5 turbin uap 3.35 mb

Upload: mpahmte

Post on 09-Jan-2016

48 views

Category:

Documents


3 download

DESCRIPTION

turbin uap

TRANSCRIPT

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-1

    5. TURBIN UAP 5.1 PENDAHULUAN

    Turbin uap terutama digunakan di Pusat Pembangkit Listrik Tenaga Uap (PLTU) dan di industri. Di PLTU, turbin uap dipergunakan untuk menggerakkan generator. Di industri, turbin uap selain untuk menggerakkan generator (untuk pembangkit listrik kawasan industrinya) juga sebagai pemutar kompresor, pompa, dan berbagai proses lainnya. Klasifikasi turbin uap dapat dibagi dalam beberapa kelompok yaitu:

    a. Berdasarkan jumlah tingkat: 1. Turbin satu tingkat (single stage) 2. Turbin bertingkat (multistage)

    b. Berdasarkan arah aliran uap: 1. Turbin radial 2. Turbin aksial

    c. Berdasarkan jumlah silinder: 1. Turbin silinder tunggal 2. Turbin silinder ganda 3. Turbin silinder tiga 4. Turbin silinder empat Silinder merupakan poros dan tromol di mana sudu-sudu turbin dipasang.

    d. Berdasarkan jumlah poros: 1. Turbin silinder jamak dengan rotor tunggal dan dikopel dengan generator

    tunggal, dikenal dengan nama turbin poros tunggal. 2. Turbin-turbin dengan poros lebih dari satu dan diparalel disebut sebagai turbin

    poros jamak (multiaxial). e. Berdasarkan prinsip kerja uap:

    1. Turbin impulse (turbin aksi, turbin tekanan rata), tekanan uap di sisi masuk turbin sama dengan sisi keluar. Ekspansi uap terjadi pada nosel (nozzle) atau karangan sudu arah.

    2. Turbin reaksi (turbin tekanan tak rata), bila tekanan uap di sisi masuk lebih besar daripada di sisi keluar. Ekspansi uap terjadi baik di karangan sudu arah yang merupakan nosel maupun di sudu jalan.

    f. Berdasarkan penurunan panas: 1. Turbin berkondensor, condensing turbine, atau dikenal juga dengan turbin

    siklus tertutup. 2. Turbin berkondensor dengan satu atau dua tingkat ekstraksi pada tekanan

    tertentu untuk kebutuhan kalor lain (water heater misalnya). 3. Turbin siklus terbuka, back pressure turbine, tanpa dilengkapi kondensor.

    Kondensor dapat menurunkan tekanan menjadi sangat rendah, jadi bila turbin tidak dilengkapi kondensor maka tekanan di sisi keluar akan lebih tinggi daripada turbin berkondensor.

    4. Topping turbine, jenis back pressure turbine yang biasanya dipergunakan pada waktu peningkatan daya terpasang suatu instalasi. Biasanya turbin ini akhirnya akan dilengkapi dengan kondensor sehingga berfungsi seperti turbin berkondensor biasa.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-2

    5. Back pressure turbine dengan beberapa ekstraksi uap di beberapa tingkat untuk memasok uap dengan spesifikasi tekanan dan temperatur tertentu.

    g. Berdasarkan kondisi uap pada sisi masuk: 1. Turbin bertekanan rendah, 1 2 bar. 2. Turbin bertekanan menengah, sampai 40 bar. 3. Turbin bertekanan tinggi, diatas 40 bar. 4. Turbin bertekanan sangat tinggi, diatas 170 bar dan bertemperatur diatas 550

    oC. 5. Turbin superkritikal, menggunakan uap bertekanan 225 bar.

    h. Berdasarkan sifat penggunaannya: 1. Turbin stasioner dengan kecepatan konstan, biasanya digunakan untuk

    memutar alternator di PLTU. 2. Turbin stasionar dengan kecepatan variable, biasanya untuk memutar

    kompresor, pompa dan sebagainya. 3. Turbin nonstasioner dengan kecepatan variable, misalnya yang digunakan di

    kapal, lokomotif dan sebagainya. Dari klasifikasi -f- di atas, dua macam instalasi turbin uap yang banyak dijumpai adalah:

    1. instalasi turbin uap tertutup (condensing turbine). 2. instalasi turbin uap terbuka (back pressure turbine).

    Instalasi tertutup menggunakan fluida kerja yang mengikuti jaringan tertutup. Di sini diperlukan kondensor untuk mengkondensasikan kembali uap, kemudian pompa dan boiler untuk menaikkan energi air dari kondensor untuk disirkulasikan secara tertutup menuju ke turbin uap kembali. PLTU menggunakan prinsip kerja ini, selain untuk menjaga kebutuhan air kerja yang ketat syarat kualitasnya juga secara nyata dapat menaikkan efisiensi total PLTU. Instalasi terbuka tidak menggunakan kondensor. Uap yang keluar dari turbin masih tinggi temperatur dan tekanannya dan sisa energi ini dipergunakan dalam proses lain di pabrik. Di industri kedua system instalasi ini dapat kita jumpai.

    Gambar 5.1 berikut menunjukkan contoh skema instalasi terbuka dan tertutup. Gambar 5.1b menunjukkan system kombinasi antara instalasi terbuka dengan tertutup di industri.

    (a) (b)

    Gambar 5.1. Contoh skema system instalasi turbin uap terbuka (a) dan kombinasi terbuka dan tertutup (b).

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-3

    Jalur uap bekas adalah uap yang telah dipergunakan turbin untuk dipergunakan pada proses produksi dalam industri tertentu, misalnya kilang minyak, pabrik pupuk dan sebagainya. Gambar berikut menunjukkan skema instalasi turbin uap tertutup yang dilengkapi dengan unit pemanfaat panas (economizer), pemanas ulang (reheater) dan pemanas lanjut (superheater).

    (Pic05tu) Gambar 5.2. Contoh skema instalasi turbin uap tertutup dengan economizer, reheater dan

    superheater.(Pic05tu)

    Gambar 5.3 berikut menunjukkan skema aliran turbin uap tertutup sederhana.

    Gambar 5.3 Skema aliran siklus Rankine sederhana.

    Dari gambar, WT adalah kerja keluar poros turbin. Qklr adalah panas yang dikeluarkan melalui kondensor. Qmsk adalah panas yang masuk ke sistem melalui boiler (ketel). WP adalah kerja yang masuk sistem melalui poros pompa.

    Gambar 5.4 berikut menunjukkan diagram T-s siklus tertutup suatu turbin uap 1 tingkat sederhana.

    G

    1

    2 3

    4

    5 6 7

    169,7bar 538c 39,6bar 538c

    ITIT TTM

    TTR TTR

    600MW

    Boiler 0,0864bar

    41,8

    ba

    r

    22,3

    ba

    r

    10,3

    ba

    r

    10,3

    ba

    r

    5,1

    bar

    5,1b

    ar

    2,2

    bar

    1,1

    bar

    0,42

    ba

    r

    Kondensor

    Air

    Penam

    bah

    525c

    184,3c 180,4c

    184,8c

    119,8c 99,4c 74c

    2x7100kW

    0,0864

    bar

    Kondensor

    Turbin

    Qmsk

    TW

    klrQ

    Pompa

    Boiler

    pW

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-4

    (Fig2-02tu) Gambar 5.4 Diagram P-v dan T-s turbin uap sederhana, menunjukkan diagram tanpa dan

    dengan pemanas lanjut.

    Langkah 1-2 : langkah ekspansi isentropik di turbin. 2-3 : langkah pengeluaran panas ke penyedot panas di kondensor 3-4 : langkah penaikan tekanan isentropik di pompa pemasok air boiler 4-1 : langkah pemasukan kalor dengan tekanan konstan dalam boiler

    Langkah 1-1 : langkah pemanasan lanjut (superheated) 2-2 : langkah pengeluaran panas dikondensor Langkah 2-3 merupakan satu langkah yaitu pengeluaran panas di kondensor. Proses ideal ditunjukkan dengan siklus tertutup 1-2-3-4-1. Energi yang masuk (berupa energi panas melalui boiler dan energi poros melalui poros pompa) dinyatakan dengan luas area a-3-4-j-1-2-b-a pada Gambar 5.4 (b). Sedangkan energi panas yang keluar melalui kondensor ditunjukkan dengan luas area a-3-2-b-a. Untuk menaikkan kerja keluar yang dapat dihasilkan, pada gambar (b) siklus yang berjalan dimodifikasi dengan penambahan pemanas lanjut (superheater), yang ditunjukkan pada langkah 1-1. Siklus menjadi 1-1-2-3-4-j-1.

