefisien sebesar 1,0.

Berikut diberikan hasil perhitungan Lintas Ekivalen Permulaan (LEP) pada Tabel 4-7.

Tabel 4-7 Perhitungan Lintas Ekivalen Permulaan (LEP) Jenis Kendaraan LEP

Mobil Penumpang 2 ton (1.1) Truk Sedang 8,3 ton (1.2L)

0,04 4,82

Jumlah 4,86 3. Perhitungan Lintas Ekivalen Akhir

Koefisien distribusi kendaraan (c) dapat dilihat pada Tabel 2-17, dimana untuk tipe jalan 2 lajur 2 arah dengan data LHR per arah maka ruas jalan ini memiliki nilai koefisien sebesar 1,0.

Berikut diberikan hasil perhitungan Lintas Ekivalen Akhir (LEA) pada Tabel 4-8.

Tabel 4-8 Perhitungan Lintas Ekivalen Akhir (LEA) Jenis Kendaraan LEA

Mobil Penumpang 2 ton (1.1) Truk Sedang 8,3 ton (1.2L)

0,05 6,30

Jumlah 6,35 4. Perhitungan Lintas Ekivalen Tengah

2

LEALEPLET

+= =2

35,686,4 + = 5,605

5. Perhitungan Lintas Ekivalen Rencana

10

URFP= =

10

10 = 1

FPLETLER += = 1605,5 + = 6,605

4.1.3 Perhitungan Perkerasan Jalan 1. Perencanaan Indeks Permukaan Pada Awal Umur Rencana (IPo)

Harga IPo untuk jenis laston adalah 3,9 – 3,5. 2. Perencanaan Indeks Permukaan Pada Akhir Umur Rencana (IPt)

Ruas jalan Arimbet-Maju-Ujung-Bukit-Iwur memiliki jumlah LER sebesar 6,605 dan klasifikasi jalan sebagai jalan arteri, maka harga IPt adalah sebesar 1,5-2,0 (lihat Tabel 2-19). 3. Faktor Regional (FP)

Untuk persentase kendaraan berat >30%, kelandaian 6-10%, dan iklim untuk curah hujan rata-rata tahunan >900 mm/thn, maka ruas jalan Arimbet-Maju-Ujung-Bukit-Iwur mempunyai harga factor regional (FR) sebesar 2,5 (lihat Tabel 2-21).

4. Perhitungan CBR Tanah Asli Dalam pengerjaan Tugas Akhir ini, data tanah

yang digunakan berupa data sekunder.

Nilai DDT dan ITP dapat dicari dengan menggunakan rumus dari Bina Marga:

( ) 1,7%CBRlog4,3DDT += (2.77)

−++

++

+

+= 3,01,2

DDT0,372

FR

1log

12,54

ITP

10940,4

Gt0,2-1

2,54

ITPlog9,36logWt

5,19

18

=1,5-IPo

IPt-IPologGT

365URLERWT18 ××=

• Lapisan Permukaan (surface) laston (MS 590 kg) Menggunakan CBR base course = 100%

( ) 1,7100log4,3DDT += = 10,3 ITP = 2,65

11DaITP = cm57,70,35

2,65

a

ITPD

11 ===

Digunakan tebal lapisan D1 = 8 cm. • Lapisan pondasi atas (base course) batu pecah

kelas A Menggunakan CBR sub base course = 50%

( ) 1,750log4,3DDT += = 9,006 ITP = 3,19

2211 DaDaITP +=

cm79,20,14

80,35-3,19

a

Da-ITPD

2

112 =×==

Digunakan tebal lapisan min D2 = 20 cm.

Page 10: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

10

• Lapisan pondasi bawah (sub base course) sirtu kelas B Menggunakan CBR sub grade = 9,0%

( ) 1,713,9log4,3DDT += = 4,921 ITP = 5,28

332211 DaDaDaITP ++=

cm67,20,12

020,14-80,35-5,28

a

DaDa-ITPD

3

22113 −=××=−=

Digunakan tebal lapisan min D3 = 10 cm. 4.2 PERENCANAAN GEOMETRIK JALAN

4.2.1 Dasar Perencanaan Dalam tugas akhir ini, ruas jalan ini termasuk dalam

klasifikasi jalan arteri sekunder, dengan tipe 2 lajur 2 arah tanpa median (2/2 UD). Lebar jalan rencana 7 meter, lebar lajur rencana 3.5 m dan bahu jalan rencana sebesar 2 meter. Karena jalan ini berfungsi sebagai jalan arteri di daerah pegunungan, maka berdasarkan Tabel 2-4, kecepatan rencananya berkisar antara 40-70 km/jam, digunakan untuk perencanaan ini ditetapkan sebesar 60 km/jam.

4.2.2 Perencanaan Alinyemen Horizontal Dalam perencanaan ini digunakan jenis lengkung

peralihan spiral-circle-spiral, dimana untuk menghindari terjadinya perubahan kemiringan secara mendadak.

Contoh perhitungan alinyemen horizontal dengan tipe spiral-circle-spiral pada PI-1.

Direncanakan : Vd = 60 km/jam. Rd = 573 m

1. Mencari harga jarak lurus dan sudut PI. • Koordinat titik start jalan : Xa,Ya (7215.7663 , 1070.6277) • Koordinat titik PI 1 : Xb,Yb (6611.1594 , 1693.4233) • Koordinat titik PI 2 : Xc,Yc (6920.1500 , 2770.8878) ∆ X1 = Xb-Xa = 6611.1594 – 7215.7663 = -604.6069 m ∆ Y1 = Yb-Ya = 1693.4233 – 1070.6277 = 622.7956 m ∆ X2 = Xc-Xb = 6920.1500 – 6611.1594 = 308.9906 m ∆ Y2 = Yc-Yb = 2770.8878 – 1693.4233= 1077.4645 m

• Panjang lurus segmen 1 (Start – PI 1) :

• L1 (gambar) = ( ) ( )21

21 YX ∆+∆

= 22 7956,6226069,604 +−

= 868 m • L1 (aktual) = 868 x 1 = 868 m

• Panjang lurus segmen 2 (PI 1 – PI 2) :

• L2 (gambar) = ( ) ( )22

22 YX ∆+∆

= 22 4645,10779906,308 +

= 1120.894 • L2 (aktual) = 1120.894 x 1 = 1120,93 m

• Rumus sudut azimuth = arc tanY

X

∆∆

• Sudut azimuth PI 1= arc tanY

X

∆∆

= arc tan7956.622

6069.604−

= -44,151o (kuadrant IV) = -44,151o + 360o = 315,849o

• Sudut azimuth PI 2 = arc tan Y

X

∆∆

= arc tan4645.1077

9906.308

= 16,0016o

• Sudut PI1 (∆ 1) = Sudut azimuth PI2 - Sudut azimuth PI1

= 360o – (315,849o – 16,0016o) =60,153o

2. Mencari harga superelevasi atau kemiringan jalan rencana.

Harga superelevasi : ( ) ( )Dffee −+=

( ) ( )max

maxmax D

D×+=+ fefe

fmax = -0,00065 VD + 0,192 untuk VD < 80 km/jam

= -0,00065 . 60 + 0,192 = 0,153

°×⋅⋅

= 360R2

25D

π°×

⋅⋅= 360

7742

25

π= 3.003

( )2

D

maxV

0,1530,10181913,53D

+= ( )206

0,1530,10181913,53 += = 12,784

2r

maxp

V

181913,53D

e×=( ) 260%85

1,0181913,53

××= 994,6=

max2

2

maxh eV

Ve

R

D −×=( )

