pengaturan pertumbuhan 1 · 2011. 3. 17. · klasifikasi pohon tropika berdasarkan habitus e.w.m....

Post on 11-Dec-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

PENGATURAN PERTUMBUHAN 1

KLASIFIKASI POHON TROPIKA BERDASARKAN HABITUS

E.W.M. Verheij, 1986. Towards a classification of tropical fruit tress. Acta

Horticulturae 175:137-150

Kelompok Pohon Berbatang Tunggal(Single Stemmed Trees)

Tumbuh dan berbuah terus menerus setelahdewasa: pepaya, kelapa, sawit, salak

Tumbuh vegetatif terus-menerus diakhiri denganbunga (mirip kelompok bienial): nenas, pisang, aren (Sagu?)

Tanpa musim; sulit dilakukan peningkatanproduksi dengan memanipulasi tanamanlangsung; korelasi positif antara kondisi lahandengan produksi

Breeding lebih berarti dibanding budidaya!!!

Kelompok Pohon Bercabang(Branched Trees)

1. Tumbuh dan berbuah terus-menerus; tidak bermusim: markisa, lamtoro, talok (kersen)…. Dll.

2. Ada perbedaan antara tunas vegetatif dan tunas bunga:

a) Cauliflorous: tunas bunga tumbuh di batang dan/atau cabang: durian, nangka, kakao, nam-nam

b) Dimorfism: satu tempat, tetapi berbeda wujud: apel, kopi, anggur, jeruk

c) Campuran: bunga ada di batang, cabang dan aksilar: belimbing, jambu bol, jambu air

Kelompok Tanaman Bercabang(Branched Trees)

3. Ada irama pertumbuhan (perbedaan waktu antara vegetatif dan pembungaan)

a) Pertumbuhan serempak (bermusim) umumnya berbunga terminal: mangga, rambutan, apokad

b) Tidak serempak; sehingga dalam satu waktu dapat ditemui tunas vegetatif, bunga, buah (muda –matang): sawo, sirsat, pala hampir tidak

bermusim

c) Dipengaruhi musim: jambu biji, apel, jeruk, anggur

Keunikan Klasifikasi Berbasis Habitus Tanaman

Tidak selalu terkait dengan kekerabatan taksonomi

Satu jenis tanaman dapat menjadi anggota beberapa kelompok secara artifisial

pepaya yang dicabangkan…(?)

Satu kelompok biasanya merujuk syarat agroklimat yang serupa; misalnya durian –nangka – kakao … sama-sama cauliflorous cocok untuk daerah tropika basah

Berbatang Tunggal Bercabang-cabang

Pertumbuhan kontinyu Pertumbuhan berirama

Tajuk : Akar mantap Tajuk : Akar berubah-ubah

Produksi :

Tinggi

Terus meningkat

Sepanjang tahun

Produksi :

Rendah

Tidak pasti

Kebanyakan musiman

Kondisi tumbuh yang baik

meningkatkan pembentukan buah

daripada pertumbuhan

Kondisi tumbuh baik, meningkatkan

pertumbuhan; pembuahan harus

berimbang dengan pertumbuhan

Potensi Peningkatan produktivitas

terbatas:

Peningkatan kondisi tumbuh

Pemuliaan tanaman

Potensi Peningkatan produktivitas

sangat spektakuler:

Manipulasi langsung ke pohon

Perbandingan Karakter Spesies Berbatang Tunggal dan

Spesies Bercabang

(E.W.M. Verheij, 1986. Towards a classification of tropical fruit tress. Acta

Horticulturae 175:137-150)

Kelompok Pohon Bercabang(Branched Trees)

1. Tumbuh dan berbuah terus-menerus; tidak bermusim: markisa, lamtoro, talok (kersen)…. Dll.

2. Ada perbedaan antara tunas vegetatif dan tunas bunga:

a) Cauliflorous: tunas bunga tumbuh di batang dan/atau cabang: durian, nangka, kakao, nam-nam

b) Dimorfism: satu tempat, tetapi berbeda wujud: apel, kopi, anggur, jeruk

c) Campuran: bunga ada di batang, cabang dan aksilar: belimbing, jambu bol, jambu air

Kelompok Tanaman Bercabang(Branched Trees)

3. Ada irama pertumbuhan (perbedaan waktu antara vegetatif dan pembungaan)

a) Pertumbuhan serempak (bermusim) umumnya berbunga terminal: mangga, rambutan, apokad

b) Tidak serempak; sehingga dalam satu waktu dapat ditemui tunas vegetatif, bunga, buah (muda –matang): sawo, sirsat, pala hampir tidak

bermusim

c) Dipengaruhi musim: jambu biji, apel, jeruk, anggur

Keunikan Klasifikasi Berbasis Habitus Tanaman

Tidak selalu terkait dengan kekerabatan taksonomi

Satu jenis tanaman dapat menjadi anggota beberapa kelompok secara artifisial

pepaya yang dicabangkan…(?)