    5.2 SIKLUS RANKINE YANG IREVERSIBEL Pertukaran kalor pada penukar panas terjadi karena ada perbedaan temperatur antara yang dipanaskan dengan yang memanaskan. Aliran kalor terjadi dari sisi yang bertemperatur tinggi ke sisi yang bertemperatur rendah. Dalam hal di boiler, sisi bertemperatur tinggi (sumber panas-heat source) adalah api, gas panas atau fluida panas lainnya (di reaktor nuklir). Sedangkan sisi bertemperatur lebih rendah (penyedot panas-heat sink) adalah fluida kerja (air atau uap) dalam boiler. Siklus yang ireversibel terjadi akibat kalor hanya bisa mengalir dari sisi bertemperatur tinggi ke sisi bertemperatur rendah, hal yang sebaliknya adalah tidak mungkin. Gambar 5.5 berikut menunjukkan proses pertukaran panas antara sumber dengan penyedot. Akibat aliran kalor ini, sumber akan turun temperaturnya, sedangkan penyedot akan naik. Hal ini digambarkan dengan garis a-b untuk proses pendinginan sumber panas dan garis 4-j-1 untuk proses pemanasan penyedot panas. Kondisi ireversibilitas akan membatasi kemungkinan terjadinya penyilangan dua garis tersebut.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-5

    (Fig2-03tu) Gambar 5.5 Diagram T-s mengakomodir konsep Pinch untuk boiler dan kondensor.

    Pada gambar diatas, arah garis-garis penurunan temperatur dan kenaikan temperatur adalah saling berlawanan. Kondisi ini kita sebut sebagai proses berlawanan arah (counterflow). Sebaliknya, bila arah penurunan dan kenaikan temperatur adalah sama, prosesnya kita sebut sebagai proses searah. Titik-titik diantara dua garis yang terpendek disebut sebagai titik pinch. Dalam prakteknya proses yang berlawanan arah lebih banyak digunakan daripada proses searah karena beda temperatur keseluruhannya antara sumber dan penyedot panas tidak sebesar proses paralel. Gambar berikut menunjukkan konsep ini.

    (Fig2-04tu) Gambar 5.6 Beda temperatur antara proses searah (a) dan berlawanan arah (b).

    Jenis fluida juga menentukan beda temperatur antara sumber dan penyedot panas. Pertukaran panas antara gas dengan gas, meskipun dengan perantara pipa yang sama, akan lebih rendah kapasitasnya dibandingkandengan antara gas dengan cair. Hal ini ditunjukkan dengan gambar berikut. Gambar (a) adalah antara gas dengan cair, sedangkan gambar (b) adalah antara gas dengan gas.

    Ta

    b1j

    4 4

    j 1

    a

    b

    T

    e

    LL atau H(b)(a)

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-6

    (Fig2-05tu) Gambar 5.7 Beda antara fluida sumber dan penyedot panas.

    (Fig2-06tu) Gambar 5.8 Perbandingan antara pemanas lanjut menggunakan air sebagai fluida primer

    (a) dan gas atau metal cair sebagai fluida primer (b).

    Gambar 5.9 Skema turbin uap bertekanan tinggi dan rendah dengan pemanas ulang. Bila di pasal depan telah diterangkan perlunya penambahan instalasi pemanas lanjut (superheater) maka pada gambar diatas ditunjukkan instalasi pemanas ulang (reheater). Pemanas ulang sebenarnya sama fungsinya dengan pemanas lanjut, tetapi dilakukan pada tekanan uap yang lebih rendah. Uap di by-pass pada sisi keluar turbin tekanan tinggi untuk dialirkan kembali ke boiler. Di boiler uap dipanaskan kembali untuk

    4

    b ea

    1j

    4

    j 1

    a

    e

    b

    (a) (b)

    Turbin tekanan tinggi

    tekanan Turbin

    rendah

    Kondensor

    Pompa

    Pemanas lanjut

    Boiler

    Pengekonomis

    5

    Beban

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-7

    meningkatkan kembali entalpinya. Uap yang telah dipanaskan ulang ini dikembalikan ke turbin tekanan rendah untuk kembali diekspansikan dan diambil energinya. Gambar berikut menunjukkan diagram T-s siklus ideal dengan pemanas ulang ini.

    Gambar 5.10 Diagram T-s turbin uap tekanan tinggi dan rendah dengan pemanas ulang.

    Pada gambar ditunjukkan pula garis pinch antara sumber panas (di boiler) dengan penyedot panas (di boiler dan pemanas ulang). Lihat titik mula proses sumber panas dimulai dari atas titik 3 penyedot panas.

    Gambar 5.11 Turbin uap dengan 2 ekstraksi 3 tingkat tidak ideal.

    Gambar diatas menunjukkan skema aliran dan diagram T-s turbin uap siklus Rankine tak ideal dengan dua buah pemanas air pasok tipe terbuka. Uap panas hasil ekstraksi dari turbin dicampur dengan air pemasok boiler yang lebih dingin temperaturnya. Keseimbangan tekanan dan temperatur antara uap hasil ekstraksi dengan air pemasok harus diatur dengan baik. Beberapa konfigurasi turbin uap tanpa ekstrasi uap (gambar a) dan dengan ekstrasi uap di antara turbin tekanan tinggi dan rendah ditunjukkan dalam gambar-gambar berikut.

    P 5

    Cm3

    Boiler

    4321 T

    67

    89

    10 PP

    m2

    T

    (a)

    h

    s

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-8

    (Fig5-24tu) Gambar 5.12 Beberapa konfigurasi turbin reaksi antara lain dengan ekstraksi uap.

    5.3 KEBUTUHAN ENERGI INTERNAL DAN EFISIENSI

    Gambar 5.13 Aliran energi pada suatu PLTU. Sebagian energi yang dihasilkan turbin tidak dapat dipergunakan untuk melayani kebutuhan luar. Sebagian energi ini diperlukan untuk mentenagai peralatan internal yang dibutuhkan antara lain:

    1. Pompa pemasok boiler (termasuk dalam siklus). 2. Peralatan tambahan, antara lain:

    a. Pulverizer (penghalus batubara). b. Pengolah air (water treatment). c. Motor dan peralatan kontrol. d. Conveyor batubara, pompa minyak atau kompresor gas untuk PLTU

    batubara, minyak atau gas. e. Pengolah limbah padat dan cair. f. Pompa-pompa pendingin. g. Mesin pendingin kondensor. h. Air conditioning bangunan kantor.

    PompaKondensor

    Kalor

    Turbin

    Generator

    Boiler

    Poros

    Kerjakotor Kerjaneto

    ke pompatambahanke peralatan

    Panas keluar

    masuk

    dalam lainke kebutuhan

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-9

    i. Lampu penerangan j. dan peralatan lainnya.

    Untuk menentukan unjuk kerja sistem, dikenal beberapa istilah, antara lain: 1. Efisiensi termal (thermal efficiency), adalah rasio kerja neto terhadap jumlah

    kalor yang diperlukan oleh pembangkit tenaga. Efisiensi termal pembangkit akan lebih kecil daripada efisiensi yang dihitung dalam siklus karena perhitungan untuk yang terakhir ini tidak memasukkan energi yang diperlukan untuk peralatan-peralatan bantu dan energi akibat ireversibiltas dalam prosesnya.

    2. Efisiensi kotor (gross efficiency), berbeda dengan efisiensi termal, efisiensi kotor dihitung berdasarkan rasio kerja kotor dari turbin dan generator.

    3. Efisiensi bersih (net efficiency), dihitung berdasarkan kerja neto dari plant, yaitu energi kotor dikurangi dengan energi yang diperlukan plant.