1,060%85

601,0

2

2

−×

×= 0384,0=

p1 D

hαtg =

994,6

0384,0= 00549,0=

pmax

max2 DD

hfαtg

−−

=994,6784,12

0384,0153,0

−−= 0198,0=

( )max

12pmaxpo D2

αtgαtgDDDM

×−

×−=

( )784,122

00549,00198,0994,6784,12994,6

×−×−=

0226,0= Mencari f(D) : Jika :

pDD ≤ , maka ( ) 1

2

po αtgD

D

DMDf ⋅+

=

pDD ≥ ,maka ( ) ( ) 2p

2

pmax

maxo αtgD-Dh

DD

DDMDf ⋅++

−−

=

Karena pDD ≤ , maka :

Page 11: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

11

( ) 00549,0003,3994,6

003,30226,0Df

2

⋅+

⋅= = 0,024

( ) ( )max

maxmax D

D×+=+ fefe ( )12,784

3,003153,01,0 ×+= =

0,059 Maka :

( ) ( )Dffee −+= 024,0059,0 −= 0354,0= %54.3= Sehingga : Nilai superelevasi yang digunakan adalah: e =

0,0354

3. Mencari besarnya panjang lengkung peralihan. • Berdasarkan waktu tempuh maksimal di lengkung

peralihan

3,6

tVdL

×=s3,6

306 ×= = 50 m

• Berdasarkan landai relatif Untuk VD = 60 km/jam, landai relatif maksimum (mmax) = 125 (Tabel 2-11). ( ) maxn mBeeLs ⋅⋅+= ( ) 1255,302.00354,0 ⋅⋅+= =22,2

27 m • Berdasarkan rumus Modifikasi Shortt

Koefisien perubahan kecepatan (C) diambil = 0,4 m/dt3

C

eVd2,727

CR

Vd0,022Ls

3 ⋅−⋅

=

0,4

032,0062,727

4,0477

060,022

3 ⋅−⋅

=

= 10,435 m • Berdasarkan tingkat pencapaian perubahan

kelandaian Untuk Vd ≤ 70 km/jam, tingkat perubahan kemiringan jalan (Re) = 0.035 m/m/dt.

( )e

nmax

r3,6

VdeeLs

⋅⋅−

=( )

035,03,6

0602,01,0

⋅⋅−= = 38,095

m Sehingga : Lengkung peralihan diambil yang terpanjang, Ls = 50 m. 4. Mencari parameter-parameter lengkung horizontal

Ls90θs

⋅⋅=

477π

5090

⋅⋅= = 3,003o

( )180

Rπθ2∆Lc

⋅⋅−=

s ( )180

477π2,52153,06 ⋅⋅⋅−= =450,784

m

( )θscos1RR6

Lsp

2

−−⋅

=

( )5,2cos14774776

502

−−⋅

=

= 0,219 m

θssinRR40

LsLsk

2

3

−⋅

−=

003,3sin47747740

5050

2

3

−⋅

−=

= 24,998 m

( ) k∆2

1tgpRdTs +

×+=

( ) 998,24153,062

1tg219,0477 +

⋅×+=

= 301,368 m ( )

R∆

2

1cos

pRE −+= ( )

477153,06

2

1cos

219,0477 −

+= = 74,469 m

⋅−=

2

2

R40

Ls1LsXs

⋅−=

2

2

47740

05150 = 49,956 m

R6

LsYs

2

⋅=

4776

502

⋅= = 0,874 m

5. Stationing Titik Parameter Lengkung Horisontal

• STA Start = 0+000 • STA TS = STA Start + (L1 aktual – Ts)

= 0+000 + (868,000 – 301,368) = 0+566.63

• STA SC = STA TS + Ls = 0+566.63 + 50 = 0+616.63

• STA CS = STA SC + Lc = 0+616.63 + 450.784 = 1+067.42

• STA ST = STA CS + Ls = 1+067.42 + 50 = 1+117.42

6. Diagram Superelevasi Lengkung Horisontal Untuk perencanaan kali ini, penggambaran diagram superelevasi menggunakan metode AASHTO. Sehingga contoh diagram superelevasi untuk PI1, terlihat pada Gambar 4-2.

TS SC CS ST

-2% -2%

as jalan as jalan

PI 1

Ls = 50 m Ls = 50 mLc = 450.784 m

3.54%

3.54%

Gambar 4-2. Contoh Diagram Superelevasi untuk PI 1.

Page 12: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

12

Tabel 4-11 Perhitungan Alinyemen Horisontal

4.2.3 Perencanaan Alinyemen Vertikal Dalam menentukan panjang lengkung vertikal cembung

dengan tipe jalan 2/2UD digunakan Jarak Pandangan Menyiap (JPM). Sedangkan perencanaan alinyemen vertikal cekung digunakan Jarak Panjang Henti (JPH). 1. Contoh Perhitungan Lengkung Vertikal Cekung

pada PPV-1. • Penentuan jarak pandangan henti (JPH) :

VD = 60 km/jam, dan diambil nilai f = 0,33. JPH = 75 s.d 85 m (berdasarkan Tabel 2-6).

254fm

V0.278V.td

2

+=

0,33254

062,5600.278d

2

×+××= = 88,944 m

Sehingga untuk perencanaan kali ini, JPH diambil nilai maksimum (JPH = 85 m).

• Perhitungan perbedaan aljabar : g1 = 0% dan g2 = 4,00%

21 ggA ±= =(0 - 4,00) = -4,00…(LV Cekung)

• Perhitungan Panjang Lengkung (L) a. Untuk S < L

3,5S120

SALv

2

+⋅= =

583,5120

8500,4 2

⋅+⋅ = 69,22 m

S = 85 m < Lv = 69,22 m …(tidak memenuhi) b. Untuk S > L

A

3,5S1202SLv

+−= = 4,00

583,5120582

⋅+−⋅

= 65,63 m S = 88,944 m > Lv = 65,63 m…(memenuhi) c. Berdasarkan syarat perjalanan 3 detik

3600

10003Lv ⋅⋅= Vd =

3600

1000603 ⋅⋅ = 50 m

d. Berdasarkan syarat penyerapan guncangan

360

AVLv 2= =

360

4,0006 2 = 40,00 m

e. Berdasarkan keluwesan bentuk 0,6VLv = = 600,6× = 36 m

f. Berdasarkan ketentuan drainase 50ALv ≤ = 00,450⋅ = 200 m

g. Berdasarkan kenyamanan mengemudi

380Lv

2VA ⋅= = 380

6000,4 2⋅ = 37,89 m

Dari hasil perhitungan, dipilih panjang lengkung vertikal terpanjang sehingga nilai Lv yang tepilih adalah Lv = 69,22 m.

