digital prosiding - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/barlin_snttm_ix_2011.pdf · studi...

9
DIGITAL PROSIDING ISBN 978-602-97742-0-7 SEMINAR NASIONAL TAHUNAN TEKNIK MESIN IX HOTEL ARYA DUTA PALEMBANG 13 - 15 Oktober 2010 PERAN SERTA TEKNIK MESIN DALAM PENINGKATAN MUTU DAN PEMANFAATAN HASIL RISET DI INDONESIA Penyelenggara: Jurusan Teknik Mesin Fakultas Teknik Unsri Jalan Raya Prabumulih KM.32 Indralaya Kabupaten Ogan Ilir - Sumatera Selatan Tlp: 0711-580272, Fax: 0711580272 www.mesin.ft.unsri.ac.id

Upload: duongmien

Post on 06-Feb-2018

219 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: DIGITAL PROSIDING - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/Barlin_SNTTM_IX_2011.pdf · Studi kelayakan pembangunan PLTU – Batubara Ahmad Syuhada Suhaeri MI‐005 MI‐31

DIGITAL PROSIDING

ISBN 978-602-97742-0-7

SEMINAR NASIONAL TAHUNAN TEKNIK MESIN IX HOTEL ARYA DUTA PALEMBANG

13 - 15 Oktober 2010

PERAN SERTA TEKNIK MESIN DALAM PENINGKATAN MUTU

DAN PEMANFAATAN HASIL RISET DI INDONESIA 

Penyelenggara: Jurusan Teknik Mesin Fakultas Teknik Unsri

Jalan Raya Prabumulih KM.32 Indralaya Kabupaten Ogan Ilir - Sumatera Selatan

Tlp: 0711-580272, Fax: 0711580272

www.mesin.ft.unsri.ac.id

Page 2: DIGITAL PROSIDING - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/Barlin_SNTTM_IX_2011.pdf · Studi kelayakan pembangunan PLTU – Batubara Ahmad Syuhada Suhaeri MI‐005 MI‐31

SEMINAR NASIONAL TAHUNAN TEKNIK MESIN IX 2010

SNTTM IX PALEMBANG, 13 - 15 Oktober 2010

DIGITAL PROSIDING

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SRIWIJAYA

ISBN : 978-602-97742-0-7

Page 3: DIGITAL PROSIDING - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/Barlin_SNTTM_IX_2011.pdf · Studi kelayakan pembangunan PLTU – Batubara Ahmad Syuhada Suhaeri MI‐005 MI‐31

SEMINAR NASIONAL TAHUNAN TEKNIK MESIN (SNTTM)- IX HOTEL ARYA DUTA PALEMBANG, 13 - 15 Oktober 2010

Untuk segala pertanyaan mengenai SNTTM IX silakan hubungi :

Sekretariat: Jurusan Teknik Mesin

Fakultas Teknik Universitas Sriwijaya Jalan Raya Prabumulih KM.32 Indralaya Kabupaten Ogan Ilir - Sumatera Selatan

Tlp: 0711-580272, Fax: 0711580272 Website : bkstm9.unsri.ac.id

E-mail: [email protected] dan [email protected]

Reviewer : Prof. Dr. H. Hasan Basri Prof. Dr. H. Kaprawi Dr. Riman Sipahutar Dr. Amrifan Saladin Mohruni Dr. Nukman Hendri Chandra, M.T. Zainal Abidin, M.T. M. Zahri Kadir, M.T. M. Yanis, M.T Dyos Santoso, M.T Gunawan, M.T. Amir Arifin, M.Eng Editor : Gunawan, M.T. Amir Arifin, M.Eng

ISBN : 978-602-97742-0-7 © Jurusan Teknik Mesin Fakultas Teknik Universitas Sriwijaya

2010

Page 4: DIGITAL PROSIDING - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/Barlin_SNTTM_IX_2011.pdf · Studi kelayakan pembangunan PLTU – Batubara Ahmad Syuhada Suhaeri MI‐005 MI‐31