    Pemilik pembangkit listrik pada umumnya menginginkan ukuran efisiensi yang dapat menunjukkan unjuk kerjanya dari sudut pandang ekonomi sebagai akibat biaya-biaya yang harus dikeluarkan untuk membangun dan menjalankan instalasi seperti investasi, bahanbakar, operasi dan perawatannya. Untuk itu diperkenalkan ukuran lain yaitu heat rate (HR), yang menyatakan jumlah kalor yang dimasukkan (biasanya dalam Btu) untuk memproduksi satu satuan energi, biasanya dalam kWh. Satuannya adalah Btu/kWh. HR adalah kebalikan secara proporsional dari efisiensi. Jadi makin kecil HR akan makin baik. Ada beberapa definisi HR menurut variabel pembandingnya, yaitu:

    1. HR neto siklus = [ [kalor masuk siklus BTU] kkal]kerja neto siklus [kWh] [kWh]

    2. HR kotor siklus = [ [kalor masuk siklus BTU] kkal]kerja output turbin [kWh] [kWh]

    3. HR neto stasiun = [ [kalor masuk ke boiler BTU] kkal]kerja output stasiun [kWh] [kWh]

    4. HR kotor stasiun = [ [kalor masuk ke boiler BTU] kkal]kerja kotor turbin dan generator [kWh] [kWh]

    (5.1) Karena 1 kWh = 3412 Btu, maka:

    HR = teoretik

    3412 (5.2)

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-10

    5.4 KOMPONEN TURBIN UAP Komponen utama turbin uap terdiri dari:

    a. Rumah turbin (casing), umumnya terdiri dari belahan tutup atas dan rumah bagian bawah

    b. Poros dan piringan sudu jalan (rotor) c. Piringan sudu arah dan nosel d. Bantalan aksial dan radial e. Penyekat (umumnya dari jenis labirint) f. Peralatan kontrol uap (steam chest)

    Sudu Arah dan Sudu Gerak

    Gambar 5.14 Tampak belahan turbin uap (Siemens)

    Gambar 5.15 Gambar potongan turbin uap (Shin Nippon Machinery).

    1. Kopling, 2. Bantalan luncur, 3. Poros turbin, 4. Tutup (casing) atas, 5. Piringan dan sudu jalan, 6. Piringan dan sudu arah, 7. Rumah (casing) turbin bawah, 8. Labirint, 9. Bantalan radial dan aksial, 10. Penumpu (pedestal) bantalan depan, 11. Penumpu (pedestal) bantalan belakang, 12. Sistem kontrol hidrolik, 13. Katup pengontrol.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-11

    Gambar 5.16 Rotor impuls 2 tingkat (Shin Nippon Machinery).

    i. Aliran Uap di Nosel Persamaan konservasi energi bentuk umum akan dipergunakan dalam

    mempelajari proses perubahan energi didalam nosel, yaitu:

    1

    211

    10

    200

    0 22gz

    Vpugz

    Vpu +++=+++

    atau 12

    110

    20

    0 22gz

    VhgzVh ++=++ (5.3)

    Disini h adalah entalpi fluida dengan satuan [m2/s2]. Indeks 0 menyatakan kondisi sisi awal nosel dan 1 menyatakan sisi keluar nosel. Notasi kecepatan V pada rumus diatas dapat diganti dengan C sebagai notasi yang dipergunakan pada sistem mesin pada mesin konversi energi. Selanjutnya beda ketinggian antara sisi masuk dan keluar nosel sangatlah kecil peranannya dalam menyumbang perubahan bentuk energi, sehingga dapat diabaikan. Energi kinetik spesifik fluida masuk nosel:

    2

    20C

    [m2/s2]

    Energi kinetik spesifik fluida keluar nosel:

    2

    21C

    [m2/s2]

    Dengan menggunakan persamaan konservasi energi, penambahan energi kinetik pada nosel diperoleh dari penurunan entalpi fluida dari h0 ke h1. Jadi:

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-12

    1010

    20

    21

    22gzgzhhCC += [m2/s2] (5.4)

    Untuk fluida kompresibel ideal pada nosel tanpa timbulnya gelombang kejut, dengan mengabaikan kecepatan fluida masuk nosel C0 dan beda ketinggian z0 dan z1, maka:

    ( )101 2 hhC = [m/s] (5.5) Bila fluidanya tidak ideal, maka perlu diintrodusir faktor kerugian , sehingga kecepatan C dapat dirumuskan sebagai berikut:

    ( )101 2 hhC = (5.6) Disini (h0 h1) adalah penurunan entalpi melalui noselm dalam m2/s2 atau kJ/kg. Untuk aliran isentropik di nosel, Tds = dh vdp (5.7)

    Diintegrasikan 1 1

    0 0dh vdp= , atau

    1

    0 1 0h h vdp =

    Selanjutnya dengan menggunakan asumsi hukum npv = konstan, di mana n adalah eksponen isentropik, dari Pers (5.5), didapat:

    ( ) ( )1 11 12 1 11

    0 0 1 10 02n nk kk kC p v p dp p v p dp

    =

    ( )0 0 1 11n p v p v

    n=

    =

    1

    10 0

    0

    11

    n

    npn p vn p

    Atau

    1

    11 0 0

    0

    2 11

    n

    npnC p vn p

    =

    (5.8)

    Laju aliran uap adalah:

    1

    0 01 1 11 2

    1 1 0

    2 11

    n

    np vAC pnm A

    v n v p

    = =

    & (5.9)

    atau

    2 1

    01 1 1 11

    1 0 0 0

    21

    n

    n npAC p pnm A

    v n v p p

    +

    = =

    & (5.9a)

    Laju massa m& menjadi maksimum bila turunan persamaan di atas ada dan sama dengan nol, yaitu:

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-13

    2 1

    1 1

    0 0

    0

    0

    n

    n np pdp ppd

    p

    +

    =

    atau

    2 1

    1 1

    0 0

    2 1 0

    n

    n np pnn p n p

    + =

    Jadi, 1

    0

    21

    n*

    npp k

    = +

    (5.10)

    Di mana p* adalah tekanan kritik, dan persamaan di atas berarti rasio tekanan kritiknya. Bila dikehendaki pklr < p* maka harus dipergunakan nosel jenis konvergen-divergen yang memiliki leher nosel. Bila dikehendaki pklr > p* maka harus dipergunakan nosel jenis konvergen. Kecepatan uap pada leher nosel, yang merupakan kecepatan kritiknya, dirumuskan sebagai berikut:

    044 72* *C , h h=

    di mana h0 h* adalah penurunan entalpi uap pada sisi konvergen dari nosel. Penurunan entalpi ini dapat dibaca pada diagram Mollier. Bila noselnya hanya konvergen, tekanan minimum di mana uap dapat berekspansi adalah tekanan kritiknya bila laju uap keluarnya mencapai harga maksimumnya dan kecepatan keluar uap mencapai kecepatan suaranya (sonik). Kecepatan kritik dapat diperoleh dari Pers. (5.8) dengan disubstitusi rasio tekanan kritiknya.

    1 0 02 21

    1 1* nC p v

    n n

    =

    +

    0 02

    1n p v

    n=

    +

    Sebagai contoh, untuk uap panas lanjut, k = 1,3, sedangkan untuk uap kering, k=1,135. Di sini, k adalah eksponen politropik. Efisiensi nosel dinyatakan sebagai:

    0 1

    0nosel

    is

    h hh h

    =

    Untuk gas ideal,

    ( )( )

    0 1 0 1

    0 0

    pnosel

    p is is

    c T T T Tc T T T T

    = =

    Bila kecepatan riel uap keluar nosel adalah C1 dan kecepatan idealnya adalah Cis, maka:

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-14

    2 21 0

    2 20

    noselis

    C CC C

    =

    Bila kecepatan awal dapat diabaikan,

    21

    2noselis

    CC

    =

    Gambar 5.17 Nosel dan diafragma turbin uap.

    Gambar 5.18 Diafragma (SNM).