• Perhitungan EV

800

LvAEv

⋅= = 800

22,6900,4 ⋅ = 0,346 m

• Stationing titik parameter lengkung vertikal cekung STA PPV = 1+500 STA PLV = STA PPV – L/2

= 1+500 - (69,22/2) = 1+500 – 34,61 = 1+465

STA PTV = STA PPV + (S – L/2) = 1+500 + (85 - (69,22/2)) = 1+500 + 50,39 = 1+550

• Perhitungan elevasi titik parameter lengkung vertikal cekung Elevasi PPV = +350 Elevasi PPV’ = Elevasi PPV + Ev

= +350 + 0,346 = +350,346

Elevasi PLV = Elevasi PPV + (g1% x L/2) = +350 + (0% x (69,22/2)) = +50

Elevasi PTV = Elevasi PPV + (g2% x (S - L/2)) = +350 + (4,00% x (85- (69,22/2)) = +352,02

2. Contoh Perhitungan Lengkung Vertikal

Cembung pada PPV-2. • Penentuan jarak pandangan menyiap (JPM) :

JPM = 250 s.d 350 m (berdasarkan Tabel 2-7) a. t1 = 2,12 + 0,026 V

= 2,12 + 0,026 x 60 = 3,68 detik a = 2.052 + 0,0036 V = 2.052 + 0,0036 x 60

Parameter Satuan Start PI 1 PI 2 PI 3 PI 4 PI 5 PI 6

e max % 10.00% 10.00% 10.00% 10.00% 10.00% 10.00%

B (1 lajur) m 3.5 3.5 3.5 3.5 3.5 3.5

VD Km/jam 60 60 60 60 60 60

VR Km/jam 51 51 51 51 51 51

Perhitungan sudut PI (∆)

X start m 7215.7663 6611.1594 6920.1500 4359.7075 4086.1954 4931.6604 5991.7802

Y start m 1070.6277 1693.4233 2770.8878 4546.9738 5291.5043 6779.1794 6477.1071

delta X m -604.6069 308.9906 -

2560.4425 -273.5121 845.4650 1060.1198 772.4038

delta Y m 622.7956 1077.4645 1776.0860 744.5305 1487.6751 -302.0723 801.4659

L (asli) m 868.000 1120.895 3116.143 793.180 1711.137 1102.316 1113.084

dX / dY - -0.971 0.287 -1.442 -0.367 0.568 -3.509 0.964

Azimuth (β) o 315.849 16.002 304.748 339.829 29.610 105.904 43.942

Hitung Sudut - - β1 - β2 β2 - β1 β2 - β1 β1 - β2 β2 - β1 β1 - β2

∆ o - 60.153 71.254 35.081 49.782 76.294 61.962

Data Tabel Bina Marga

RD m 477 477 477 477 477 477

Ls m 50 50 50 50 50 50

Perhitungan Elevasi (e)

D o 3.003 3.003 3.003 3.003 3.003 3.003

Dmax o 12.784 12.784 12.784 12.784 12.784 12.784

f max - 0.153 0.153 0.153 0.153 0.153 0.153

(e+f) - 0.059 0.059 0.059 0.059 0.059 0.059

Dp o 6.994 6.994 6.994 6.994 6.994 6.994

h - 0.038 0.038 0.038 0.038 0.038 0.038

tan α1 - 0.00549 0.00549 0.00549 0.00549 0.00549 0.00549

tan α2 - 0.0198 0.0198 0.0198 0.0198 0.0198 0.0198

Mo - 0.0226 0.0226 0.0226 0.0226 0.0226 0.0226

cek f (D) - f(D1) f(D1) f(D1) f(D1) f(D1) f(D1)

f (D) - 0.0240 0.0240 0.0240 0.0240 0.0240 0.0240

e % 3.54% 3.54% 3.54% 3.54% 3.54% 3.54%

Perhitungan Ls

Ls (waktu) m 50.000 50.000 50.000 50.000 50.000 50.000

mmax - 125.00 125.00 125.00 125.00 125.00 125.00

Ls (landai relatif) m 24.227 24.227 24.227 24.227 24.227 24.227

C (diambil) m/dt3 0.40 0.40 0.40 0.40 0.40 0.40

Ls (modif shortt) m 10.435 10.435 10.435 10.435 10.435 10.435

Re m/m/dt 0.035 0.035 0.035 0.035 0.035 0.035

Ls (perub kelandaian) m 38.095 38.095 38.095 38.095 38.095 38.095

Ls terpilih m 50.00 50.00 50.00 50.00 50.00 50.00

Perhitungan Parameter Lengkung

Өs o 3.003 3.003 3.003 3.003 3.003 3.003

Lc m 450.784 543.205 242.057 364.442 585.167 465.850

p m 0.219 0.219 0.219 0.219 0.219 0.219

k m 24.998 24.998 24.998 24.998 24.998 24.998

Ts m 301.368 366.993 175.835 246.422 399.820 311.526

E m 74.469 110.110 23.489 49.086 129.819 79.629

Xs m 49.986 49.986 49.986 49.986 49.986 49.986

Ys m 0.874 0.874 0.874 0.874 0.874 0.874

L Total m 550.78 643.20 342.06 464.44 685.17 565.85

Perhitungan STA

TS - 0 + 566.63 1 + 569.95 4 + 786.47 5 + 499.45 7 + 028.79 8 + 104.93

SC - 0 + 616.63 1 + 619.95 4 + 836.47 5 + 549.45 7 + 078.79 8 + 154.93

CS - 1 + 067.42 2 + 163.15 5 + 078.53 5 + 913.89 7 + 663.95 8 + 620.78

ST - 1 + 117.42 2 + 213.15 5 + 128.53 5 + 963.89 7 + 713.95 8 + 670.78

Page 13: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

13

= 2,268 m/dt2

+−=2

atmV0.278td 1

11

m = 15 km/jam (Sukirman, 1999)

⋅+−⋅=2

68,3268,251063,680.278d1

= 50,306 m

b. t2 = 6,56 + 0,048.V = 6,56 + 0,048 x 60 = 9,44 detik

d2 = 0,278 V.t2

= 0,278 x 50 x 9,44 = 131,216 m c. d3 = 30 - 100 m, diambil 30 m (Sukirman,

1999). d. d4 = 2/3.d2 = 2/3 x 131,216 = 87,477 m e. JPM min = 2/3.d2 + d3 + d4

= 87,477 + 30 + 87,477 = 204,954 m

f. JPM max = d1 + d2 + d3 + d4= 50,306+131,216+30+87,477= 299 m

Dipakai nilai yang terbesar yaitu S = 299 m. • Perhitungan perbedaan aljabar :

g1 = 4,00% dan g2 = 0%

21 ggA ±= =(4,00-0) = +4,00…(LV Cembung)

• Perhitungan Panjang Lengkung (L) a. Untuk S < L

960

ASL

2

= =960

99200,4 2⋅= 372,50 m

S = 299 m < Lv = 372,50 m …(memenuhi) b. Untuk S > L

A

9602SL −= =

4,00

9602992 −⋅ = 358,00 m

S = 299 m >Lv = 358,00 m…(tidak memenuhi) c. Berdasarkan syarat perjalanan 3 detik

3600

10003Lv ⋅⋅= Vd =

3600

1000603 ⋅⋅ = 50 m

d. Berdasarkan syarat penyerapan guncangan

360

AVLv 2= =

360

4,0006 2 = 40 m

e. Berdasarkan keluwesan bentuk 0,6VLv = = 600,6× = 36 m

f. Berdasarkan ketentuan drainase 50ALv ≤ = 00,450⋅ = 200 m

g. Berdasarkan kenyamanan mengemudi

380Lv

2VA ⋅= = 380

6000,4 2⋅ = 37,89 m

Dari hasil perhitungan, dipilih panjang lengkung vertikal terpanjang sehingga nilai Lv yang tepilih adalah Lv = 50,0 m.