Satu kelompok biasanya merujuk syarat agroklimat yang serupa; misalnya durian –nangka – kakao … sama-sama cauliflorous cocok untuk daerah tropika basah

USULAN SUB-Kelompok: Multi-single Stemmed (WDW, 2009)

Hasil pengamatan produksi dan pola pertumbuhan pada tanaman-tanaman tipe cacti (tunggal = cactus)

Fenomena jelas pada buah naga (Hylocereus sp.)

Tanaman bercabang-cabang dengan modifikasi lanjut ranting menjadi “sistem duri”; fungsi daun digantikan oleh parenchyma sayap batang (stem wings)

Beberapa karakter Buah Naga

Beberapa karakter Buah Naga

Beberapa karakter Buah Naga

Beberapa karakter Buah Naga

Beberapa karakter Buah Naga

Contoh penelitian terkait klasifikasi habitus

1. Pepaya: Beberapa aspek (pembungaan, pertumbuhantanaman, manipulasi penyerbukan, perbaikanmutu buah) disertasi Ir Ketty Suketi, MSi)Pemangkasan pepaya membuktikanpengubahan habitus tidak mempengaruhi hasilper pohon

2. Mangga (W. D. Widodo, 2005)

3. Buah Naga menunggu peminat

Effect of low temperature and

photoperiod on flower bud differentiation

of ‘Irwin’ mango trees

Winarso Drajad Widodo

Project Leader: Hiroshi Fukamachi

Presentation Outline1. Background (Rationalities):

- the characteristics of mango

- mango in the subtropics

2. Objectives of the study

- effective low temperature

- effective photoperiod (short days)

3. Methodology

- experimental design due to the growth-chamber facilities

- observation and measurement

4. Results

- preliminary experiments – third experiment

- effect of treatments on shoot-dome appearances

5. Conclusion

6. Further Issues to be Investigated

7. Acknowledgement

Mango (Mangifera indica L.)

The mango supposedly originated in the

Indo-Burma region, that is in the margin of

area of the distribution of the Mangifera

genus, and in fact in the subtropics

(Verheij, 1992)

It has been cultivated in India for

thousand years, and spread throughout

South-East Asia about 1500 years ago and

was native there (25ON – 25OS).

Background

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35H

arv

est

Ind

ex

Kapok Mango Subtrop spp

Non-seasonal Climatic Strongly seasonal

Source: Verheij (1986), Toward a classification of tropical fruit trees

Verheij’s classification: Mango is a branched species with

floral development and extended growth separated in

time. Usually with terminal inflorescence.

-Growth rhythm synchronous

-Responding to strong stimuli: thermo- and water-period

1. Mango is native to South

Asia (Eastern India and

Myanmar) and naturally

adapted to tropical

lowland (Morton 1987)

2. The developmental fate

of mango buds is strongly

influenced by

temperature and water

relation (under the

tropics: 6 – 12 weeks

water stress)

3. In the subtropics

condition low night

temperature and low day

temperature induce

flowering.

generally in winter

Monthly temperature, day length and precipitation of Ishigaki

Island, related to Mango flowering

0

5

10

15

20

25

30

35

Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

deg

.C o

r h

ou

r

0

50

100

150

200

250

300

mm

/mo

nth

Max-temperature Min-temperature

day length Precipitation

flowering

4. In subtropics during winter the day length is shortest. Photoperiod (short day) may

role an important signal for flowering of mangoes grown in the subtropics.

Subtropical Flowering on Mangoes

Objectives

To determine the effective temperature

regime

To determine the effective photoperiod

To determine the effective combination of

temperature and photoperiod for flower-

bud differentiation in mango

Cultivated in subtropics

Materials & Methods

Plant Material:

Three-year-old ‘Irwin’ mangoes with at least 5 rest-shoots grown in 10-12 liters plastic container under greenhouse condition

60 trees were used in 3 series of experiment based on photoperiod exposure

15 Chosen trees then were grown in 3 growth chamber (5 trees of each) with different temperature regime, and 5 trees were remained under greenhouse cultivation as control

Treatments:

Day/Night temperature treatments:1. 15oC/10oC 2. 17oC/12oC3. 19oC/14oC

treatment duration: 14 days, conducted in 3

experiments separated in photoperiod.Examined photoperiods (circadian light/dark in hours):1. 12/12 hours: April 1 – 14, 20042. 10/14 hours: April 16 – 30, 20043. 8/16 hours: May 6 – 20, 2004

outer

inner

Observation & Measurement

Treated trees were grown under greenhouse condition for inflorescence observation and microscopic analysis

Microscopic inflorescence observation were conducted until second-flush formed after treatment (except experiment 3)

Microscopic analysis was done by Scalar Digital Microscope “USB Microscope M2” with 50x magnification, 10 days after treatment

Beside the appearance of vertical section of shoot-dome, the dome width was also measured as outer- and inner width

ResultsLow temperature treatments were decided based on the microscopic observation of shoots of the preliminary experiment that was conducted on 16 – 30 March 2004Treatments:1. 17O/12OC2. 19O/14OC3. Natural (max 31OC, min 25OC)

Photoperiod 12/12 hours.