    Nosel

    Gambar 5.19 Nosel jenis dilas.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-15

    Nosel

    Gambar 5.20 Nosel jenis reaming.

    ii. Aliran Uap di Sudu Gerak Aliran uap di sudu gerak dapat dikelompokkan sebagai aliran tekanan tetap (pada turbin aksi) dan aliran tekanan tidak tetap (pada turbin reaksi). Penjelasan untuk turbin aksi dan reaksi diberikan pada pasal-pasal selanjutnya.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-16

    5.5 DERAJAT REAKSI Derajat reaksi R adalah rasio penurunan energi tekanan di sudu terhadap energi spesifik keseluruhan. Atau:

    2 3pYRY

    = (5.11)

    dimana: Yp2-3 adalah beda energi tekanan spesifik fluida masuk dan keluar sudu gerak.

    Y adalah energi spesifik fluida semula. Dalam hal penulisan dengan entalpi, Pers. (5.11) di atas dapat ditulis sebagai:

    sudugerak

    sudu arah sudu gerak

    hR

    h h

    =

    +

    Bila R = 0 yang didapat bila 0sudugerakh = maka turbin disebut sebagai turbin aksi, turbin impuls atau turbin tekanan rata. Bila 0 > R > 1 maka turbin disebut sebagai turbin reaksi atau turbin tekanan lebih. Bila R = 1 yang didapat bila 0sudu arahh = maka turbin disebut sebagai turbin reaksi penuh.

    Turbin Hero merupakan contoh untuk turbin reaksi penuh (R = 1), karena sudu arahh =0 (lihat Pasal 5.6). Lihatlah turbin dengan karakteristik sebagai berikut. Diagram segitiga kecepatan satu tingkat turbin uap digambarkan sebagai berikut:

    Gambar 5.21 Diagram kecepatan suatu tingkat turbin uap. Kecepatan C1 = W2, C2 = W1 Sudut 1 = 2 2 = 1 Sudu ini tidak simetrik, seperti ditunjukkan pada Gambar 5.23.b. Karena Ca1=Ca2, maka tidak ada gaya aksial akibat perubahan vektor kecepatan absolut yang bekerja pada poros. Tetapi sebaliknya, akan ada gaya aksial akibat beda tekanan sebelum dan sesudah sudu.

    Bila R = 50%, maka sudu arah sudu gerakh h = . Gambar 5.23 a dan b menunjukkan skema turbin uap jenis aksi dan reaksi, disertai dengan gambar diagram h-s dan segitiga () kecepatannya. Perhatikan perbedaannya.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-17

    5.6 TURBIN AKSI DAN REAKSI 5.6.1 Turbin Aksi Turbin aksi merupakan lawan kelompok turbin reaksi. Turbin aksi juga dinamakan turbin impuls atau turbin tekanan rata, adalah turbin yang bekerja pada tekanan rata atau sama di semua titik pada suatu sudu gerak. Jadi pertukaran energi di sudu hanya dari energi kinetiknya saja, sedangkan dari energi potensial tetap.

    (Fig5-07tu) Gambar 5.22 Turbin tekanan rata satu tingkat, dengan ditunjukkan

    besaran tekanan dan kecepatan uapnya pada arah aksial.

    Gambar 5.22 menunjukkan turbin tekanan rata satu tingkat. Turbin menggunakan nosel (nozzle) yang menurunkan entalpi uap sepenuhnya menjadi energi kinetik. Di nosel, persamaan energi:

    1

    21

    1

    110

    20

    00 22

    gzVP

    ugzVP

    u o +++=+++

    (5.12)

    dimana subskrip 0 menyatakan notasi untuk seksi sebelum masuk nosel, 1 menyatakan notasi untuk seksi keluar nosel.

    Atau karena 00

    0 hP

    u o =+

    dan 11

    11 h

    Pu =+

    (5.13)

    dan energi potensial gz pada turbin uap umumnya kecil dan diabaikan, maka di nosel persamaan ideal energi menjadi:

    22

    21

    1

    20

    0VhVh +=+ (5.14)

    Jadi pada diagram T-s proses pertukaran energinya ditunjukkan hanya dengan satu garis saja. Di sisi masuk dan keluar turbinnya sendiri entalpinya konstan. Hal ini dapat ditunjukkan pada Gambar 5.22.

    Arah putaran

    Nosel

    Tekanan

    Kecepatan

    0C

    C1

    C2

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-18

    Pada Gambar 5.23a, entalpi turun dari titik 0 ke titik 1. Pada titik 1 (tekanan keluar nosel), tekanan uap akan sama dengan tekanan uap masuk sudu turbin (titik 2) dan tekanan keluar sudu (titik 3). Jadi proses kerja di sudu seolah berimpit di titik 1, 2 dan 3. Bila diperhatikan lebih mendetail, persamaan energi yang lengkap antara seksi sebelum nosel sampai seksi sesudah sudu jalan dapat ditulis sebagai berikut:

    Di nosel: 22

    21

    1

    11

    20

    00

    VPu

    VPu o ++=++

    (5.15)

    di roda jalan turbin: TYVP

    uVP

    u +++=++22

    23

    3

    33

    22

    2

    22

    (5.16)

    Sedangkan energi spesifik turbin dapat ditulis sebagai (rumus Euler): 3322 uuT CUCUY = (5.17)

    atau 222222

    22

    23

    23

    22

    23

    22 WWUUCCYT ++= (5.18)

    Energi kinetik spesifik tenaga uap (YTk) dinyatakan pada bagian persamaan:

    22

    23

    22 CCYTk = (5.19)

    sedangkan gabungan energi potensial, tekanan dan termal spesifik dinyatakan dalam:

    2222

    22

    23

    23

    22 WWUUYTp += (5.20)

    Karena tidak ada penurunan tekanan lagi di dalam sudu jalan, maka YTp akan sama dengan nol. Untuk turbin aksial, U2 = U3. Jadi untuk turbin impuls akan didapat selalu W2 = W3. Segitiga kecepatan turbin impuls ditunjukkan pada gambar. Karena tekanannya konstan, maka kerapatan massanya juga konstan. Bila luas penampang aliran pada sudu jalan konstan, maka kecepatan aksial juga akan konstan. Karena tekanannya sama, maka volume spesifik v2 akan sama dengan v3. Akibatnya kecepatan aksial uap Ca2 akan sama dengan Ca3 atau C3 dalam keadaan ideal. Dari diagram h-s terlihat, entalpi uap turun di nosel sebagai akibat kenaikan kecepatan uap. Selanjutnya di sudu jalan, penurunan energi total terjadi karena penurunan energi kinetiknya saja. Tekanan yang konstan di sisi masuk dan keluar turbin impuls menyebabkan tidak adanya kerugian kebocoran uap antara ke dua sisi tersebut. Akibat lainnya adalah:

    Turbin aksi dapat bekerja pada bukaan nosel sebagian, dalam arti, tidak semua nosel (bila nosel dipasang penuh di depan roda jalan) diaktifkan.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-19

    (a) (b) Gambar 5.23 Sudu arah, sudu jalan, diagram h-s dan segitiga kecepatan

    turbin aksi (a) dan turbin reaksi (b).

    Gambar 5.24 Turbin impuls 2 rotor 4 tingkat. (Shin Nippon Machinery).

    Sudu

    ar

    ah

    Inde

    k0

    Sudu

    jal

    an

    12

    Entropi s

    w 2

    c

    w3

    u

    3

    2

    c 1c u

    Inde

    k

    3

    Enta

    lpi h

    pp 2

    s 31

    p 3

    3 0 0p 2Sud u

    ar

    ah

    0 1 Sudu

    jal

    an

    3

    2 2w

    w

    3 u3

    3 3c

    2 u

    c 1

    Entropi s

    c 2

    Enta

    lpi h

    s3

    21

    3

    2p1p

    p0 0

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-20

    C 1

    1CW1

    C 22W

    x

    2U

    U

    1U

    Gambar 5.25 Turbin uap impuls 2 rotor 4 tingkat tutup terbuka. (Shin Nippon Machinery).

    5.6.1.1 Analisis Turbin Impuls Berdasarkan Momentum Sama dengan turbin air, gambar berikut menunjukkan sudu gerak turbin impuls

    dan segitiga kecepatannya.