• Perhitungan EV

800

LvAEv

⋅= = 800

5000,4 ⋅= 0,250 m

• Stationing titik parameter lengkung vertikal cekung STA PPV = 2+000 STA PLV = STA PPV – L/2

= 2+000 - (50/2) = 2+000 - 25 = 2+025

STA PTV = STA PPV + L/2 = 2+000 + (50/2) = 2+000 + 25 = 1+975

• Perhitungan elevasi titik parameter lengkung vertikal cekung Elevasi PPV = +370 Elevasi PPV’ = Elevasi PPV - Ev

= +370 – 0,250 = +369,75

Elevasi PLV = Elevasi PPV - (g1% x L/2) = +370 - (4% x (50/2)) = +369,000

Elevasi PTV = Elevasi PPV - (g2% x L/2) = +370 - (0% x (50/2) = +370,000

Tabel 4-12 Perhitungan Alinyemen Vertikal Parameter Satuan PPV 1 PPV 2 PPV 3 PPV 4 PPV 5 PPV 6

VD Km/jam 60 60 60 60 60 60 JPH m 75 - 85 75 - 85 75 - 85 75 - 85 75 - 85 75 - 85 JPM m 250 - 350 250 - 350 250 - 350 250 - 350 250 - 350 250 - 350 JP - JPH JPM JPH JPM JPH JPM Data Lengkung

g1 % 0 4 0 3.33 -3.33 0 g2 % 4 0 3.33 -3.33 0 -2.14 A - -4 4 -3.33 6.66 -3.33 2.14

Tipe - Cekung Cembung Cekung Cembung Cekung Cembung Perhitungan Lengkung S m 85 299 85 299 85 299 C - - 960 - 960 - 960

L (S < L) m 69.22 372.50 57.63 620.22 57.63 199.29 L (S > L) m 65.63 358.00 44.62 453.86 44.62 149.40

L memenu hi - S > L S < L S > L S < L S > L S > L L (3 d tk) m 50.00 50.00 50.00 50.00 50.00 50.00

L ( kenyamanan) m 37.89 37.89 31.55 63.09 31.55 20.27 L (gun can gan) m 40.00 40.00 33.30 66.60 33.30 21.40 L (ben tu k) m 36.00 36.00 36.00 36.00 36.00 36.00 L (dr ain ase) m 200.00 200.00 166.50 333.00 166.50 107.00 L ( max ) m 65.63 372.50 50.00 620.22 50.00 149.40

L (ter pilih) m 69.22 50.00 57.63 66.60 57.63 50.00 Ev m 0.35 0.25 0.24 0.55 0.24 0.13 Perhitungan Stasioning

PPV - 1 + 500 2 + 000 3 + 000 3 + 600 4 + 800 5 + 800 PLV - 1 + 465 1 + 975 2 + 971 3 + 567 4 + 771 5 + 775 PTV - 1 + 550 2 + 025 3 + 056 3 + 633 4 + 856 5 + 825

Perhitungan Elevasi PPV m +350.00 +370.00 +370.00 +390.00 +350.00 +350.00 PPVI m +350.35 +369.75 +370.24 +389.45 +350.24 +349.87 PLV m +350.00 +369.00 +370.00 +388.89 +350.96 +350.00 PTV m +352.02 +370.00 +371.87 +388.89 +350.00 +349.47

4.3 PERHITUNGAN DAERAH KEBEBASAN

SAMPING Daerah kebebasan samping ini perlu dihitung untuk

setiap tikungan, agar kita dapat memastikan lereng / daerah samping jalan tidak akan menghalangi pandangan pengemudi.

Dan berikut ini adalah contoh perhitungannya untuk PI 1.

Direncanakan : • R (jari-jari tikungan) = 477 m • Lt (panjang lengkung total) = 550.78 m • Lebar 1 lajur = 3.5 m

Perhitungan : • Radius jalan sebelah dalam :

R’ = R – ½ (L 1lajur) = 477 – ½ (3.5) = 475.25 m • S (jarak pandangan, dicoba dengan JPH)

S = 85 m, sehingga S < Lt • Maka rumus kebebasan samping yang berlaku

adalah :

M=

⋅−'

65.28cos1'

R

SR =

⋅−25.475

8565.28cos125.475 =1.90 m

Page 14: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

14

Tabel 4-13 Perhitungan Daerah Kebebasan Samping

PI Data Perencanaan

R' (m) Status S

thd Lt

Jika S < Lt Jika S > Lt

R (m) S (m) Lt (m) W1lajur (m) M (m) M (m)

PI 1 477 85 550.78 3.5 475.25 S < Lt 1.90 -

PI 2 477 85 643.20 3.5 475.25 S < Lt 1.90 -

PI 3 477 85 342.06 3.5 475.25 S < Lt 1.90 -

PI 4 477 85 464.44 3.5 475.25 S < Lt 1.90 -

PI 5 477 85 685.17 3.5 475.25 S < Lt 1.90 -

PI 6 477 85 565.85 3.5 475.25 S < Lt 1.90 -

PI 7 477 85 593.88 3.5 475.25 S < Lt 1.90 -

PI 8 477 85 194.93 3.5 475.25 S < Lt 1.90 -

PI 9 477 85 494.59 3.5 475.25 S < Lt 1.90 -

PI 10 477 85 623.57 3.5 475.25 S < Lt 1.90 -

PI 11 477 85 380.38 3.5 475.25 S < Lt 1.90 -

PI 12 477 85 164.56 3.5 475.25 S < Lt 1.90 -

PI 13 477 85 192.06 3.5 475.25 S < Lt 1.90 -

PI 14 477 85 215.34 3.5 475.25 S < Lt 1.90 -

PI 15 477 85 357.95 3.5 475.25 S < Lt 1.90 -

PI 16 477 85 198.26 3.5 475.25 S < Lt 1.90 -

PI 17 477 85 368.32 3.5 475.25 S < Lt 1.90 -

4.4 PERENCANAAN PELEBARAN PERKERASAN JALAN

Di bawah ini adalah contoh perhitungan untuk PI 1. • Dasar perencanaan :

a. Kecepatan rencana, VD = 60 km/jam b. Jari-jari lengkung horisontal rencana, RD = 477 m c. Lebar perkerasan per lajur, L = 3.5 m d. Lebar perkerasan jalur lurus, Bn = 7 m

• Perhitungan : Rc = RD -1/ 2 L +1/ 2 b

= 477 -(1/2´ 3.5) +(1/2 ´ 2.6) = 476.55 m

B = ( ) ( ) ( ) b2

1ApRApb

2

1ApR 2

C2

22

C ⋅++−−++

⋅++−

=( ) ( ) ( ) 6.2

2

11.26.755.4761.26.76.2

2

11.26.755.476 22

22 ⋅++−−++

⋅++−

= 2.689 m Off Tracking U = B − b

= 2.689 − 2.6 = 0.098 m

Tambahan lebar karena kesulitan mengemudi

Z = R

V0.105⋅ =477

060.105⋅ = 0.288 m

Lebar jalan total yang diperlukan Bt = n(B + C) + Z

= 2 × (2.689+1) + 0.288 = 7.685 Maka lebar tambahan yang diperlukan untuk PI 1, adalah : ∆ b = Bt − Bn