1

DAFTAR ISI

KATA PENGANTAR

HAL

PANITIA PELAKSANADEWAN PENGARAHUAPAN TERIMA KASIHDAFTAR ISI

KONVERSI ENERGI

MI‐001MI‐1

Khairil, Irwansyah UNSYIAH

MI‐002

Dewi Puspitasari Indarto Tineke Karminto Kms Ridhuan UGM MI 7

KAJI EKSPERIMENTAL TEKNOLOGI PEMBUATAN KOKAS DARI BATUBARA MUDA SEBAGAI SUMBER PANAS DAN KARBON PADA TANUR TINGGI (BLAST FURNACE)

PEMISAHAN ALIRAN KEROSEN‐AIR DENGAN MENGGUNAKAN T‐JUNCTION

Dewi Puspitasari, Indarto, Tineke, Karminto, Kms.Ridhuan UGM MI‐7

MI‐003MI‐15

Agung Subagio UI

MI‐004

Ahmad Syuhada Suhaeri UNSYIAH

KAJIAN TINGKAT KEMAMPUAN PENYERAPAN PANAS MATAHARI PADA ATAP BANGUNAN SENG BERWARNA

Studi kelayakan pembangunan PLTU – Batubara

Ahmad Syuhada Suhaeri UNSYIAHMI‐005 MI‐31

Hermawan UGM

MI‐006

MI‐39I Gusti Ngurah Putu Tenaya, ST., MT UNUD

UNJUK KERJA TURBIN ANGIN POROS VERTIKAL TIPE SAVONIUS

PENGARUH TEMPERATUR REAKTAN TERHADAP KECEPATAN RAMBAT API PREMIXED BERBAHAN BAKAR GAS PADA RUANG BAKAR MODEL HELLE‐SHAW CELL

g y , ,

MI‐007MI‐49

I Nyoman Suprapta Winaya dan Made Sucipta UNUD

MI‐008MI‐53

Muhamad As’adi, Syahrir Ardiansyah Pohhan Putra  UPN

Pengembangan fuel feeder tipe ulir dan rotari untuk bahan bakar biomasa

KAJIAN PENAMBAHAN HIDROGEN BOOSTERPADA MOTOR BENSIN 115 CC

MI‐009MI‐59

Si Putu Gede Gunawan Tista, I Putu Yudana UNUD

MI‐010MI‐63

Andi Mangkau, Novriany Amaliyah, Zuryati Djafar, Wahyu H. Piarah

Pengaruh Penempatan Penghalang Berbentuk Segitiga Di Depan Silinder Dengan Variasi Dimensi Segitiga Penghalang Terhadap koefisien Drag

Analisis Penggunaan Gasohol dari Limbah Kulit Pisang terhadap Prestasi  Mesin Motor Bakar Bensin

g , y y , y j , yUNHAS

MI‐011MI‐68

Adi Surjosatyo UI 

Study Influence of Water Stream Variety Into Venturi Scrubber To Reduce Tar And Flame Formation in Biomass Gasification System

MI-25

Page 5: DIGITAL PROSIDING - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/Barlin_SNTTM_IX_2011.pdf · Studi kelayakan pembangunan PLTU – Batubara Ahmad Syuhada Suhaeri MI‐005 MI‐31

7

MI‐081

MI‐527

KAJIAN EKSPERIMENTAL DAN SIMULASI CFD PEMBAKARAN BRIKET BATUBARA NON KARBONISASI SECARA NATURAL DRAFT DAN PENGAYAAN OKSIGEN UDARA PEMBAKARAN MI‐527Pratiwi, D.K., Nugroho, Y.S., Koestoer, R.A., Soemardi, T.P. UNSRI

MI‐082MI‐529

Octavina, Diah Kusuma Pratiwi  PT BA

MI‐083MI 533

OKSIGEN UDARA PEMBAKARAN

KAJIAN TERHADAP NILAI EKONOMI PENGGUNAAN BRIKET BATUBARA SEBAGAI BAHAN BAKAR PENGGANTI BAHAN BAKAR MINYAK DAN GAS BUMI

PROSPEK PENGGUNAAN BRIKET BATUBARA SEBAGAI BAHAN BAKAR PENGGANTI MINYAK DAN GAS MI‐533Hutabarat, B.,  Diah Kusuma Pratiwi  ESDM