    Gambar 5.26 Sudu turbin impuls dan vektor-vektor kecepatan uap. Gambar 5.26 diatas menunjukkan prinsip kerja sebuah turbin uap impuls. Jet menyembur dari nosel di kiri dengan kecepatan C0 dan menumbuk sudu seperti nampak pada gambar. Sudu-sudu dibuat seperti mangkuk. Jumlah sudu dimisalkan tak berhingga. Selanjutnya sudu dipasang pada rotor dalam konfigurasi aksial, sehingga U1 = U2.

    Kecepatan jet masuk sudu adalah C1. Kecepatan jet keluar sudu adalah C2. Kecepatan tangensial sudu adalah U =U1 = U2. Kecepatan masuk relatif terhadap sudu W1 Kecepatan keluar relatif terhadap sudu W2

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-21

    Bagaimana rumus daya turbin tersebut? Pengamat berada di sumbu inersial, di luar sudu. Sudu bergerak dengan kecepatan tangensial U. Kecepatan relatif jet masuk sudu adalah W1 = C1 U1 Kecepatan relatif jet keluar sudu adalah W2 = C1 U1 = W1 Kecepatan absolut jet keluar sudu adalah C2 = U (C1 U1)

    = 2U C1 Dari persamaan momentum:

    ( ).rVAM V V n dA= v v&

    (5.21)

    dapat diperoleh VAm =& (5.22) dan UCnVr = 1.

    v (5.23)

    Oleh karenanya

    ( ) ( ) ( ) ( )( )UCmUCmnVmnVmF klrrmskr == 11.. &&v&v&

    ( ) = UCmF 12 & (5.24) Kerja per satuan waktu P adalah:

    ( ) == UCUmFUP 12 & (5.25) Jadi bila laju massa uap diketahui dan kecepatan pancaran uap dari nosel (C1) dan kecepatan putar sudu (U) diketahui, daya rotor dapat dihitung. Untuk mencari efisiensi rotor, dari definisi efisiensi sebagai rasio daya keluar poros terhadap daya uap tersedia, efisiensi turbin adalah:

    2

    1 121

    1 1 12

    4 U UPmC C C

    = =

    & (5.26)

    Dengan menurunkan persamaan efisiensi diatas terhadap U1/C1, efisiensi optimum didapat bila:

    CU 21= (5.27) Jadi 221 CmPmaks &= (5.28) Dengan cara yang sama, bila jet uap masuk dan keluar sudu membentuk sudut 1 dan 2 berturut-turut terhadap arah aksial (sudut 1 dan 2 selalu diperlukan untuk memungkin-kan jet uap masuk ke dan keluar dari sudu-sudu), maka akan didapat:

    ( ) = 2211 coscos2 CCmF & (5.29)

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-22

    6.4 Gambar 5.27 Sudu turbin impuls dengan sudut relatif masuk dan keluar 1 dan 2.

    Jadi ( ) == 2211 coscos2 CCUmFUP & (5.30) Efisiensi akan menjadi:

    == 2

    1

    2

    1

    11

    1

    12

    121

    coscos2 CC

    CU

    CU

    CmP&

    (5.31)

    Kecepatan sudu optimum: Kecepatan relatif uap masuk sudu adalah: C1 cos1 U. Kecepatan uap keluar sudu adalah: U - (C1 cos 1 U) = 2U C1 cos 1 Jadi : ( ) ( )1 2 2 1 12 cos cos 2 cosP mU C C mU C U = = & & (5.32) Kecepatan optimum akan diperoleh bila:

    2cos 11 CU opt = (5.33)

    Daya maksimum diperoleh bila Uopt dipergunakan, sehingga:

    ( )2 21 1 12 cos 2 optP m C mU= =& & (5.34) Efisiensi maksimum adalah:

    ( )21cos =maks (5.35) Bila 1 = 0, maka efisiensi akan sama dengan 100%.

    Contoh aplikasi turbin aksi adalah turbin Curtis. Gambar 5.28 berikut menunjukkan roda Curtis 2 tingkat. Selepas dari nosel, tekanan uap sama di semua stasiun antara sisi masuk sudu tingkat I sampai dengan sisi keluar sudu tingkat II. Kecepatannya yang berkurang seiring dengan berkurangnya energi kinetik uap dan bertambahnya energi pada poros putar turbin.

    1

    2

    X+

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-23

    Gambar 5.28 Turbin tekanan rata dua tingkat.

    5.6.1.2 Turbin Aksi Turbin Hero Bentuk lain dari turbin aksi adalah turbin Hero. Gambar berikut menunjukkan

    turbin Hero dan gambar-gambar penjelasan untuk menganalisa cara kerja turbin ini. Turbin Hero bekerja berdasarkan momentum yang dihasilkan dari pancaran uap dari nosel turbin yang berfungsi pula sebagai rotor turbin. Reaksi dari momentum ini dimanfaatkan sebagai proses konversi energinya. Sama dengan pada turbin aksi semisal turbin Curtis sebelumnya, analisa turbin ini lebih mudah menggunakan analisa momentum langsung.

    (a) (b) (c) Gambar 5.29 Turbin Hero

    W2 = kecepatan relatif terhadap nosel U2 = kecepatan keliling nosel

    = kecepatan putar A = luas penampang saluran

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-24

    Gaya yang dihasilkan uap keluar nosel dengan kecepatan absolut C2 adalah:

    2F mC= & (5.36) atau ( )2 2F m W U= & (5.37) Kerja per satuan waktu uap adalah:

    ( )2 2 2P mU W U= & (5.38) Uap semula keluar melalui sumbu putar turbin dan bergerak menuju nosel di sisi luar lingkaran putar turbin. Kerja akan dirasakan oleh fluida oleh rotor dalam bentuk:

    a. Fluida dipercepat dari kecepatan mendekati nol (pendekatan) pada sumbu nosel menjadi sama dengan kecepatan nosel U2, yaitu energi kinetik:

    2

    22UYKE = (5.39)

    b. Fluida juga dimampatkan bila bergerak radial keluar dalam putaran. Energi potensial atau, kerja pemompaan, diturunkan sebagai berikut (lihat gambar b): Kesetimbangan gaya arah radial massa dm :

    ( ) 2p dp p A r dm+ = (5.40) Karena dm = A dr maka 2dp r dr = (5.41)

    atau drrdp 2

    = (5.42)

    Kerja pemompaan fluida aliran kompresibel maupun inkompresibel adalah:

    2

    22UYKE = (5.43)

    Gaya yang bekerja pada fluida oleh rotor, yang menghasilkan energi kinetik dan kompresi, adalah gaya Coriolis. Jadi kerja oleh rotor pada fluida melalui gaya Coriolis adalah sama dengan jumlah perubahan energi kinetik dan kerja pemompaan sebagai berikut (lihat Gambar 5.29c):

    2dF r dm= & (5.44) 2dF m dr= & (5.45)

    Momen dari momentum dM r dF= (5.46) Daya karena gaya Coriolis dMdPC = (5.47) atau rdrmdPC &

    22= (5.48) Setelah integrasi: 22CP mU= & (5.49)

    Energi Coriolis spesifik: 22UYC = (5.50)

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-25

    Pada sistem koordinat relatif (bergerak bersama nosel) hanya kerja pompa menambah energi yang tersedia untuk mempercepat fluida melalui nosel. Perubahan energi kinetik diperlukan untuk memungkinkan fluida bergerak dengan kecepatan yang sama dengan kecepatan nosel. Dengan asumsi ekspansi ideal (isentropik), kecepatan fluida keluar nosel pada sistem koordinat non inersial (relatif) dapat dicari karena harganya harus merupakan penjumlahan energi-energi potensial dalam sistem fluida statik dan dengan kompresi akibat rotasi. Kerja pompa sebagai bagian dari energi potensial yang tersedia untuk mempercepat fluida menembus nosel sering diabaikan. Bila dalam keadaan = 0, rotor dimisalkan ditahan tetap, didefinisikan kecepatan fluida keluar dari nosel sama dengan Cst, maka berdasarkan analisis energi:

    222

    22 stCUC += (5.51)

    Masukkan persamaan diatas pada Persamaan 5.38 maka:

