intro utk meh simulasi komputer ok ok

Post on 05-Feb-2016

248 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

MEH

TRANSCRIPT

INTRODUCTION INTRODUCTION TOTO

FINITE ELEMENT FINITE ELEMENT METHOD METHOD

(METODE ELEMEN (METODE ELEMEN HINGGA)HINGGA)

1

11. . Sejarah Metode Elemen HinggaSejarah Metode Elemen Hingga

2. 2. Apa Pentingnya Apa Pentingnya Metode Elemen HinggaMetode Elemen Hingga??

3. 3. Contoh Contoh ApliAplikasi kasi Metode Elemen HinggaMetode Elemen Hingga

4. Software4. Software berbasis berbasis Metode Elemen Metode Elemen

HinggaHingga

55. . Prosedur Umum Metode Elemen HinggaProsedur Umum Metode Elemen Hingga

Metode Elemen Hingga

OutlineOutline

Hrennikoff (1941) dan McHenry (1943) menggunakan elemen satu dimensi berupa elemen garis (=elemen batang).

Courant mengenalkan interpolasi atau fungsi,

Levy (1947) mengembangkan Metode kekakuan / metode perpindahan

Tuner dkk (1956) berhasil menurunkan matrik untuk element truss, element batang, dan elemen-elemen untuk analisa kasus-kasus 2 dimensi seperti element segitiga dan segi empat pada kondisi tegangan bidang. Juga mengenalkan prosedur metode kekakuan langsung (direct stiffness method) dan matrik kekakuan struktur.

3

1. Sejarah Metode Elemen 1. Sejarah Metode Elemen Hingga (MEH)Hingga (MEH)

Clough (1960) mengenalkan istilah MEH ketika elemen-elemen segitiga dan segi empat digunakan untuk analisa tegangan bidang

Gallagher dan Padlog (1963) berhasil mengembangkan MEH untuk memecahkan kasus bukling

Zienkiewicz (1968) melakukan pengembangan untuk kasus viskoelastisitas.

Belytschko (1970-an), mempelopori penggunaan MEH untuk menyelesaikan kasus-kasus pada struktur yang mengalami deformasi besar dan non linier.

4

Dua metode pendekatan yang digunakan di MEH :

1. Metode gaya atau fleksibelitas Gaya internal sebagai harga yang tidak diketahui dan selanjutnya dipecahkan.

2. Metode perpindahan atau kekakuan Asumsi perpindahan pada node sebagai harga yang tidak diketahui dan selanjutnya dipecahkan. Metode ini lebih banyak digunakan, karena formulasinya lebih sederhana untuk analisa struktur.

5

• Small cost compared with field experiments• Field experiments may be too dangerous• Field experiments may be impossible• Provide better understanding of the processes• Provide tools for process prediction and control• Easily demonstrated models • ...

6

2. Apa Pentingnya Metode Elemen 2. Apa Pentingnya Metode Elemen HinggaHingga

Posisi Metode Elemen Hingga

7

Computer Simulation is the process of exploring (mathematical) models of natural or man-made processes by the means of a computer.

MathematicalMathematicalModelModel

Experiment Experiment (Physical (Physical

Phenomenon)Phenomenon)

Computer Simulation FEM (Finite Element Method)FVM (Finite Volume Method)FDM (Finite Different Method)

BEM (Boundary Element Method)

Prediction & Control

Refinement

Computations

Results

DATASET UNSTRUCTURED_GRIDPOINTS 201 float2.77828 2.18262 -0.25 0.476 2.4 -0.85 0.85 2.4 -0.476 -0.476 2.4 -0.85 -0.85 2.4 -0.476 -0.85 2.4 0.476 -0.476 2.4 0.85 0.476 2.4 0.85 0.85 2.4 0.476 2.55 0.8625 0.66 CELLS 458 22904 41 29 65 80 4 53 41 65 82 4 35 34 47 71

Processes

Mathematical Model The The

Simulation Simulation PipelinePipeline

3. Contoh Aplikasi Metode Elemen 3. Contoh Aplikasi Metode Elemen HinggaHingga

Heartbeats and Flowing Blood

9

Millions of people suffer from atherosclerosis. Fatty blockages of the arteries gradually obstruct blood flow and ultimately causes the heart to stop beating. This remains one of the leading causes of heart attacks around the world.

Simulation of blood and other complex fluid flows may lead to changes in accepted surgical practices that will dramatically extend the life expectancy of those suffering from arterial diseases like atherosclerosis.

Attempts are made to develop arterial grafting techniques that will reduce atherosclerosis build up. Various graft designs can be tested through accurate simulations of the blood flow. In a few years computations may be used by surgeons on a routine basis to evaluate graft designs and chose the one that is best suited for the individual patient.

Electrical Heart Activity

10

Simulation of the electrical activity in the human heart based on a model coupling several PDEs and ODEs.

The visualised electrical potential represents a period of 250 ms. This problem is extremely demanding in terms of computational resources and requires advanced solution methods and fast hardware.

Have you quit smoking?

11

Results from 3-D lung airflow modeling, depicting flow velocity at selected cross-sections in a single bifurcation.

Earth & Environment

12

To better understand the evolution of the Earth and the processes making up our environment, simulation is an indispensable tool.

Manufacturing Processes

Today, almost any industrial branch use simulationas a tool for evaluating, predicting and optimizing themanufacturing processes. This is mainly due to bettercost effectiveness and reduced risks.