There was no different on axial-bud appearances among the treatments and remained dormant.

Axial-bud

Preliminary Experiment (12/12 hr)Microscopically Investigation:

March 31, 2004 (0 days After Treatment)

Natural17oC/12oC 19oC/14oC

natural

19o/14oC

17o/12oC

Preliminary

4.24

5.15.48

0

1

2

3

4

5

6

7

19/14゜C 17/12゜C Natural

Ou

terW

idh

t (m

m)

Photoperiod: 12/12 hr

Observation was done 1 day after treatment:- Bud appearance was not clear - Outer-width of shoot-domes of treated trees

were wider than those of the natural. Low temperature flattened shoot-domes

natural

19o/14oC

17o/12oC

4.78

5.745.38

2.01

2.82

1.94

0

1

2

3

4

5

6

7

8

17/12 C゚ 19/14 C゚ Natural

Do

meW

idth

(m

m)

Outer

Inner

Experiment 1, first flush

Photoperiod: 12/12 hr

Observation was done 10 days after treatment:- Bud appearance was clear- No inflorescence primordial can be indicated

whether on natural shoots or treated shoots- Inner-width of shoot-domes of treated trees

were wider than those of the natural. 19O/14OC gave stronger affect on shoot-

dome widening compared to 17O/12OC.

natural

19o/14oC

17o/12oC

4.2

3.82

4.23

2.4 2.53 2.46

0

1

2

3

4

5

19/14 C゚ 17/12 C゚ Natural

Do

meW

idth

(m

m)

Experiment 1, second flush

Photoperiod: 12/12 hr

Observation was done 1 month after treatment on second flush:

- Bud appearance became similar among the treatments

- Inner-width of shoot-domes of all the trees were not different

Low temperature effect was eliminated

17o/12oC

15o/10oC

19o/14oC

5.71

6.19 6.00

2.84

3.58

2.88

0

1

2

3

4

5

6

7

8

15/10 C゚ 17/14 C゚ 19/14 C゚

Do

meW

idth

(m

m)

Experiment 2, first flush

Photoperiod: 10/14 hr

Observation was done 10 days after treatment:- Bud appearance was clear- No inflorescence primordial can be indicated

on all treated shoots- Inner-width of shoot-domes were wider

then those of the 12/12 hours (Exp 1) 15O/10OC gave more primordial leaves than

17O/12OC or 19O/14OC.

17o/12oC

15o/10oC

19o/14oC

6.49

5.495.07

2.93

2.452.24

0

1

2

3

4

5

6

7

8

15/10 C゚ 17/12 C゚ 19/14 C゚

Do

meW

idth

(m

m)

Experiment 2, second flush

Photoperiod: 10/14 hr

Observation was done 1 month after treatment on second flush:

- Once again like Exp. 1, bud appearance became similar among the treatments

- Inner-width of shoot-domes of all the trees were not different

Low temperature effect was eliminated

17o/12oC

15o/10oC

19o/14oC

6.90

5.47

6.69

3.41

2.69

3.91

0

1

2

3

4

5

6

7

8

9

15/10 C゚ 17/12 C゚ 19/14 C゚

Do

meW

idth

(m

m)

Experiment 3, first flush

Photoperiod: 8/16 hr

Observation was done 10 days after treatment:- Bud appearance was clear- No inflorescence primordial can be indicated

on all treated shoots- Inner-width of shoot-domes were wider

then those of the 10/14 hours (Exp 2) 15O/10OC gave most primordial leaves.

17o/12oC15o/10oC

19o/14oC natural

Conclusion

There was no emerged inflorescence whether on control (natural) and treated trees in all experiments; and all of the axial buds remained dormant after growing the trees under the greenhouse condition.

Shoot-domes of low temperature treated trees were wider than those of control (natural) trees

Deflowering

Natural

15o/10oC

17o/12oC

19o/14oC

Terminal bud appearance 6 weeks after treatment of

Experiment 2; Natural: without treatment, Deflowering:

natural growth after inflorescence abortion

15o/10oC 17o/12oC 19o/14oC

The appearance of 15O/10OC treated shoot was some like the naturally inflorescence aborted shoot. These phenomenon was weaker in the warmer treatments.

14 days treatment of low temperature may not sufficient to signal the flower bud differentiation on mango

Issues to be further investigated

Longer exposure of low temperature,

photoperiod and water stress

Deeper aspects of flowering physiology

e.g. endogenous hormone study during

flower induction and/or flower initiation

Thank you

有難う ございます。

top related