= 7.685 − 7 = 0.685 ≈ 0.7 m

Tabel 4-14 Perhitungan Pelebaran Perkerasan Jalan Parameter Satuan PI 1 PI 2 PI 3 PI 4 PI 5 PI 6 PI 7 PI 8

A m 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

p m 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6

b m 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6

Data Kendaraan Rencana

C m 1 1 1 1 1 1 1 1

VD Km/jam 60 60 60 60 60 60 60 60

RD m 477 477 477 477 477 477 477 477

L perk.1lajur m 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5

n Lajur - 2 2 2 2 2 2 2 2

Data Perencanaan

Rc m 476.55 476.55 476.55 476.55 476.55 476.55 476.55 476.55

B m 2.698 2.698 2.698 2.698 2.698 2.698 2.698 2.698

U m 0.098 0.098 0.098 0.098 0.098 0.098 0.098 0.098

Z m 0.288 0.288 0.288 0.288 0.288 0.288 0.288 0.288

Bt m 7.685 7.685 7.685 7.685 7.685 7.685 7.685 7.685

?b m 0.685 0.685 0.685 0.685 0.685 0.685 0.685 0.685

? b te rpakai m 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

4.5 PERENCANAAN SALURAN TEPI JALAN Saluran tepi jalan dibuat untuk dapat menampung air

hujan dari permukaan jalan agar tidak terjadi genangan pada jalan dan tidak terjadi kerusakan jalan akibat air hujan tersebut. Dalam perencanaan saluran tepi jalan ini direncanakan menggunakan saluran dari lempung padat berbentuk trapesium.

Direncanakan periode ulang sesuai dengan umur rencana jalan, yaitu T = 10 tahun sehingga :

⋅⋅−=1-T

TLnLnY10

⋅⋅−=1-10

10LnLn =2.2504

Dan tinggi hujan rencana selama 10 tahun adalah :

×

−+= −1

1010R nSn

YnYR σ

×

−+= 524.170628.0

459.02504.26.616

R10 = 1102.689 mm. Perhitungan inlet time :

• Perhitungan Inlet Time Jalan (to jalan) w = wj = 3.5 m

ws

g ×=x 5.3%2

%33.3 ×= = 5.8275 m

22L wx += 22 5.38275.5 += = 6.797 m gx∆hg ×= %33.38275.5 ×= = 0.194 m

sw∆hs ×= %25.3 ×= = 0.07 m

∆hs∆hg∆h ×= 07.0194.0 ×= = 0.264 m

L

∆hi =

6.797

0.264= = 0.0388

0,467

0,0388

0,013797.61,44aspalto

×= = 0.99 menit

• Perhitungan Inlet Time Bahu Jalan (to bahu) w = wb = 2 m

ws

g ×=x 2%4

%33.3 ×= = 1.665 m

22L wx += 22 2665.1 += = 2.602 m gx∆hg ×= %33.3665.1 ×= = 0.055 m

sw∆hs ×= %42×= = 0.08 m ∆hs∆hg∆h ×= 08.0055.0 ×= = 0.135 m

L

∆hi =

2.6020.135= = 0.0518

0,467

0,0518

0,22.6021,44bahuto

×= = 2.118 menit

• Perhitungan Inlet Time Lereng (to lereng)

Dari pembacaan peta untuk STA 3+600 s/d STA 4+800 didapatkan l = 514 m dan i = 24.46 %.

0,467

0,2446

0,85141,44lerengto

×= = 33.26 menit

Page 15: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

15

Perhitungan waktu konsentrasi : • Inlet time

to jalan+bahu = 0.99 + 2.118 = 3.108 menit to lereng = 33.26 menit karena to jalan+bahu < to lereng, maka yang dipakai untuk perencanaan adalah to lereng.

• Waktu pengaliran di saluran

v

L

⋅=

60tf

1.160

1200

⋅= = 18.182 menit

• Waktu konsentrasi tfto +=tc = 33.26+ 18.182 = 51.442 menit=

0.857jam

Perhitungan debit saluran : • Intensitas hujan rencana (Mononobe)

32

24 24

24I

=tc

R 32

31.1

24

24

689.1102

= = 318.783

mm/jam • Luas daerah pengaliran

Aaspal = Wj x L = 3.5 x 1200 = 4200 m2 = 0.0042 km2 Abahu = Wb x L = 2 x 1200 = 2400 m2 = 0.0024 km2 Aaspal+bahu = 0.0042 + 0.0024 = 0.0066 km2 Luasan lereng didapatkan dari pembacaan luas pada peta dengan menggunakan program AutoCad. A lereng = 13165.32 m2 = 0.01316532 km2 A total = 0.0066 + 0.01316532 = 0.01976532 km2

• Koefisien pengaliran (Tabel 2-26)

Permukaan aspal = C1 = 0.7 Bahu jalan asumsi tanah berbutir kasar = C2 = 0.1 Bagian luar jalan pegunungan (lereng) = C3 = 0.75 Koefisien pengaliran gabungan :

otal

LerengLerengBahuBahuAspalAspalGab. A

ACACACC

T

⋅+⋅+⋅=

=

01976532.0

013176532.075.00024.01.00042.07.0 ⋅+⋅+⋅

= 0.66 • Debit yang masuk ke saluran tepi jalan dari :

Aspal dan bahu

AIC3.6

1Q ⋅⋅⋅=

0.01976532318.7830.7263.6

1Q ⋅⋅⋅= = 1.536 m3/dt

Perhitungan dimensi saluran tepi jalan : Kecepatan saluran yang diijinkan 1.1 m/dt.

• Luas penampang saluran rencana

v

QF =

1.1

1.536= = 1.396 m2

Dengan kemiringan talud 1:1, maka direncanakan lebar saluran b = 0,828h.

• Tinggi muka air (h) : F=h(b+m.h) = h(0.828h+1.h)

= 0.828 h2+h2 = 1.828 h2 Sehingga :

1.828

Fh =

1.828

1.396= = 0.87 m ≈ 0.9 m

Lebar b = 0.828h = 0.828 . 0.87 = 0.72 m ≈ 0.8 m

• Tinggi jagaan (w) 0,5hw = 87.00,5⋅= =

0.66 m • Tinggi total saluran (htotal) = h+w = 0.72+0.66 =

1.6 m ≈ 1.6 m • Lebar atas saluran (batas)= bpakai+(2 . m. hpakai)

= 0.8+(2 . 1 . 0.9) = 2.6 m • Luas penampang total saluran (A) :