MI‐084MI‐537

M Zahri Kadir, Bambang UNSRI

MI‐085MI‐541

PENGGANTI MINYAK DAN GAS

PENGARUH TINGGI SUDU KINCIR AIR TERHADAP DAYA DAN EFISIENSI YANG DIHASILKAN

PENGARUH PERUBAHAN PUTARAN FAN KONDENSOR TERHADAP PERFORMANSI MESIN PENGKONDISIAN UDARAMARWANI UNSRI

MI‐086MI‐545

ISMAIL THAMRIN UNSRI

MI‐087MI‐551

F i

RANCANG BANGUN ALAT PENGERING UBI KAYU TIPE RAK DENGAN MEMANFAATKAN ENERGI SURYA

ANALISA PENURUNAN EFISIENSI PACKAGE BOILER TIPE PIPA AIR PADA PABRIK PUSRI IV PT PUPUK SRIWIDJAJA PALEMBANG

Fusito

MI‐088MI‐561

Teguh Budi SA, Firmansyah Burlian, Ismail Thamrin  UNSRI

MI‐0896

ANALISA PERBANDINGAN PENGGUNAAN BAHAN BAKAR JENIS PREMIUM DAN PERTAMAX TERHADAP KARAKTERISTIK MOTOR RODA DUA 125 CC TAHUN 2007

ANALISA PENGARUH PENGGUNAAN REFRIGERAN HIDROKARBON MUSICOOL‐22 PENGGANTI  FREON‐22 TERHADAP KINERJA ALAT AIR CONDITIONING

MI‐567Aneka Firdaus UNSRI

MI‐091MI‐574

UNSRIBarlin

22 PENGGANTI  FREON 22 TERHADAP KINERJA ALAT AIR CONDITIONING

PENGARUH UKURAN BUTIR BATUBARA (GRAIN SIZE)  TERHADAP KEMAMPUAN ADSORPSI CO2, STUDI KASUS PADA BATUBARA DARI CEKUNGAN SUMATERA SELATAN

MII‐001MII‐1

I Gede Putu Agus Suryawan, ST, MT UNUD

MODEL CTL (CONTECTUAL TEACHING AND LEARNING ) PADA PEMBELAJARAN METROLOGI INDUSTRI UNTUK MENINGKATKAN ANALISIS MAHASISWA

IMPLEMENTASI SISTEM PEMBELAJARAN BLENDEDLEARNING   PADA KULIAH 

PENDIDIKAN

MII‐002MII‐7

MUHAMMAD KUSNI ITB

MII‐003MII‐19

Bambang Sutjiatmo ITB

AE3121 GETARAN MEKANIK DI PROGRAM STUDI AERONOTIKA DAN ASTRONOTIKA

Pengembangan Sistem Pengelolaan Informasi Tugas Akhir: Sipintar

Page 6: DIGITAL PROSIDING - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/Barlin_SNTTM_IX_2011.pdf · Studi kelayakan pembangunan PLTU – Batubara Ahmad Syuhada Suhaeri MI‐005 MI‐31

Seminar Nasional Tahunan Teknik Mesin (SNTTM) ke-9Palembang, 13-15 Oktober 2010

PENGARUH UKURAN BUTIR BATUBARA (GRAIN SIZE) TERHADAP KEMAMPUAN ADSORPSI CO2, STUDI KASUS PADA BATUBARA

DARI CEKUNGAN SUMATERA SELATAN

BarlinJurusan Teknik Mesin, Fakutas Teknik , Universitas Sriwijaya

Jl. Raya Palembang – Prabumulih KM 32 , Indralaya, Ogan Ilir Sumsel, 30662Email : [email protected]