Physical Problem

Elements in contact

Contact width

MSCMarc Plot result

SIMULASI TIGHTENING GASKET Peningkatan Contact width - Plastic

Contact Stress Pengurangan Clamping Load

Rigid Body (upper flange)

Rigid Body (lower flange)

Compression

Axisymmetric model•Before deformation

•After deformation

DESAIN DESAIN NEW CORRUGATED METAL NEW CORRUGATED METAL GASKETGASKET

BLANK HOLDERPUNCHPUNCH

1 1

UPPER DIE

Metal Gasket diproduksi dengan Press Forming

PEMBUATAN PROTOTYPE DIES

Desain Proses di simulasi sebelumnya untuk mendapatkan data awal optimasi proses

mereduksi cacat produk sesuai

desain Desain DIES-

PUNCH

Automotive Industries

15

Crash BoxBumper

Member

Crushable Zone Cabin

Front Unit

Car crash simulations

• Over the last 50-55 years

• Computers have become 1,000,000 times faster.

• Numerical methods for typical PDEs have become 1,000,000 times faster

• The number of applications has exploded

• Development of simulation software has started to accelerate and will continue to do so over the next years.

16

4. Software Berbasis Metode 4. Software Berbasis Metode Elemen HinggaElemen Hingga

Software - The Heart of Simulation

17

Computing in Parallel

• At any time scientists want to fill the largest and fastest computers to solve their problems:

• by adding complexity

• by using finer grid resolutions (more data) in order to get better results

• Split problem into sub-problems, solve in parallel on many CPUs (or computers).

18

Computing in Parallel

Computing in Parallel

Computing in ParallelComputing in

Parallel

Beyond the Teraflop

19

June 1997: Full ASCI Red at Sandia National Lab achieves 1.3 teraflops.

(teraflop = trillion floating point

operations).

See: http://www.top500.org

• 9,216 Pentium CPUs• 584.5 Gb RAM• 1 Tb disk space• 110 sq. meters footprint

November 2001:ASCI White (LLNL)

Rpeak 7.2 teraflopsRmax: 12.3 teraflops

The Sleipner platform

20

Sleipner A platform:

• Condeep platform

• 82 m water depth

• 24 cells with total base area 16 000 m2

• Top deck 57 000 tons

• Drilling equipment weighing 40 000 tons

• Accommodation for 200 people

The Sleipner A incident23 August 1991: Concrete base structure sprang a leak and sank in Gandsfjorden outside Stavanger:

• The crash caused a seismic event registered 3.0 on the Richter scale

• All that was left was a pile of debris at 220 m of depth• Total economic loss of about $700 million.

Cause of accident:• Failure in cell wall, leading to uncontrolled leakage• Inaccurate FEM (in NASTRAN) -> shear stresses underestimated by 47% -> too thin concret walls in supporting cells

Refined analysis:• Failure at 62 m of depth as opposed to actual occurrence at 65 m

21

22

Although simulation has many advantages, there are also some disadvantages of which the simulation practitioner should be aware

These disadvantages include the following:

• Simulation cannot give accurate results when the input data are inaccurate.

• Simulation cannot provide easy answers to complex problems.

• Simulation cannot solve problems by itself.

Langkah ke 1 : Memilih jenis elemen dan diskritisasiBodi kontinum dibagi menjadi elemen-elemen yang terdiri dari beberapa node (diskritisasi). Sebelumnya, harus ditentukan jenis elemen yang sesuai untuk memodelkan kondisi fisik sebenarnya. Di dalam pendiskritan ini, memungkinkan ukuran elemen berbeda sesuai dengan kondisi geometri dari suatu struktur.

23

5. Prosedur Umum 5. Prosedur Umum MEHMEH

Contoh jenis elemen

24

Langkah ke 2 : Memilih fungsi perpindahanMendefinisikan harga perpindahan dari tiap-tiap node dan jenis fungsi tersebut tergantung dari jumlah node yang digunakan di dalam elemen.Yang sering digunakan adalah fungsi linier, kwadratik dan kubik polynomial (tidak rumit atau sederhana) untuk memformulasikan elemen.Didapat dengan menggunakan segitiga Pascal.

25

Langkah ke 3 : Mendefinisikan hubungan antara regangan/perpindahan dan tegangan/regangan

• Untuk kasus deformasi elastis (kecil) pada satu dimensi, misalnya, pada arah x dengan perpindahan u, dinyatakan dengan strain, x

• Hubungan tegangan dan regangan dapat dinyatakan sesuai dengan hukum Hook, dimana x menyatakan tegangan ke arah sumbu x dan E adalah modulus elastisitas.

26

dx

dux

xx E

Langkah ke 4 : Menurunkan rumus dan matrik kekakuan elemen

• Metode kesetimbangan langsung (Direct Equilibrium Method) kekakuan matrik dan rumus elemen yang berhubungan dengan gaya dan perpindahan pada node diperoleh dengan menggunakan kondisi kesetimbangan gaya. Rumus ini sederhana dan mudah Elemen satu dimensi, misalnya untuk elemen pegas atau batang.

• Metode Energi untuk elemen-elemen dua dimensi dan tiga dimensi.

27

Langkah ke 5 : Menggabungkan rumus elemen untuk mendapat rumus global dan menentukan kondisi batas

Langkah ke 6 : Menyelesaikan atau memecahkan derajat kebebasan yang tidak diketahui

Langkah ke 7 : Menghitung harga tegangan dan regangan pada elemen

Langkah ke 8 : Menginterprestasikan hasil

28

29

top related