    += 22

    22

    2 UUCUmP st& (5.52)

    Dari definisi efisiensi turbin stCm

    P&2

    1= (5.53)

    Definisikan rasio kecepatan stC

    U 2= (5.54)

    dan koefisien dorong nosel (thrust coeficient) d dimana Ca adalah kecepatan fluida sebenarnya, sedangkan C2 kecepatan keluar ideal:

    2CCa

    d = 0 < d < 1 (5.55)

    didapat: ( )22 1d = + (5.56)

    5.6.2 Turbin Reaksi Lain halnya dengan turbin reaksi. Penurunan entalpi tidak semuanya dilakukan di nosel, tetapi sebagian daripadanya dilakukan di sudu jalan. Jadi:

    2222

    22

    23

    23

    22 WWUUYTp += > 0. (5.57)

    Pada Gambar 5.23 dapat dilihat perbedaan dasar antara turbin aksi (Gambar 5.23a) dan reaksi (Gambar 5.23b). Dari segitiga kecepatannya, karena kecepatan tangensial U2 sama dengan U3 (turbin aksial) maka W2 tidak akan sama dengan W3. Dari diagram h-s terlihat, entalpi uap turun di nosel sebagai akibat kenaikan kecepatan uap. Selanjutnya di sudu jalan, penurunan energi total uap terjadi karena penurunan energi kinetik dan entalpi.

    Karena tekanan di sisi 2 lebih besar, maka volume spesifik v2 akan lebih kecil daripada v3. Akibatnya kecepatan aksial uap ca2 akan lebih kecil daripada ca3 atau c3 dalam keadaan. Untuk menyamakannya, maka luas penampang aliran di sisi keluar turbin diperbesar. Itulah sebabnya pada turbin reaksi diameter roda jalan di sisi hilir lebih besar.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-26

    5.6.2.1 Efisiensi Turbin Reaksi Sama dengan turbin aksi, dengan menggunakan persamaan Euler, kerja spesifik pada rotor turbin reaksi adalah:

    Y = U1 cos 1 U2 cos 2 = U1 Cu1 U2 Cu2 = 222222

    21

    22

    22

    21

    22

    21 WWUUCC

    ++

    Sebelum rotor, energi spesifik yang dimiliki uap adalah:

    2W

    2W

    2U

    2U

    2CY

    21

    22

    22

    21

    21

    1 ++=

    Persamaan diatas menunjukkan energi yang dimiliki fluida sebelum masuk rotor. Bila kita akan tinjau energi yang dipindahkan fluida ke rotor, maka energi kinetik sisa C22/2 yang keluar rotor harus dimasukkan dalam perhitungan, yang kemudian akan kita dapatkan kembali persamaan Euler. Kita bahas khusus turbin aksial, maka efisiensi turbin reaksi adalah:

    ( )1 22 2 2 2 2

    1 1 2 2 11

    2

    u u

    reaksiU C CY

    C U U W WY = =

    + +

    Pada turbin reaksi, ada beberapa kemungkinan bentuk segitiga kecepatan masuk dan keluar sudu. Pada dasarnya, bentuk-bentuk di bawah dapat mewakili berbagai bentuk yang lain. Untuk menganalisanya, dua faktor pengubah akan kita pergunakan, yaitu Faktor untuk kecepatan aksial, dengan definisi Cm1 = Cm2, dan Faktor untuk sudut 1 dan 2 , dengan definisi 1 = 2 Perubahan kecepatan aksial Cm dapat terjadi karena kemungkinan perubahan kecepatan aksial akibat makin turunnya tekanan yang mengakibatkan naiknya volume spesifik uap di sisi keluar. Dan ini mengakibatkan membesarnya Cm di sisi keluar. Pada kasus khusus, bila turbin reaksi didisain menggunakan konsep Cm konstan, maka akan sama dengan 1. Sudu turbin ini diameter pada sisi keluarnya lebih besar daripada di sisi masuknya (lihat sudu dengan tanda panah gambar berikut).

    Gambar 5.30 Contoh rotor turbin uap reaksi.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-27

    Gambar 5.31 Beberapa bentuk sudu rotor dan stator turbin uap (Stork, Holland).

    Menggunakan faktor pengubah diatas,

    11

    111

    112222

    tansintantancos C

    CCCC mm

    ====

    Selanjutnya 122

    111

    2cos

    tansinC

    CC

    ==

    Dimana

    11

    1

    tansin=

    2

    11

    2cos

    tansin

    =

    Sehingga efisiensi dapat ditulis sebagai:

    ( )1 1 2 22 2 2 2 2

    1 1 2 2 11

    cos cos

    2

    reaksiU C CY

    C U U W WY = =

    + +

    1 11 1 1

    2 2 2 2 21 1 2 2 1

    cos sin tan

    2

    CU C

    C U U W W

    =

    + +

    Dari segitiga kecepatan:

    ( ) ( )2222222222222222 cos2180cos2 CUCUCUCUW ++=+= 112

    21

    22

    22 2 CUCU ++=

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-28

    Sedangkan 1112

    12

    12

    1 cos2 CUCUW +=

    Jadi

    1 11 1 1

    2 2 2 2 2 2 2 21 1 2 2 2 1 2 1 1 1 1 1 1 1

    cos sin tan

    2 2 cos2

    reaksi

    CU C

    C U U U C U C U C U C

    =

    + + + + +

    Untuk turbin aksial, U1 = U2. Jadi

    1 11 1 1

    2 22 1 2 1 1 1 1 1

    2 cos sin tan

    2 2 cosreaksi

    CU C

    C U C U C

    =

    + +

    Bagi dengan C12 didapat

    11 1

    1

    2 12 1 1

    1 1

    12 cos sin tan

    2 2 cosreaksi

    UC

    UUC C

    =

    + +

    Gambar 5.32 Gambar potongan turbin uap reaksi.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-29

    Amati perbedaan turbin reaksi dengan turbin aksi (Gambar 5.15). Dapat dilihat, pembukaan sudu-sudu terlihat lebih besar.

    Gambar 5.33 Turbin reaksi tekanan rendah (LP) (Siemens- Muelheim Jerman).

    Satu set turbin sejenis mampu membangkitkan tenaga listrik sebesar 1200 MW. Turbin ini juga telah beroperasi di Paiton, Jawa Timur.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-30

    5.7 TURBIN BERTINGKAT Kemampuan nosel dan turbin untuk mengambil energi dari fluida kerjanya adalah terbatas. Sedangkan dari analisis sebelumnya sudah terbukti, beda temperatur (yang ekivalen dengan energi) yang makin tinggi akan memberikan efisiensi yang makin tinggi pula. Untuk mencapai efisiensi yang tinggi tersebut turbin uap dibuat bertingkat-tingkat. Setiap tingkat bertugas memindahkan sebagian dari energi uap yang tersedia ke poros turbin.

    5.7.1 Turbin Impuls Bertingkat Pada turbin impuls, ada dua cara untuk membangun turbin bertingkat, yaitu:

    a. Turbin impuls dengan satu nosel dan beberapa sudu jalan dengan beberapa sudu pembalik arah aliran.

    (Fig5-08tu) Gambar 5.34 Turbin tekanan rata dua tingkat rotor,

    dengan besaran tekanan dan kecepatan uapnya.

    Gambar 5.34 menunjukkan satu contoh turbin impuls bertingkat 2 dengan sudu pembalik. Tekanan uap sekeluar dari nosel adalah konstan di seluruh seksi impuls. Sebaliknya kecepatan absolut uap di kedua tingkat sudu jalan tidak sama, sebagai akibat terpindahkannya sebagian energi kinetik di tingkat pertama. Gambar 5.35 menunjukkan segitiga kecepatan turbin impuls dua tingkat dengan sudu pembalik.

    Gambar 5.35 Segitiga kecepatan pada sudu gerak dan sudu diam turbin uap tekanan rata dua tingkat.