Abstrak

Penelitian secara eksperimental telah dilakukan dengan tujuan mengetahui pengaruh ukuran butir (grain size) batubara terhadap kemampuan adsorpsi CO2. Batubara yang digunakan berasal dari cekungan Sumatera Selatan dengan ukuran butir yaitu 0,075 mm; 0,15 mm; 0,3 mm; 0,4 mm; 0,6 mm dan 1,0 mm. Pengujian kemampuan adsorpsi CO2 dilakukan dengan metode volumetrik pada tekanan CO2 antara 10 - 60 bar dan temperatur sistem 40oC. Berdasarkan hasil penelitian didapatkan bahwa kemampuan adsorpsi CO2akan menurun dengan bertambahnya ukuran butir batubara. Hal ini disebabkan karena terjadi peningkatan laju adsorpsi akibat bertambahnya ukuran butir (grain size).

Kata kunci : batubara, karbondioksida (CO2), adsorpsi, metode volumetric

1. PENDAHULUAN

1.1. Latar BelakangPemanasan global (global warming) adalah peningkatan temperatur rata-rata atmosfer, laut dan daratan bumi yang diakibatkan oleh pelepasan gas rumah kaca seperti karbondioksida (CO2), methan (CH4), oksida asam nitrat (N2O) hidro fluoro karbon (HFC) dan sulfur heksa flurida (SF6). Perubahan iklim (climate change) telah menjadi topik yang sedang hangat dibicarakan saat ini. Gas karbondioksida merupakan salah satu jenis gas rumah kaca yang dianggap sebagai penyebab utama timbulnya pemanasan global. Penggunaan bahan bakar fosil, perubahan tataguna lahan dan pembakaran hutan baik secara alamiah maupun sengaja dibakar merupakan sumber timbulnya emisi gas karbondioksida di atmosfer (www.globalwarming.com).

Salah satu cara yang dapat dilakukan untuk mengurangi emisi gas karbondioksida di atmosfer dalam jangka menengah maupun panjang adalah dengan menyimpan karbondioksida ke dalam formasi geologi (geological formation). Pada saat ini ada tiga alternatif formasi geologi yang dapat digunakan sebagai media penyimpan gas karbondioksida yaitu reservoir air garam jenuh (saline aquifer), reservoir minyak dan gas bumi yang sudah menurun produksinya (deplected oil and gas reservoirs) dan lapisan batubara yang secara ekonomis tidak bisa ditambang karena terlalu dalam (unmineable coalbeds). Skema alternatif formasi geologi ini dapat dilihat pada gambar 1 (IPCC, 2005).

Gambar 1. Skema alternatif formasi geologi sebagai media penyimpanan CO2 (IPCC, 2005)

1.2. Tujuan Penelitian Penelitian ini dilakukan untuk mengetahui hubungan antara ukuran butir batubara (grain size) terhadap kemampuan adsorpsi CO2.

2. METODOLOGI PENELITIAN

2.1. Sampel BatubaraBatubara yang digunakan dalam penelitian ini berasal dari cekungan Sumatra Selatan.

2.2. Metode Penelitian Analisis adsorpsi gas CO2 dengan metode volumetrik

ISBN : 978-602-97742-0-7 MI-575

Page 7: DIGITAL PROSIDING - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/Barlin_SNTTM_IX_2011.pdf · Studi kelayakan pembangunan PLTU – Batubara Ahmad Syuhada Suhaeri MI‐005 MI‐31

Seminar Nasional Tahunan Teknik Mesin (SNTTM) ke-9Palembang, 13-15 Oktober 2010

telah dilakukan oleh para peneliti sebelumnya diantaranya Gasem dkk (2002), Sudibandriyo dkk (2005) dan Busch dkk (2003, 2004 dan 2007). Skema alat eksperimen dengan metode volumetrik terlihat pada gambar 4.