( ) pakaiataspakai h2

1bbA ××+=

( ) 9.02

12.60.8A ××+= = 1.44 m2

Tabel 4-18 Perhitungan Dimensi Saluran Tepi Jalan

Parameter

STA STA STA STA STA STA STA

Satuan

0 + 000.00 0 + 600.00 2 + 000.00 3 + 600.00 4 + 800.00 6 + 600.00 8 + 000.00

0 + 600.00 2 + 000.00 3 + 600.00 4 + 800.00 6 + 600.00 8 + 000.00 8 + 800.00

Da

ta P

ere

nca

na

an

R 1102.689 1102.689 1102.689 1102.689 1102.689 1102.689 1102.689 mm

g jalan 0.00% 3.29% 1.23% 3.33% 0.68% 1.22% 0.66% -

L saluran 600.00 1400.00 1600.00 1200.00 1800.00 1400.000 800.000 m

Material sal Lempung Lempung Lempung Lempung Lempung Lempung Lempung -

V rencana sal 1.1 1.1 1.1 1.1 1.1 1.1 1.1 m/dt

Lebar jalan 3.5 3.5 3.5 3.5 3.5 3.5 3.5 m

Lebar bahu 2.000 2.000 2.000 2.000 2.000 2.000 2.000 m

Per

hit

un

gan

Inle

t T

ime

(t o

) Ja

lan

w 3.5 3.5 3.5 3.5 3.5 3.5 3.5 m

sa 2% 2% 2% 2% 2% 0.020 0.020 m

x 0.000 5.758 2.153 5.828 1.190 2.135 1.155 m

L1 3.500 6.738 4.109 6.798 3.697 4.100 3.686 m

Δhg 0.000 0.189 0.026 0.194 0.008 0.026 0.008 m

Δhs 0.070 0.070 0.070 0.070 0.070 0.070 0.070 m

Δh 0.070 0.259 0.096 0.264 0.078 0.096 0.078 m

i 0.020 0.039 0.023 0.039 0.021 0.023 0.021 -

nd 0.013 0.013 0.013 0.013 0.013 0.013 0.013 -

to aspal 0.848 0.988 0.880 0.990 0.859 0.880 0.858 menit

Per

hit

un

gan

Inle

t T

ime

(t o

) B

ahu

w 2 2 2 2 2 2 2 m

sb 4% 4% 4% 4% 4% 4% 4% m

x 0.000 1.645 0.615 1.665 0.340 0.610 0.330 m

L2 2.000 2.590 2.092 2.602 2.029 2.091 2.027 m

Δhg 0.000 0.054 0.008 0.055 0.002 0.007 0.002 m

Δhs 0.080 0.080 0.080 0.080 0.080 0.080 0.080 m

Δh 0.080 0.134 0.088 0.135 0.082 0.087 0.082 m

i 0.040 0.052 0.042 0.052 0.041 0.042 0.041 -

nd 0.200 0.200 0.200 0.200 0.200 0.200 0.200 -

to bahu 1.990 2.114 2.012 2.117 1.997 2.011 1.997 menit

Pe

rhit

un

gan

Inle

t Ti

me

(t o

) -

Lere

ng

La 375 601 478 514 501 488 376 m

i 19.87% 22.13% 23.78% 24.46% 15.42% 15.67% 21.03% -

nd 0.800 0.800 0.800 0.800 0.800 0.800 0.800 -

to lereng 30.133 36.626 32.363 33.260 36.603 36.020 29.774 menit

Pe

rhit

un

gan

Wa

ktu

Kon

sen

tasi

to aspal+bahu 2.838 3.102 2.892 3.107 2.856 2.891 2.855 menit

to lereng 30.133 36.626 32.363 33.260 36.603 36.020 29.774 menit

tf (pakai) 30.133 36.626 32.363 33.260 36.603 36.020 29.774 menit

tf (menit) 9.091 21.212 24.242 18.182 27.273 21.212 12.121 menit

tc (jam) 0.654 0.964 0.943 0.857 1.065 0.954 0.698 jam

Intensitas I aspal+bahu 507.512 391.749 397.414 423.584 366.658 394.507 485.707 mm/jam

Lua

s D

ae

rah

Pen

gal

iran

(A

)

A aspal 2100.00 4900.00 5600.00 4200.00 6300.00 4900.00 2800.00 m2

A bahu 1200.00 2800.00 3200.00 2400.00 3600.00 2800.00 1600.00 m2

A lereng 13421.00 14270.00 13951.00 13165.32 12320.00 11989.00 13267.00 m2

A total 16721.00 21970.00 22751.00 19765.32 22220.00 19689.00 17667.00 m2

Ko

efis

ien

Pen

gal

iran

(C

)

C aspal 0.7 0.7 0.7 0.7 0.7 0.7 0.7 -

C bahu 0.1 0.1 0.1 0.1 0.1 0.1 0.1 -

C lereng 0.75 0.75 0.75 0.75 0.75 0.75 0.75 -

C (total) 0.697 0.656 0.646 0.660 0.631 0.645 0.683 -

Debit (Q) Q tot al 1.643 1.568 1.623 1.536 1.427 1.392 1.629 m3/dt

Per

en

can

aan

Dim

en

si S

alu

ran

F 1.494 1.426 1.476 1.396 1.297 1.265 1.480 m2

hrencana 0.90 0.88 0.90 0.87 0.84 0.83 0.90 m

b rencana 0.75 0.73 0.74 0.72 0.70 0.69 0.75 m

w 0.67 0.66 0.67 0.66 0.65 0.64 0.67 m

h+w 1.60 1.60 1.60 1.60 1.50 1.50 1.60 m

Dim

en

si

Salu

ran

h pakai 1.00 0.90 0.90 0.90 0.90 0.90 0.90 m

b pakai 0.80 0.80 0.80 0.80 0.70 0.70 0.80 m

b atas 2.80 2.60 2.60 2.60 2.50 2.50 2.60 m

Page 16: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

16

4.6 PERHITUNGAN GALIAN DAN TIMBUNAN JALAN

Dan untuk perhitungan luas galian dan timbunan ini diambil dari pengukuran luas dari gambar dalam program AutoCAD dengan skala 1:200. Dan berikut ini adalah perhitungan galian dan timbunan untuk segmen 1 (STA 0+000 s.d 0+100). • Pada gambar pot. melintang STA 0+000, didapat : Luas galian = 0.972 cm2 = 1.944 m2 aktual Luas Timbunan = 0.3709 cm2 = 0.7418 m2 aktual • Pada gambar pot. melintang STA 0+100, didapat : Luas galian = 0.00 cm2 = 0.00 m2 aktual Luas Timbunan = 11.6265 cm2 = 23.253 m2 aktual • Perhitungan galian : Luas galian rata-rata segmen 1 :

2

0944.1A rata-rata

+= = 0.972 m2

Volume galian segmen 1 : LAVol rataratagalian ⋅= − 001972.0 ⋅= = 97.2 m3

• Perhitungan timbunan :

2

253.237418.0A rata-rata

+= = 11.9974 m2

Volume timbunan segmen 1 : LAVol rataratatimbunan ⋅= − 0019974.11 ⋅= = 1199.74 m3

Tabel 4-19 Perhitungan Vol. Galian Dan Timbunan

STA Jarak

Luas Area

(skala) Luas Area (m2)

Luas Rata-Rata Volume/100m (m

3) Volume/200m (m

3)