    (Fig5-09tu)

    Absolut

    Tekanan

    Nosel

    Kecepatan

    gerakSudu

    arahSudu

    gerakSudu

    C1

    C2 C3 C4

    u1

    2W 2

    1

    1

    1

    Sudu jalan 1

    2WC1

    C2

    Sudu arah

    3

    44W

    3W3C

    2u

    u3

    3

    44C

    u4

    Sudu jalan 2

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-31

    (Fig5-10tu) Gambar 5.36 Segitiga kecepatan turbin aksi tiga tingkat dengan sudu pembalik.

    Kecepatan yang rendah di sisi keluar sudu terakhir merupakan tujuan untuk mendapatkan efisiensi yang tinggi.

    b. Turbin impuls bertingkat dengan beberapa nosel dan beberapa sudu jalan. Dalam analisis disain sering dijumpai kondisi dimana nosel tidak mampu menurunkan entalpi seperti yang dikehendaki. Untuk mengatasinya entalpi diturunkan melalui beberapa nosel. Gambar 5.37 menunjukkan turbin impuls tiga tingkat yang tekanan disetiap tingkatnya tidak sama..

    (Fig5-12tu) Gambar 5.37 Turbin tekanan rata tiga tingkat tekanan,

    dengan segitiga kecepatannya.

    Prinsip kerja konfigurasi ini dijelaskan dengan gambar berikut. Nosel berfungsi sebagai penurun entalpi dan peningkat energi kinetik uap. Sudu jalan berfungsi sebagai pemindah energi kinetik uap ke energi mekanik pada poros turbin. Entalpi yang masih tinggi di sisi keluar sudu jalan tingkat I di ekspansikan kembali oleh nosel tingkat ke II. Energi kinetik yang dihasilkan dipindahkan menjadi energi poros di turbin tingkat ke II.

    C 1Sudu gerakW1

    u 1

    C 22W

    u 2

    3U

    3C3W

    W44C

    4U 5C5W

    6CU6

    6W

    Sudu tetap

    Sudu tetap

    Sudu gerak

    Sudu gerak

    gerak

    1C1W

    U1Sudu

    Nosel

    Tin

    gkat

    1

    2W

    3W

    2C

    3C2U

    34

    5C

    6C

    4W

    5W

    6W

    3U

    4U

    5U

    6U

    Tin

    gkat

    2

    Tin

    gkat

    3

    Nosel

    Nosel

    Sudugerak

    Sudugerak

    tingkat 2

    tingkat 1

    tingkat 3

    1

    6

    5

    4

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-32

    (Fig5-11tu) Gambar 5.38 Turbin tekanan rata dua tingkat tekanan, ditunjukkan pola perubahan

    tekanan dan kecepatan absolut uap di setiap tingkat.

    Gambar diatas menunjukkan konsep turbin impuls dua tingkat bertekanan tidak sama. Diagram dibawahnya menunjukkan besaran tekanan dan kecepatan absolut di setiap tingkatnya.

    5.7.2 Turbin Reaksi Bertingkat Lain halnya dengan turbin aksi, turbin reaksi mengatasi keterbatasan penurunan energi di setiap tingkatnya dengan menghadirkan nosel yang berupa sudu arah di setiap tingkatnya.

    (Fig5-13tu) Gambar 5.39 Turbin reaksi tiga tingkat tekanan, dengan besaran tekanan dan kecepatan

    uapnya.

    Sudutetap

    Tekanan

    absolut

    Sudugerak

    Sudutetap

    Sudutetap

    di sudu tetapPenurunan tekanan

    di sudu gerakPenurunan tekanan

    di sudu tetapKenaikan kecepatan absolut

    Penurunan kecepatan absolutdi sudu gerak

    Kecepatan

    gerakSudu

    gerakSudu

    KecepatanAbsolut

    C1

    Tekanan

    Nosel

    gerakSudu

    Nosel

    gerakSudu

    2C

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-33

    (Fig5-14tu) Gambar 5.40 Turbin reaksi dua tingkat tekanan,

    dengan segitiga kecepatannya.

    Gambar 5.41 Diagram h-s turbin reaksi dua tingkat tekanan.

    Cobalah anda buat analisis, bagaimana dengan pernyataan berikut: Persamaan energi 0-1 di sudu tetap:

    2 20 1

    0 1 0 12 2 rg sudutetapC Ch h h

    + = + +

    Persamaan energi 1-2 di sudu gerak:

    2 21 2

    1 2 1 2 1 22 2 rg sudu gerak sudu gerakC Ch h h e

    + = + + +

    C11W

    1U

    1 gerakSudu

    Sudutetap

    2

    1

    2W2C

    2U

    4

    3C3W

    3U

    4U

    W44C

    gerakSudu

    tetapSudu

    3

    2

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-34

    5.8 BEBERAPA BENTUK KHUSUS KONSTRUKSI TURBIN UAP 5.8.1 Turbin Uap Radial

    Rotor Stator

    Gambar 5.42 Contoh konstruksi turbin uap radial.

    Gambar di atas menunjukkan gambar turbin uap radial sederhana. Rotor (karangan sudu sebelah kanan) terdiri dari cincin lingkar yang di bagian tengahnya dibentuk menjadi sudu-sudu. Tepat disisi hilir atau hulunya, terdapat sudu arah (stator, bagian kiri). Arah aliran uap pada gambar di atas adalah dari bawah ke atas, arah radial.

    Gambar 5.43 Turbin uap radial rotor ganda dengan potongan sudu gerak dan sudu arah dan segitiga kecepatannya.

    Gambar 5.43 di atas menunjukkan potongan turbin radial reaksi bertingkat rotor ganda. Di sisi kanan menunjukkan potongan sudu-sudu gerak rotor 1 dan rotor II. Turbin ini tidak memiliki sudu arah. Gambar bawahnya menunjukkan segitiga kecepatan kedua pasangan rotor tersebut. Dalam gambar, C21 menyatakan kecepatan absolut uap masuk rotor 2 yang sama besarnya dengan uap keluar rotor 1. Kecepatan absolut keluar dari rotor dinyatakan dengan C22.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-35

    Gambar 5.44 Turbin uap radial dengan sisi outlet arah aksial.

    Gambar 5.44 di atas menunjukkan rotor turbin uap radial janis campuran. Uap masuk impeler dalam arah radial, tetapi keluar impeler arah aksial. Gambar kanan atas menunjukkan tampak depan rotor. Gambar bawah menunjukkan tipikal segitiga kecepatan. Perlu diperhatikan, gambar kedua segitiga kecepatan di atas tidaklah dalam satu bidang. Bidang segitiga kecepatan keluar rotor adalah tegak lurus terhadap arah poros.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-36

    5.9 BEBERAPA PERALATAN UTAMA TURBIN UAP 5.9.1 Nosel (lihat bab khusus nosel, dalam persiapan) 5.9.2 Katup Kontrol Tingkat Pertama (Steam Chest)

    (Gbr6tu) Gambar 5.45 Sketsa sistem kontrol pemasokan uap pada nosel atau sudu arah dengan 7

    katup diparalel. Turbin aksi dapat bekerja pada bukaan nosel sebagian, dalam arti, tidak semua

    nosel (bila nosel dipasang penuh di depan roda jalan) diaktifkan. Pada gambar diatas, tampak katup ke I (tunggal), pasangan katup ke II, ke III dan ke IV. Posisi tiap jarum katup menentukan jumlah pasokan uap. Terlihat katup ke IV melayani nosel atau sudu arah yang menempati sebagian lingkaran sudu jalan (tidak nampak). Tentunya ada sebagian sudu jalan yang tidak menghasilkan daya (pasif) karena tidak tepat didepan nosel ini. Sudu jalan yang pasif ini justru memakan daya akibat efek angin, yaitu bekerja sebagai fan yang menimbulkan kerugian angin (windage).

    Gambar 5.46 Contoh sistem hidrolik batang pengatur turbin uap buatan China.

    ke Servo governor

    Bocoran uap

    Penutup

    Uap masuk

    Bocoran uap

    Uap masuk

    Segmen nosel

    Katup

    Segmen noselRotor turbin tingkat 1Sumbu poros rotor

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-37

    5.9.3 Penyekat

    5.9.3.1 Labirinth

    Gambar 5.47 Labirin untuk menyekat uap atau gas bertekanan terhadap lingkungan luar pada kompresor ataupun turbin uap/gas.