Gambar 2. Skema alat eksperimen adsorpsi gas CO2 dengan metode volumetrik (Busch, 2007)

2.3. Alat penelitianSkema alat penelitian yang digunakan dalam penelitian ini terlihat pada gambar 5.

Gambar 3. Skema alat penelitian adsorpsi CO2

Keterangan gambar :1. Reference cell, 2. Micro filter, 3. Sample cell, 4. Kawat pemanas (heater wire), 5. Rangka, 6. Termokopel, 7. Temperatur controller, 8. Pressure gauge, 9.Gate valve dan safety valve, 10. Vacuum pump, 11. Pressure transducer,12. Microcontroller, 13. Personal computer, 14. Tabung gas CO2, 15. Tabung gas helium

2.4. Prosedur PengujianProsedur pengujian dalam penelitian ini adalah sebagai berikut :1. Batubara ditumbuk pada beberapa ukuran butir

yaitu 0,075 mm, 0,15 mm, 0,3 mm, 0,4 mm, 0,6 mm dan 1,0 mm Kemudian dimasukkan ke dalam sample cell.

2. Pengaturan temperatur sistem selama proses agar selalu konstan dengan menggunakan temperature controller pada 40oC.

3. Proses vakum terhadap sistem dengan menggunakan vacuum pump selama 15 menit.Proses vakum dilakukan agar tidak ada gas atau butir lain yang masuk ke dalam reference cell dan sample cell.

4. Injeksi gas helium ke dalam reference cell dengan membuka valve 1 dan menutup valve 2. Gas helium diinjeksikan ke dalam reference cell lalu dibiarkan sampai equilibrium state selama 15 menit, kemudian dicatat tekanan yang ditunjukkan oleh pressure transducer sebagai tekanan reference cell (P1).

5. Injeksi gas helium ke sample cell dengan membuka valve 2 sehingga gas helium masuk ke sample cell, lalu dibiarkan sampai tercapai pressure and temperature equilibration selama 15 menit, kemudian tekanan yang ditunjukkan oleh pressure transducer dicatat sebagai tekanan sample cell (P2). Injeksi gas helium ini dilakukan untuk mengetahui volume kosong (void volume (Vvoid)). Setelah itu dilakukan proses vakum terhadap sistem selama 15 menit agar sistem dalam kondisi vakum kembali.

6. Injeksi gas CO2 dengan membuka valve 1 dan menutup valve 2 sehingga gas CO2 masuk ke dalam reference cell.

7. Proses thermal equilibration selama 45 menit, pada proses ini sistem dibiarkan selama 45 menit sampai terjadi thermal equilibration lalu tekanan yang ditunjukkan oleh pressure transducer dicatat sebagai tekanan injeksi CO2.

8. Valve 2 dibuka sehingga gas CO2 yang ada dalam reference cell akan berpindah masuk ke dalam sample cell, setelah gas CO2 masuk ke dalam sample cell, maka molekul gas CO2 akan mulai diserap oleh batubara sehingga tekanan akan turun. Lalu penurunan tekanan tersebut dimonitor sampai pressure equilibration tercapai. Tekanan yang ditunjukkan oleh pressure transducer dicatat sebagai tekanan equilibrium CO2.

9. Langkah selanjutnya, valve 2 ditutup, tekanan injeksi gas CO2 dinaikkan secara bertahap sampai tekanan maksimal yang bisa dicapai, tekanan injeksi (P1) gas CO2 dinaikkan mulai dari 10 bar, 20 bar, 30 bar, 40 bar, 50 bar dan 60 bar. Penurunan tekanan yang terjadi setiap kenaikan tekanan tersebut dicatat sebagai tekanan equilibrium (P2).

3. HASIL DAN PEMBAHASAN

3.1. Pengaruh Ukuran Butir Batubara Terhadap Kemampuan Adsorpsi CO2

Hubungan antara ukuran butir batubara terhadap

P

TemperatureController

CO2

He

Vacuum Pump

Micro Controller

P

PersonalComputer

CO2 He

1

3

6

11

5

8

10

12

13

14 15

9

2

4

7

6

ISBN : 978-602-97742-0-7 MI-576

Page 8: DIGITAL PROSIDING - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/Barlin_SNTTM_IX_2011.pdf · Studi kelayakan pembangunan PLTU – Batubara Ahmad Syuhada Suhaeri MI‐005 MI‐31

Seminar Nasional Tahunan Teknik Mesin (SNTTM) ke-9Palembang, 13-15 Oktober 2010

kemampuan adsorpsi CO2 oleh batubara ditunjukkan pada gambar. Untuk melihat pengaruh ukuran butir batubara terhadap kemampuan adsorpsi CO2, maka setiap batubara tersebut dibuat dalam tiga ukuran yaitu 0,15 mm, 0,3 mm dan 1 mm. Hubungan antara ukuran butir batubara terhadap volume adsorpsi CO2 oleh batubara S1 ditunjukkan pada gambar 4.