(m) Cut Fill Cut Fill (m2) Cut Fi ll Cut Fill

0 + 000 0.972 0.371 1.944 0.742

100 0.972 11.997 97.200 1199.740

0 + 100 0.000 11.627 0.000 23.253 97.20 5099.59

100 0.000 38.999 0.000 3899.850

0 + 200 0.000 27.372 0.000 54.744

100 0.000 44.232 0.000 4423.200

0 + 300 0.000 16.860 0.000 33.720 0.00 4423.20

100 0.000 24.460 0.000 0.000

0 + 400 0.000 7.600 0.000 15.201

100 0.000 11.261 0.000 1126.110

0 + 500 0.000 3.661 0.000 7.321 672.20 1492.18

100 6.722 3.661 672.200 366.070

0 + 600 6.722 0.000 13.444 0.000

100 27.389 0.000 2738.910 0.000

0 + 700 20.667 0.000 41.334 0.000 8605.66 0.00

100 58.668 0.000 5866.750 0.000

0 + 800 38.000 0.000 76.001 0.000

100 68.679 0.000 6867.900 0.000

0 + 900 30.679 0.000 61.357 0.000 12307.08 0.00

100 54.392 0.000 5439.180 0.000

1 + 000 23.713 0.000 47.426 0.000

100 51.999 0.000 5199.930 0.000

1 + 100 28.286 0.000 56.572 0.000 11725.01 0.00

100 65.251 0.000 6525.080 0.000

1 + 200 36.965 0.000 73.929 0.000

100 41.884 0.000 4188.390 0.000

1 + 300 4.919 0.000 9.838 0.000 4680.31 1457.81

100 4.919 14.578 491.920 1457.810

1 + 400 0.000 14.578 0.000 29.156

100 0.000 25.348 0.000 2534.800

1 + 500 0.000 10.770 0.000 21.540 0.00 4242.53

100 0.000 17.077 0.000 1707.730

1 + 600 0.000 6.307 0.000 12.615

100 0.000 8.069 0.000 806.920

1 + 700 0.000 1.762 0.000 3.524 479.95 983.10

100 4.800 1.762 479.950 176.180

1 + 800 4.800 0.000 9.599 0.000

100 4.800 1.331 479.950 133.130

1 + 900 0.000 1.331 0.000 2.663 479.95 722.31

100 0.000 5.892 0.000 589.180

2 + 000 0.000 4.561 0.000 9.121

100 6.711 4.561 671.120 456.050

2 + 100 6.711 0.000 13.422 0.000 3583.25 456.05

100 29.121 0.000 2912.130 0.000

2 + 200 22.410 0.000 44.820 0.000

100 52.971 0.000 5297.130 0.000

2 + 300 30.561 0.000 61.122 0.000 12273.79 0.00

100 69.767 0.000 6976.660 0.000

2 + 400 39.205 0.000 78.411 0.000

100 39.205 4.868 3920.540 486.750

2 + 500 0.000 4.868 0.000 9.735 3920.54 5623.93

100 0.000 51.372 0.000 5137.180

2 + 600 0.000 46.504 0.000 93.009

Dari hasil perhitungan, didapatkan total volume galian sebesar 838.455,52 m3 dan timbunan sebesar 473.756,84 m3.

4.7 PERENCANAAN RAMBU DAN MARKA JALAN

Jenis rambu yang dipakai dapat dilihat pada Tabel 4-19. Tabel 4-20 Jenis Rambu

Jenis Rambu

Nomor Keterangan Rambu

Peringatan 1a Tikungan ke kiri 1b Tikungan ke kanan 2a Turunan 2c Tanjakan Larangan 6 Larangan Mendahului

Sumber : Tata Cara Pemasangan Rambu Dan Marka Jalan Perkotaan NO. 01/P/BNKT/1991

Berikut akan ditabelkan lokasi penempatan rambu yang dapat dilihat pada Tabel 4-21. Tabel 4-20 Lokasi Penempatan Rambu

No. STA No. Rambu Jenis Lokasi

Rambu Keterangan

1 0 + 487 6 Larangan Kiri Jalan Larangan Mendahului

2 1 + 187 1a Peringatan Kanan Jalan Tikungan Ke Kiri

3 1 + 480 1a Peringatan Kiri Jalan Tikungan Ke Kiri

4 1 + 480 2c Peringatan Kiri Jalan Tanjakan

5 2 + 320 1b Peringatan Kanan Jalan Tikungan Ke Kanan

6 2 + 320 2a Peringatan Kanan Jalan Turunan

7 2 + 920 2c Peringatan Kiri Jalan Tanjakan

8 3 + 520 2a Peringatan Kiri Jalan Turunan

9 3 + 520 6 Larangan Kiri Jalan Larangan Mendahului

10 3 + 680 2a Peringatan Kanan Jalan Turunan

11 3 + 680 6 Larangan Kanan Jalan Larangan Mendahului

12 4 + 708 1b Peringatan Kiri Jalan Tikungan Ke Kanan

13 4 + 880 2a Peringatan Kanan Jalan Turunan

14 5 + 209 1a Peringatan Kanan Jalan Tikungan Ke Kiri

15 5 + 420 1b Peringatan Kiri Jalan Tikungan Ke Kanan

16 5 + 720 2a Peringatan Kiri Jalan Turunan

17 6 + 044 1a Peringatan Kanan Jalan Tikungan Ke Kiri

18 6 + 420 2c Peringatan Kiri Jalan Tanjakan

19 6 + 580 2c Peringatan Kanan Jalan Tanjakan

20 6 + 949 1b Peringatan Kiri Jalan Tikungan Ke Kanan

21 7 + 267 2a Peringatan Kanan Jalan Turunan

22 7 + 792 1a Peringatan Kanan Jalan Tikungan Ke Kiri

23 8 + 024 1a Peringatan Kiri Jalan Tikungan Ke Kiri

24 8 + 320 2a Peringatan Kiri Jalan Turunan

25 8 + 751 1b Peringatan Kanan Jalan Tikungan Ke Kanan

26 8 + 720 2c Peringatan Kiri Jalan Tanjakan

27 8 + 880 2c Peringatan Kanan Jalan Tanjakan

28 9 + 062 1b Peringatan Kiri Jalan Tikungan Ke Kanan

29 9 + 280 2a Peringatan Kanan Jalan Turunan

30 9 + 720 2a Peringatan Kiri Jalan Turunan

31 9 + 816 1a Peringatan Kanan Jalan Tikungan Ke Kiri

Selain itu perencanaan jalan baru ini juga menggunakan

marka jalan yang juga berfungsi sebagai pengatur lalu lintas. Marka jalan pada perencanaan ini terdiri dari :

Marka memanjang berupa garis menerus. Terdapat pada bagian tengah jalur jalan yang berfungsi sebagai pemisah jalur atau lajur jalan yang tidak boleh dilalui kendaraan dan memberi tahu pada pengemudi agar tidak mendahului kendaraan di depannya atau dilarang melintasi marka.

Page 17: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

17

Tabel 2-22 Perhitungan Panjang Marka

PI Ls (m) Lc (m)

2Ls + Lc (m)

Lebar Marka (m) Luas Marka (m2)

1 50 551.570 651.570 0.12 78.188

2 50 662.592 762.592 0.12 91.511 3 50 300.835 400.835 0.12 48.100

4 50 447.852 547.852 0.12 65.742 5 50 713.000 813.000 0.12 97.560

6 50 569.669 669.669 0.12 80.360 7 50 603.338 703.338 0.12 84.401

8 50 94.931 194.931 0.12 23.392 9 50 484.069 584.069 0.12 70.088

10 50 639.011 739.011 0.12 88.681 11 50 346.870 446.870 0.12 53.624

12 50 64.559 164.559 0.12 19.747 13 50 92.057 192.057 0.12 23.047

14 50 115.336 215.336 0.12 25.840 15 50 319.926 419.926 0.12 50.391

16 50 98.258 198.258 0.12 23.791 17 50 332.386 432.386 0.12 51.886

Total 8136.259 976.351 Marka memanjang berupa garis menerus putus-putus.

Terdapat pada bagian tengah jalur jalan yang berfungsi sebagai pembatas lajur jalan.