    Labirin (labyrinth) merupakan salah satu komponen untuk menyekat uap atau gas bertekanan tinggi terhadap kebocoran ke udara luar pada poros yang berputar. Ada beberapa jenis labirin yang dipergunakan, antara lain berbentuk ring metal, penyekat air dan ring dari bahan karbon. Pada gambar terlihat jenis ring metal yang ditanam dalam takikan (groove) yang dikunci dengan ring kunci. Ring labirin dipasang baik pada bagian poros maupun rumah turbin. Ring labirin yang bergerak mengakibatkan uap atau gas berubah arah geraknya, berputar mengikuti gerak ring dan berputar melingkar diantara dinding-dinding ring. Gerak dan arah kecepatan yang ditimbulkan menimbulkan efek penyekatan yang baik. Berbagai macam bentuk ring labirin dapat ditemui pada turbin-turbin uap dan gas, selain juga yang digunakan pada kompresor. Diantaranya dapat dilihat pada gambar-gambar berikut:

    Gambar 5.48 Penyekat labirin yang dilengkapi dengan penyekat cairan.

    C

    D

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-38

    (Scan34tu) Gambar 5.49 Ring labirin yang ditanam

    sejajar poros. (Scan34tu)

    5.9.3.2 Penyekat Mekanikal

    Gambar 5.50 Penyekat mekanikal (mechanical seal) dilengkapi dengan

    penyekat minyak.

    Gambar 5.51 Ring labirin yang ditempatkan pada ring dudukan khusus.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-39

    M K

    1N

    C N2

    2

    K2C

    2

    e M-K

    Ke

    i2C

    2

    K*K

    Nstg,Kp

    h

    pk

    Np

    M

    1p

    M

    1p

    s,M-Kh

    s

    h

    K

    5.10 CATATAN TAMBAHAN DIAGRAM H S BEBERAPA KONFIGURASI KOMPRESOR DAN TURBIN UAP.

    Abb 1.5.5

    Gambar 5.52 Kompresor aksial Gambar 5.53 Diagram h s kompresor

    Kompresor : Notasi :

    M = sisi masuk K = sisi keluar 1 = sisi masuk impeler N = sisi keluar impeler CM = kecepatan di sisi masuk CK = kecepatan di sisi keluar eM-K = beda energi antara sisi masuk dam keluar = hM-K + CK2/2 e = energi spesifik h = entalpi hM-K = beda entalpi antara sisi masuk dan keluar hs,M-K = beda entalpi isentropik antara sisi masuk dan keluar p1 = tekanan statik di sisi masuk impeler pM = tekanan statik di sisi masuk pN = tekanan statik di sisi keluar impeler pK = tekanan statik di sisi keluar pstg,K = tekanan stagnasi di sisi keluar pstg,M = tekanan stagnasi di sisi masuk

    Subscribt: s = isentropik

    Efisiensi internal, adalah efisiensi dengan hanya memperhitungkan energi termal, adalah: Efisiensi internal turbin didefinisikan sebagai :

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-40

    1 N

    MC

    KC

    M K

    h

    1

    p

    p

    M

    s,M-K

    s1

    2C2

    1

    C

    p

    h

    pN

    p stg,K K2

    C 2K

    e M-K

    K2

    2K

    e

    stg,Mp

    2C 2M

    Untuk Turbin:

    rugi-rugi tanpa turbinEnergirotor kekerja fluida diberikan yangEnergi

    int =

    Untuk Kompresor:

    kerjafluida kerotor diberikan yangEnergirugi-rugi tanpa dihasilkan gfluida yan Energi

    int =

    Sebagai contoh, pada kompresor gambar di bawah:

    KM

    KMslossKM

    e

    hm

    mm

    =,

    int,&

    &&

    Abb 1.5.7

    Gambar 5.54 Kompresor aksial Gambar 5.55 Diagram h s kompresor

    Selanjutnya, bila pada sisi masuk dan keluar kompresor kecepatan fluida tidak dapat diabaikan, energi kinetik harus diperhitungkan. Maka:

    KM

    KMsKM

    e

    e

    =,

    int,

    Pada proses ekspansi, gambar berikut menunjukkan diagram h s :

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-41

    sKm'

    m

    sKm - m'

    1N1 N

    CM

    M

    sK2m

    KC KKP , KT

    TM,MP

    sK1

    sK

    N'

    1N'

    P

    KP s

    s,M-K

    hh

    1

    K

    M-Kh

    M

    2N

    2C

    MP

    Gambar 5.56 Diagram h-s turbin uap.

    Pada gambar di atas, seksi M-1 adalah nosel. Dalam gambar, seperti ditunjukkan pada gambar, proses ekspansi pada nosel adalah proses entalpi konstan M-1. Efisiensi internal turbin uap adalah:

    KMs

    KMKMi h

    h

    =

    ,

    ,

    Abb 1.5.2

    Gambar 5.57 Skema turbin dengan sistem injeksi tengah dan injeksi penyekat

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-42

    M-Ke

    s,M-Ke

    Np'

    N'NK

    K*

    pK2C

    2K

    2N2CN'1N'hN1h'1

    2N2C 1

    1h1

    212C

    1pMp

    stg,Mp

    MeM

    Mh

    h

    s

    eM

    e

    2C 2M

    p

    s,1-Ne

    h

    N

    PN

    h

    2C2

    s

    h 1

    1

    s,1-N1

    N

    1-N1

    1-N1

    1

    Abb 1.5.4 Gambar 5.58 Diagram ekspansi turbin pada Gambar 5.57.

    Abb 1.5.3

    Gambar 5.59 Diagram h s pada ekspansi turbin bertingkat.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-43

    M

    m 1 2m 3m 4m

    0

    1 243

    m m m

    C

    K

    N

    eks 1 eks 2 eks 3

    h s,M-K

    s1hp

    M

    stg,MP

    2CM2

    2C 1

    2

    2C 22

    1e

    2e

    3e

    4e

    2C N

    2

    eM-K

    pK

    p2

    3p

    4p

    s

    h

    s2

    s3

    s4

    h

    h

    h

    Turbin Uap Dengan Ekstraksi:

    Abb 1.6.1

    Gambar 5.60 Turbin uap dengan 3 ekstraksi.

    Abb 1.6.2

    Gambar 5.61 Diagram h-s untuk turbin uap dengan 3 ekstraksi.

    Notasi : im& = laju massa per satuan waktu pada seksi i (i = 1, 2, 3, ..... , n).

    2m& = laju massa uap pada jalur ekstraksi ke 1 3m& = laju massa uap pada jalur ekstraksi ke 2 4m& = laju massa uap pada jalur ekstraksi ke 3

    Efisiensi dalam energetik :

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap/ Hen 0808

    5-44

    =

    =

    =

    n

    iisis

    n

    iii

    ie

    em

    em

    0,,

    0

    &

    &

    ei dan hs,i ditunjukkan pada Gambar 5.61 di atas.

    Bila seluruh massa uap yang masuk ke turbin m& dapat dibagi menurut:

    m

    mii

    &

    & dan

    m

    m isis

    &

    &,

    ,

    Maka berlaku:

    =

    =

    =

    n

    iisis

    n

    iii

    ei

    e

    e

    0,,

    0,

    Bila jumlah kerja teoritik internal turbin dan kerja teoritik dari uap ekstraksi dituliskan sebagai:

    ==

    +n

    iiekssi

    n

    iii ee

    1,

    0 , maka:

    KMs

    n

    iiekssi

    n

    iii

    ie

    ee

    ==

    +=

    ,

    1,

    0mikthermodina,

  • BAB V TURBIN UAP

    Mke2 Turbin Uap 1 101106/ Hen

    5-45

    5.11 GAMBAR-GAMBAR

    (Fig5-25tu)

    Gambar 5.62 Contoh potongan instalasi turbin 4 silinder 4 poros serie.

  • MKE 2

    BAB 5 TURBIN UAP

    Mke2 Turbin Uap /Hen 0808

    5-46

    Gambar 5.63 Turbin impuls dua tingkat

    Gambar 5.64 Turbin uap 7 MW

    Gambar 5.65 Turbin uap 7 MW