Volume adsorpsi CO2 oleh batubara akan meningkat secara linier pada semua ukuran butir. Volume adsorpsi CO2 pada ukuran butir terbesar (1 mm) lebih rendah dibandingkan pada ukuran butir 0,3 mm dan 0,15 mm. Volume adsorpsi CO2 pada ukuran butir terkecil (0,15 mm) adalah paling tinggi. Volume adsorpsi CO2 oleh batubara S1 pada masing-masing ukuran butir adalah 7,7 – 47,2 cc/gram batubara (ukuran butir 0,15 mm), 7,1 –38,6 cc/gram batubara (ukuran butir 0,3 mm) dan 7,7 –31,9 cc/gram batubara (ukuran butir 1 mm).

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000

Vol

ume A

dsor

psi C

O2

(cc/

gr b

atub

ara)

Tekanan (kPa)

0.15 mm0.3 mm1 mm

Gambar 4. Volume Adsorpsi CO2 oleh batubara pada ukuran butir 0,15 mm, 0,3 mm dan 1 mm

Berdasarkan volume adsorpsi CO2 oleh masing-masing batubara dapat dilihat bahwa semakin besar ukuran butir batubara, maka volume adsorpsi CO2 cenderung menurun. Batubara dengan ukuran butir yang lebih kecil mempunyai kemampuan adsorpsi yang lebih baik sehingga volume adsorpi CO2 juga semakin besar. Peningkatan volume adsorpsi CO2 pada ukuran butir yang lebih kecil disebabkan oleh beberapa faktor diantaranya pore structure, surface area dan laju difusi gas karbondioksida.

Daya adsorpsi atau kemampuan adsorpsi (adsorption capacity) CO2 akan menurun jika laju adsorpsi (adsorption rate) meningkat atau laju adsorpsi menjadi lebih cepat. Laju adsorpsi meningkat berarti waktu yang dibutuhkan batubara dalam proses adsorpsi CO2 menjadi lebih singkat. Laju adsorpsi akan meningkat dengan semakin besarnya ukuran butir. Ukuran butir yang besar akan memiliki pore structure (struktur pori/lubang) yang kompleks dan banyak. Laju adsorpsi CO2 oleh batubara yang memiliki banyak pore structure akan menjadi lebih cepat (Busch dkk, 2004). Pore structure

yang ada dalam batubara dapat berkurang pada saat batubara mengalami proses grinding. Proses grinding menyebabkan ukuran butir menjadi lebih kecil sehingga jumlah pore structure yang ada dalam batubara juga akan berkurang.

Hal yang sama dinyatakan Nandi dan Walker (1975) bahwa terjadi kenaikan laju difusi (diffusion rate) akibat pengecilan ukuran butir. Macropores akan terbentuk pada saat pengecilan ukuran butir melalui proses grinding. Terbentuknya macropores akan berdampak positif terhadap laju adsorpsi (adsorption rate) karena macropores merupakan luasan yang menjadi jalan masuk gas ke dalam micropores.

Sifat-sifat fisik batubara juga akan mempengaruhi adsorpsi CO2. Salah satu sifat fisik (physical properties) batubara yaitu surface area. Dengan bertambahnya ukuran butir batubara, maka pore volume juga akan semakin banyak. Semakin banyak pore volume, maka surface area akan semakin berkurang. Berkurangnya surface area akan mempengaruhi volume adsorpsi CO2 karena semakin kecil surface area, maka volume adsorpsi CO2 akan semakin menurun.