4.8 PERHITUNGAN VOLUME DAN PEKERJAAN

1. Pekerjaan Tanah • Galian Tanah

Volume galian sebesar 838.455,52 m3. • Timbunan Tanah

Volume timbunan sebesar 473.756,84 m3. 2. Pekerjaan Perkerasan Jalan

• Pekerjaan Lapis Pondasi Bawah Sirtu Kelas B Volume = Tebal sirtu x Lebar jalur x Panjang Jalan = 0.10 x 7 x 31200 = 21840 m3

• Pekerjaan Lapis Pondasi Atas Batu Pecah Kelas A Volume = Tebal batu pecah xLebar jalur x Panjang Jalan = 0.20 x 7 x 31200 = 43680 m3

• Pekerjaan Lapis Permukaan Laston MS 590 Volume = Tebal laston x Lebar jalur x Panjang Jalan = 0.08 x 7 x 31200 = 17472 m3

3. Pekerjaan Drainase Ruas kiri : Volume = Luas penampang saluran x pjg saluran = 1,44 x 31200 = 44928 m3

Ruas kanan : Volume = Luas penampang saluran x pjg saluran = 1,44 x 31200 = 44928 m3

Volume total = 44928 m3 + 44928 m3 = 89856 m3. 4. Pekerjaan Rambu Dan Marka

• Pekerjaan Rambu Lalu Lintas Rambu-rambu lalu lintas digunakan untuk memperlancar lalu lintas. Dalam perencanaan

jalan ini direncanakan rambu lalu lintas sebanyak 93 buah.

• Pekerjaan Marka a. Marka Putus-Putus Pjg pemasangan = Pjg total – Total (2Ls+Lc) = 31200 - 8136.259 = 23063.741 m Jumlah marka = 23063.741 / (3+5) = 2883 buah Panjang marka total = 2883 x 3 = 8649 m Luas marka total = 8649 x 0.12 = 1037.88 m2 b. Marka Menerus Pjg marka total = Total (2Ls+Lc) = 8136.259 m Luas marka total = 8136.259 x 0.12 = 976.351 m2

Sehingga luas marka total: Total = 1037.88 + 976.351 = 2014.231 m3

Tabel 4-23 Perhitungan Biaya Pekerjaan

No. Uraian Satuan Jumlah

Volume Harga Satuan (Rp) Biaya Total (Rp)

1 Pekerjaan Tanah

Galian Tanah m3 838455.52 Rp40,482.08 Rp33,942,423,437.08

Timbunan Tanah Biasa Dari Sumber Bahan m3 473756.84 Rp66,166.79 Rp31,346,969,343.34

2 Pekerjaan Perkerasan Jalan

Pondasi Bawah Sirtu Kelas B m3 21840.00 Rp1,156,884.58 Rp25,266,359,227.20

Pondasi Atas Batu Pecah Kelas A m3 43680.00 Rp1,545,351.70 Rp67,500,962,256.00

Lapis Permukaan Laston MS 590 m3 17472.00 Rp4,243,582.93 Rp74,143,880,952.96

3 Pekerjaan Drainase

Saluran Samping Tanah Asli m3 89856 Rp41,270.95 Rp3,708,442,483.20

4 Pekerjaan Utilitas Jalan Rambu Lalu Lintas Buah 93 Rp609,808.41 Rp56,712,182.13

Marka Jalan m2 2014.23 Rp107,012.70 Rp215,548,306.29

Rp236,181,298,188.21

BAB V KESIMPULAN DAN SARAN

5.1 KESIMPULAN Berdasarkan hasil perencanaan yang telah dilakukan

dalam penyusunan Tugas Akhir ini, maka dapat ditarik beberapa kesimpulan sebagai berikut :

1. Geometrik Jalan Alinyemen horisontal ruas jalan ini terbentuk

sepanjang 31.20 km dan terdiri dari 17 PI (Point of Intersection) dengan lengkung horizontal S-C-S (Spiral-Circle-Spiral).

Alinyemen vertikal ruas jalan ini terbentuk sebanyak 35 PPV, yang terdiri dari 18 PPV lengkung cekung, dan 17 PPV lengkung cembung.

2. Tebal Konstruksi Perkerasan

Untuk perencanaan tebal perkerasan, dengan LER (Lintas Ekivalen Rencana) = 6,605 < 1000 kendaraan per hari (umur rencana 10 tahun) ; persentase kendaraan berat > 30% ; dan nilai CBR tanah dasar 5,61 %, maka didapat : • Lapisan Surface Laston (MS 590) dengan tebal

8cm. • Lapisan Base Batu Pecah Kelas A dengan tebal

20cm.

Page 18: I. gg · Pada Tabel 2-10 dicantumkan panjang maksimum bagian lurus pada alinyemen horizontal. Tabel 2-10 Panjang Bagian Lurus Maksimum Panjang Bagian Lurus Maksimum (m) Fungsi Datar

18

• Lapisan Sub-Base Sirtu Kelas B dengan tebal 10cm.

3. Saluran Tepi Jalan Untuk perencanaan dimensi saluran tepi jalan,

dengan tinggi hujan rencana 1102.689 mm (periode ulang selama 10 tahun), dengan kriteria : material pembentuk saluran menggunakan tanah asli, kecepatan rencana saluran (V = 1,1 m/dt), dan menggunakan profil saluran trapesium, maka didapat : lebar saluran (b) = 0,8m dan tinggi saluran total (h+w) = 1,6m, lebar atas saluran 2,6m. Dalam mempermudah pengerjaan, nilai dimensi tersebut disamakan di kedua sisi saluran di sepanjang jalan.

4. Volume Galian dan Timbunan

Perencanaan ruas jalan ini memerlukan 838.455,52 m3 galian tanah dan 473.756,84 m3

timbunan tanah pilihan. 5. Perhitungan Biaya

• Rambu Terdapat 2 jenis rambu dasar yang dipasang di

ruas jalan ini, yaitu rambu peringatan, larangan. Dan jumlah dari semua rambu yang ada ini adalah 93 buah. • Marka

Terdapat 2 jenis marka yang dipakai di ruas jalan ini, yaitu marka putus-putus dan menerus pada as jalan. Marka menerus ini khusus dipakai di tikungan. Dan luas marka total ini berjumlah 2014.231 m2. • Biaya

Perhitungan biaya terdiri dari 4 poin pekerjaan utama, yaitu pekerjaan tanah, pekerjaan perkerasan jalan, pekerjaan drainase, dan pekerjaan utilitas jalan. Sehingga total harga yang diperlukan adalah Rp. 236.181.298.188,21.

5.2 SARAN Setelah melakukan serangkaian perencanaan

dalam tugas akhir ini, saran yang dapat penulis berikan adalah sebagai berikut : 1. Baiknya untuk jalan arteri, type jalan yang

ideal adalah 4 lajur 2 arah, baik itu 4/2 UD maupun 4/2 D. Namun dalam kesempatan ini hal ini tidak dapat lakukan karena disesuaikan dengan data yang ada, yaitu lebar ROW =15m.

2. Pada alinyemen horizontal, persilangan jalan dengan air (sungai) harus diusahakan tegak lurus, agar bangunan persilangan menjadi lebih pendek atau singkat. Baiknya tidak terdapat bangunan persilangan dengan air (sungai) di sepanjang tikungan.

3. Untuk alinyemen vertikal, kelandaian maksimum yang digunakan harus memperhatikan bentuk kontur eksisting tanah. Hal ini bertujuan untuk mengurangi volume galian dan timbunan yang besar.