4. KESIMPULAN.

Berdasarkan hasil penelitian dan studi literatur yang telah dilakukan, maka dapat dbuat sebuah kesimpulan bahwa kemampuan adsorpsi CO2 dipengaruhi oleh ukuran butir batubara. Semakin besar ukuran butir batubara, maka kemampuan adsorpsi CO2 akan semakin menurun.

DAFTAR PUSTAKA

[1] Airey, E.M., 1968, “Gas Emission from Broken Coal. An Experimental and Theoretical Investigation”, Int. J. Rock. Mech. Min. Sci. 5, 475–494.

[2] Bertand, C., Bruyet, B., Gunther, J., 1970. “Determination of Desorbable Gas Concentration of Coal (Direct Method)”, Int. J. Rock. Mech. Min. Sci. 7, 43– 50.

[3] Busch, A., Gensterblum, Y., Krooss, B.M., 2003b, “Metanae and CO2 Sorption and Desorption Measurements on Dry Argonne Premium Coals: Pure Components and Mixtures”, International Journal of Coal Geology 55, hal:205-224.

[4] Busch, A., Gensterblum, Y., Krooss, B.M., Littke, R., 2004, “Metanae and Carbon Dioxide Adsorption/Diffusion Experiments on Coal: An Upscaling and Modeling Approach”, International Journal of Coal Geology 60, hal: 151-168.

ISBN : 978-602-97742-0-7 MI-577

Page 9: DIGITAL PROSIDING - eprints.unsri.ac.ideprints.unsri.ac.id/4742/1/Barlin_SNTTM_IX_2011.pdf · Studi kelayakan pembangunan PLTU – Batubara Ahmad Syuhada Suhaeri MI‐005 MI‐31

Seminar Nasional Tahunan Teknik Mesin (SNTTM) ke-9Palembang, 13-15 Oktober 2010

[5] Busch, A., 2005, “Thermodynamic and Kinetic Processes Associated with CO2-Sequestration and CO2-Enhanced Coalbed Metanae Production from Unminable Coal Seams”,PhD-thesis, RWTH Aachen University.

[6] Busch, A., Gensterblum, Y., Krooss, B.M., Siemons, N.,2006, “Investigation of High-Pressure Selective Adsorption/Desorption Behaviour of CO2 and CH4 on Coals: An Experimental Study”, International Journal of Coal Geology 66, hal: 53-68.

[7] Cengel.Y,A, 2003,”Heat Transfer : A Practical Approach”, 2nd ed, Mc Graw-Hill.

[8] Gasem, K.A.M, Fitzgerald, J.E., Pan, Z Robinson, R.L.Jr., 2002, “Modelling of Gas Adsorption on Coalbeds”, Proceedings of the Eighteenth Annual International Pittsburgh Coal Conference, Newcastle, Australia.

[9] Intergovernmental Panel on Climate Change (IPCC), 2005, “Special Report on Carbon Dioxide Capture and Storage”, Cambridge University Press, 431.

[10] Mavor, M.J., Owen, L.B., Pratt, T.J., 1990, “Measurement and Evaluation of Coal Sorption Isotherm Data”, SPE 20728, hal. 157-170.

[11] Nandi, S.P., Walker Jr., P.L. 1975. “Activated Diffusion of Metanae from Coals At Elevated Pressures”, Fuel 54, 81– 86.

[12] Sudibandriyo, M., Fitzgerald, J.E., Pan, Z., Robinson, R.L.Jr., Gasem, K.A.M., 2005, “Adsorption of Metanae, Nitrogen, Carbon Dioxide and their Binary on Wet Tiffany Coal”, Fuel 84, hal: 2351-2363.

[13] Suuberg, E.M., Otake, Y, Yun, Y., Deevi, S.C., 1993. Role of Moisture in Coal Struc-ture and The Effect of Drying Upon The Accessibility of Coal Structure. Energy and Fuels 7, 384-392

[14] Suzuki, M, 1990, “Adsorption Engineering”, Elsevier Science Publisher B.V.

[15] www.esdm.go.id[16] ww.globalwarming.org

ISBN : 978-602-97742-0-7 MI-578